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Abstract Quasi-equilibrium models for aggregate or emergent variables over long
periods of time are widely-used throughout finance and economics. The validity of
such models depends crucially upon assuming that the system participants act both
independently and without memory. However important real-world effects such as
herding, imitation, perverse incentives and many of the key findings of behavioral
economics violate one or both of these key assumptions.

We present a very simple, yet realistic, agent-based modeling framework that
is capable of simultaneously incorporating many of these effects. In this paper we
use such a model in the context of a financial market to demonstrate that herding
can cause a transition to multi-year boom-and-bust dynamics at levels far below a
plausible estimate of the herding strength in actual financial markets. In other words,
the stability of the standard (Brownian motion) equilibrium solution badly fails a
‘stress test’ in the presence of a realistic weakening of the underlying modeling
assumptions.

The model contains a small number of fundamental parameters that can be easily
estimated and require no fine-tuning. It also gives rise to a novel stochastic particle
system with switching and re-injection that is of independent mathematical interest
and may also be applicable to other areas of social dynamics.

1 Introduction

In the physical sciences using a stochastic differential equation (SDE) to model the
effect of exogenous noise upon an underlying ODE system is often straightforward.
The noise consists of many uncorrelated effects whose cumulative impact is well-
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approximated by a Brownian process Bs, s ≥ 0 and the ODE d f = a( f , t) dt is
replaced by an SDE d f = a( f , t) dt +b( f , t) dBt .

However, in financial and socio-economic systems the inclusion of exogenous
noise (ie new information entering the system) is more problematic — even if the
noise itself can be legitimately modeled as a Brownian process. This is because
such systems are themselves the aggregation of many individuals or trading entities
(referred to as agents) who typically
a) interpret and act differently to new information,
b) may act differently depending upon the recent system history (ie non-Markovian
behaviour), and
c) may not act independently of each other.

The standard approach in neoclassical economics and modern finance is simply
to ‘average away’ these awkward effects by assuming the existence of a single repre-
sentative agent as in macroeconomics [7], or by assuming that the averaged reaction
to new information is correct/rational, as in microeconomics and finance [13, 4]. In
both cases, the possibility of significant endogenous dynamics is removed from the
models resulting in unique, Markovian (memoryless), (quasi)-equilibrium solutions.
This procedure is illustrated in Figure 1 where the complicated ‘human filter’ that
lies between the new information and the aggregate variables (such as price) does
not alter its Brownian nature. This then justifies the use of SDEs upon aggregate
variables directly.

Effect on Prices 

(or other aggregate quantities)

(Random) External Influences

Idealized Humans

Uncoupled

It’s "As if" they are:

Perfectly rational/no psychology

No memory

Averaged

Away

Fig. 1

However, the reality is far more complicated, as shown in Figure 2. Important
human characteristics such as psychology, memory, systemic cognitive or emotional
biases, adaptive heuristics, group influences and perverse incentives will be present,
as well as various possible positive feedbacks caused by endogenous dynamics or
interactions with the aggregate variables.
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Effect on Prices 

(or other aggregate quantities)
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Internal

Dynamics

(including

network

effects)

Fig. 2

In an attempt to incorporate some of these effects, many Heterogeneous Agent
Models (HAMs) have been developed [6] that simulate agents directly rather than
operate on the aggregate variables. These have demonstrated that it is relatively easy
to generate aggregate output data, such as the price of a traded asset, that approxi-
mate reality better than the standard averaging-type models. In particular the seem-
ingly universal ‘stylized facts’ [11, 2] of financial markets such as heteroskedasticity
(volatility clustering) and leptokurtosis (fat-tailed price-return distributions result-
ing from booms-and-busts) have been frequently reproduced. However, the effects
of such research upon mainstream modeling have been minimal perhaps, in part,
because some HAMs require fine tuning of important parameters, others are too
complicated to analyze, and the plethora of different HAMs means that many are
mutually incompatible.

The purpose of this paper is rather different from other studies involving HAMs.
We are not proposing a stand-alone asset pricing model to replace extant ones (al-
though it could indeed be used that way). Rather we are proposing an entire frame-
work in which the stability of equilibrium models can be tested in the presence of
a wide class of non-standard perturbations that weaken various aspects of the ef-
ficiency and rationality assumptions — in particular those related to a), b) and c)
above.

