Math 114

Here is a list of sample problems. You should still go through homework problems. I make NO claims that this list is exhaustive!

- 1. Let R be the region in the first quadrant bounded by the curves $y = x^3$ and $y = 2x x^2$. Calculate:
 - (a) The area of R.
 - (b) The volume obtained by rotating R about the x-axis.
 - (c) The volume obtained by rotating R about the y-axis.
- 2. The base of a solid is the region bounded by the parabolas $y = x^2$ and $y = 2 x^2$. Find the volume of the solid if the cross-sections perpendicular to the x-axis are squares with one side lying along the base.
- 3. Calculate the following integrals (if they converge).

a)
$$\int x^3 \ln x dx$$
 b) $\int \frac{\sqrt{x-2}}{x+2} dx$ c) $\int \frac{x}{\sqrt{1-x^2}} dx$

d)
$$\int e^{3x} \cos x dx$$
 e) $\int \frac{x+2}{x^2-x-2} dx$ f) $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$

g)
$$\int \frac{1}{x^2 - 4} dx$$
 h) $\int \sqrt{1 - 4x^2} dx$

j) $\int \tan^3 x dx$ k) $\int \sin^2 x dx$

l) $\int \frac{x-1}{x+1} dx$

i) $\int \frac{x}{\sqrt{1-x^2}} dx$

o) $\frac{1}{x^2\sqrt{1+r^2}}dx$

m) $\int_{-1}^{4} \frac{1}{\sqrt[3]{x}} dx$ n) $\int_{-\infty}^{\infty} \arctan x dx$

p)
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$
 q) $\int \frac{\ln(\ln x)}{x}$

4. (a) Give the Taylor polynomial T₃ for f(x) = √1 + x at x = 0.
(b) How large can the remainder term |R₃(x)| be over the interval [0,3]?

- 5. a) Express $(x, y) = (-1, \sqrt{3})$ in polar coordinates.
 - b) Express the polar equation $r = 2\sin\theta$ in cartesian coordinates.
 - c) Graph the polar equation $r = 1 + 2\sin\theta$.
- 6. Let $f(x) = 1 t^2$ and $y = t^2 4t$.
 - (a) Identify any horizontal/vertical tangent lines.
 - (b) Find where $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are positive/negative.
 - (c) Graph the curve.
- 7. Arc Length
- 8. Sequences
- 9. Series
- 10. Taylor series
- 11. a) Give a power series representation of $\frac{1}{1+x}$.
 - b) Obtain a power series representation for $\ln(1+x)$ from part a).
 - c) Find the radius and interval of convergence of the series in b).
- 12. Find the radius and interval of convergence for $\sum_{n=1}^{\infty} \frac{x^n}{3^n} n^3$
- 13. Give the Maclaurin series for e^{3x} .
- 14. Write -3/2 + 3/2i in polar form.
- 15. Compute $(-3/2 + 3/2i)^6$
- 16. Find all solutions to $x^5 + 32 = 0$. Leave your answers in polar form.