In this paper we focus upon the effects of herding as it is an easily understood
phenomenon that has multiple causes (rational, psychological or due to perverse
incentives) and is an obvious source of lack of independence between agents’ ac-
tions. We start by introducing a simplified version of the modeling framework in-
troduced in [10, 9] that can also be described as a particle system in two dimen-
sions (Figure 3). A web-based interactive simulation of the model can be found at
http://math.gmu.edu/∼harbir/market.html . It provides useful intuition as to how en-
dogenous multi-year boom-and-bust dynamics naturally arise from the competition
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between equilibrating and dis-equilibrating forces that are usually only considered
important over much shorter timescales.

2 A stochastic particle system with re-injection and switching

��
��
��
��

�
�
�
�

��
��
��
��

����

��
��
��
��

�
�
�
�

D

Bulk stochastic motion
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Fig. 3 The M signed particles are subject to a horizontal stochastic forcing and they also diffuse
independently. Minority particles also drift downwards at a rate proportional to the imbalance.
When a particle hits the boundary it is re-injected with the opposite sign and a kick is added to the
bulk forcing that can trigger a cascade (see text).

We define the open set D⊂ℜ2 by D = {(x,y) :−y < x < y, y > 0}. There are M
signed particles (with states +1 or −1) that move within D subject to four different
motions. Firstly there is a bulk Brownian forcing Bt in the x-direction that acts upon
every particle. Secondly, each particle has its own independent two-dimensional
diffusion process. Thirdly, for agents in the minority state only, there is a downward
(negative y-direction) drift that is proportional to the imbalance.

Finally, when a particle hits the boundary ∂D it is re-injected into D with the op-
posite sign according to some predefined probability measure. When this happens,
the position of the other particles is kicked in the x-direction by a (small) amount
± 2κ

M , κ > 0, where the kick is positive if the switching particle goes from the −1
state to +1 and negative if the switch is in the opposite direction. Note that the
particles do not interact locally or collide with one another.
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2.1 Financial market interpretation

We take as our starting point the standard geometric Brownian motion (gBm) model
of an asset price pt at time t with p0 = 1. It is more convenient to use the log-
price rt = ln pt which for constant drift a and volatility b is given by the solution
rt = at +bBt to the SDE

drt = a dt +b dBt . (1)

Note that the solution rt depends only upon the value of the exogenous Brownian
process Bt at time t and not upon {Bs}t

s=0. This seemingly trivial observation implies
that rt is Markovian and consistent with various notions of market efficiency. Thus
gBm can be considered a paradigm for economic and financial models in which
the aggregate variables are assumed to be in a quasi-equilibrium reacting instanta-
neously and reversibly to new information.

The model involves two types of agent and a separation of timescales. ‘Fast’
agents react near instantaneously to the arrival of new information Bt . Their effect
upon the asset price is close to the standard models and they will not be modeled
directly. However, we posit the existence of M ‘slow’ agents who are primarily
motivated by price changes rather than new information and act over much longer
timescales (weeks or months). At time t the ith slow agent is either in state si(t)=+1
(owning the asset) or si(t) = −1 (not owning the asset) and the sentiment σ(t) ∈
[−1,1] is defined as σ(t) = 1

M ∑
M
i=1 si(t). The ith slow agent is deemed to have an

evolving strategy that at time t consists of an open interval (Li(t),Ui(t)) containing
the current log-price rt (see Figure 4). The ith agent switches state whenever the
price crosses either threshold, ie rt = Li(t) or Ui(t), and a new strategy interval is
generated straddling the current price. Note that slow agents wishing to trade do
not need to be matched with a trading partner — it is assumed that the fast agents
provide sufficient liquidity.

L (t)
j

U (t)
j

L (t) U (t)
i i

r(t)

state = +1

state = −1

log−price

Fig. 4 A representation of the model showing two agents in opposite states at time t. Agent i is in
the +1 state and is represented by the two circles at Li(t) and Ui(t) while agent j is in the −1 state
and is represented by the two crosses.

We assume in addition that each threshold for every slow agent has its own inde-
pendent diffusion with rate αi (corresponding to slow agents’ independently evolv-
ing strategies) and those in the minority (ie. whose state differs from |σ |) also have
their lower and upper thresholds drift inwards each at a rate Ci|σ |, Ci ≥ 0.

These herding constants Ci are crucial as they provide the only (global) coupling
between agents. The inward drift of the minority agents’ strategies makes them more
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likely to switch to join the majority — they are being pressured/squeezed out of their
minority view. Herding, and other mimetic effects, appear to be a common feature
of financial and economic systems. Some causes are irrationally human while others
may be rational responses by, for example, fund managers not wishing to deviate too
far from the majority opinion and thereby risk severely under-performing their av-
erage peer performance. The reader is directed to [9] for a more detailed discussion
of these and other modeling issues.

Finally, changes in the sentiment σ feed back into the asset price so that gBm (1)
is replaced with

drt = a dt +b dBt +κ∆σ (2)

where κ > 0 and the ratio κ/b is a measure of the relative impact upon rt of exoge-
nous information versus endogenous dynamics. Without loss of generality we let
a = 0 and b = 1 by setting the risk-free interest rate to zero and rescaling time.

One does not need to assume that all the slow agents are of equal size, have
equal strategy-diffusion, and equal herding propensities. But if one does set αi = α

and Ci = C ∀i then the particle system above is obtained by representing the ith

agent, not as an interval on ℜ, but as a point in D ⊂ ℜ2 with position (xi,yi) =
(Ui+Li

2 − rt ,
Ui−Li

2 ). To make the correspondence explicit: the bulk stochastic motion
is due to the exogenous information stream, the individual diffusions are caused by
strategy-shifting of the slow agents; the downward drift of minority agents is due to
herding; the re-injection and switching are the agents changing investment position;
and the kicks that occur at switches are due to the change in sentiment affecting the
asset price via the linear supply/demand price assumption.

2.2 Limiting values of the parameters

There are different parameter limits that are of interest.
1) M→ ∞ In the continuum limit the particles are replaced by a pair of evolving den-
sity functions ρ+(x,y, t) and ρ−(x,y, t) representing the density of each agent state
on D — such a mesoscopic Fokker-Planck description of a related, but simpler, mar-
ket model can be found in [5]. The presence of nonstandard boundary conditions,
global coupling, and bulk stochastic motion present formidable analytic challenges
for even the most basic questions of existence and uniqueness of solutions. How-
ever, numerical simulations strongly suggest that, minor discretization effects aside,
the behaviour of the system is independent of M for M > 1000.
2) Bt → 0 As the external information stream is reduced the system settles into a
state where σ is close to either ±1. Therefore this potentially useful simplification
is not available to us.
3) α → 0 or ∞ In the limit α → 0 the particles do not diffuse ie. the agents do
not alter their thresholds between trades/switches. This case was examined in [3]
and the lack of diffusion does not significantly change the boom-bust behaviour
shown below. On the other hand, for α � max(1,C) the diffusion dominates both
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the exogenous forcing and the herding/drifting and equilibrium-type dynamics is
re-established. This case is unlikely in practice since slow agents will alter their
strategies more slowly than changes in the price of the asset.
4) C→ 0 This limit motivates the next Section. When C = 0 the particles are uncou-
pled and if the system is started with approximately equal distributions of ±1 states
then σ remains close to 0. Thus (2) reduces to (1) and the particle system becomes
a standard equilibrium model — agents have differing expectations about the future
which causes them to trade but on average the price remains ‘correct’. In Section 3
we shall observe that endogenous dynamics arise as C is increased from 0 and the
equilibrium gBm solution loses stability in the presence of even small amounts of
herding.
5) κ → 0 For κ > 0 even one agent switching can cause an avalanche of similar
switches, especially when the system is highly one-sided with |σ | close to 1. When
κ = 0 the particles no longer provides kicks (or affect the price) when they switch
although they are still coupled via C > 0. The sentiment σ can still drift between
−1 and +1 over long timescales but switching avalanches and large, sudden, price
changes do not occur.

3 Parameter estimation, numerical simulations and the
instability of Geometric Brownian pricing

In all the simulations below we use M = 10000 and discretize using a timestep h =
0.000004 which corresponds to approximately 1/10 of a trading day if one assumes
a daily standard deviation in prices of ≈ 0.6% due to new information. The price
changes of 10 consecutive timesteps are then summed to give daily price return data
making the difference between synchronous vs asynchronous updating relatively
unimportant.

We choose α = 0.2 so that slow agents’ strategies diffuse less strongly than the
price does. A conservative choice of κ = 0.2 means that the difference in price
between neutral (σ = 0) and polarized markets σ = ±1 is, from (2), exp(0.2) ≈
22%.

After switching, an agent’s thresholds are chosen randomly from a Uniform dis-
tribution to be within 5% and 25% higher and lower than the current price. This
allows us to estimate C by supposing that in a moderately polarized market with
|σ |= 0.5 a typical minority agent (outnumbered 3–1) would switch due to herding
pressure after approximately 80 trading days (or 3 months, a typical reporting pe-
riod for investment performance)[14]. The calculation 80C|σ |= | ln(0.85)|/0.00004
gives C ≈ 100. Finally, we note that no fine-tuning of the parameters is required for
the observations below.

Figure 5 shows the results of a typical simulation, started close to equilibrium
with agents’ states equally mixed and run for 40 years. The difference in price his-
tory between the above parameters and the equilibrium gBm solution is shown in the
top left. The sudden market reversals and over-reactions can be seen more clearly
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Fig. 5 In each picture, red corresponds to outputs for the parameters used in the text while blue
represents outputs for the gBm pricing model (1) with the same exogenous information stream
Bs. The top left figure shows the prices p(t); top right is sentiment vs time; bottom left plots the
daily price changes; and bottom right shows the cumulative log-log plot of daily price changes that
exceed a given percentage.

in the top right plot where the market sentiment undergoes sudden shifts due to
switching cascades. These result in price returns (bottom left) that could quite eas-
ily bankrupt anyone using excessive financial leverage and gBm as an asset pricing
model! Finally in the bottom right the number of days on which the magnitude of
the price change exceeds a given percentage is plotted on log-log axes. It should be
emphasized that this is a simplified version of the market model in [9] and an extra
parameter that improves the statistical agreement with real price data (by inducing
volatility clustering) has been ignored.

To conclude we examine the stability of the equilibrium gBm solution using the
herding level C as a bifurcation parameter. In order to quantify the level of dise-
quilibrium in the system we record the maximum value of |σ | ignoring the first 10
years of the simulation (to remove any possible transient effects caused by the initial
conditions) and average over 20 runs each for values of 0 ≤ C ≤ 40. All the other
parameters and the initial conditions are kept unchanged.

The results in Figure 6 show that even for values of C as low as 20 the devia-
tions from the equilibrium solution are close to being as large as the system will
allow with |σ | usually getting close to ±1 at some point during the simulations. To
reiterate, this occurs at a herding strength C which is a factor of 5 lower than the
value of C = 100 estimated above for real markets! It should also be noted that there
are other significant phenomena that have not been included, such as new investors
and money entering the asset market after a bubble has started, and localized inter-
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actions between certain subsets of agents. These can be included in the model by
allowing κ to vary (increasing at times of high market sentiment for example) and,
as expected, they cause the equilibrium solution to destabilize even more rapidly.
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Fig. 6 A measure of disequilibrium |σ |max averaged over 20 runs as the herding parameter C
changes.

4 Conclusions

Financial and economic systems are subject to many different kinds of inter-
dependence between agents and potential positive feedbacks. However, even those
mainstream models that attempt to quantify such effects [1, 14] assume that the
result will merely be a shift of the equilibria to nearby values without qualitatively
changing the nature of the system. We have demonstrated that at least one such form
of coupling (incremental herding pressure) results in the loss of stability of the equi-
librium. Furthermore the new dynamics occurs at realistic parameters and is clearly
recognizable as ‘boom-and-bust’. It is characterized by multi-year periods of low-
level endogenous activity (long enough, certainly, to convince equilibrium-believers
that the system is indeed in an equilibrium with slowly varying parameters) followed
by large, sudden, reversals involving cascades of switching agents triggered by price
changes.

A similar model was studied in [8] where momentum-traders replaced the slow
agents introduced above. The results replicated the simulations above in the sense
that the equilibrium solution was replaced with multi-year boom-and-bust dynamics



10 Harbir Lamba

but with the added benefit that analytic solutions can be derived, even when agents
are considered as nodes on an arbitrary network rather than being coupled globally.

The model presented here is compatible with existing (non-mathematized) cri-
tiques of equilibrium theory by Minsky and Soros [12, 15]. Furthermore, work
on related models to appear elsewhere shows that positive feedbacks can result in
similar non-equilibrium dynamics in more general micro- and macro-economic sit-
uations.
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