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Motivation



Calderon’s Problem (Electrical Impedance Tomography, EIT)
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V-(y(x)Vu)=0, xe€Q
u(x) =1, xeoQ

Given “Dirichlet-to-Neumann” map
A HY2(0Q) — HTV2(09)
A —AVuy-n|y
the goal is to find

v(x), x€Q.

Kohn, R. V., & Vogelius, M. (1987). Relaxation of a variational method for impedance
computed tomography. CPAM.



Learning the Dynamics

Parameterized dynamical system in the Lagrangian form
“Chen” System [Chen-Ueta, 1999]
X=v(x;0) or dX;=v(x;0)dt+ odW;
or the Eulerian form (Fokker-Planck Eqn.)
2

Dep(%,1) + V - (v(x; 6)p(x, 1)) = Z-Ap(x.1)

where # can correspond to

+ basis coefficients
e.g., SINDy [Brunton-Proctor-Kutz, 2016],

- neural network weights
Y.-Nurbekyan-Negrini-Martin-Pasha, 2023. SIADS. e.g., Neural-ODE [Chen et al., 2018],

Botvinick-Greenhouse, J., Martin, R. & Y., 2023. Chaos. . other parameterizations [Lu-Maggioni-Tang,2021]

+ or nonparametric using Frobenius-Perron or
Koopman operators [Kloeckner, 2018]



Deterministic Inverse Problem

M(#)=g, M:P—D, (1)

where 6 € P is the function space of parameters, M is the forward operator, with
g € D, the function space of data. M can be implicitly defined.
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Deterministic Inverse Problem

M(#)=g, M:P—D, (1)

where 6 € P is the function space of parameters, M is the forward operator, with
g € D, the function space of data. M can be implicitly defined.

Examples

* In image processing, f is the clean image and g is the noisy/blurred image.
V-(0Vu)=0 onQ
u=2¢ on 00

« In dynamical system modeling, § parameterizes the drift/diffusion, and g is
the observed trajectory.

- Calderon’s Problem: { , g isthe DtN map.



New Types of Inverse Problem: Sand Percentage in River




Enhanced Geothermal Systems

Heat
Exchange
Plant

Praduction Well

Injection Well

[Arson et al., 2024;arXiv:2412.11421] 6



Stochastic Inverse Problem [Breidt-Butler-Estep, 2011]

In certain applications, the deterministic framework is challenging.

« The math modeling is based on data gathered from a variety of subjects.
- It is impractical to conduct repeated measurements on a single subject.
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Stochastic Inverse Problem [Breidt-Butler-Estep, 2011]

In certain applications, the deterministic framework is challenging.

« The math modeling is based on data gathered from a variety of subjects.
- It is impractical to conduct repeated measurements on a single subject.

Thus, one must employ a model that incorporates a parameter distribution,
which gives rise to the so-called Stochastic Inverse Problem.

For forward problem is a push-forward map and py is the unknown:

Pg = Mﬁpg —- FM (pg) , FM : H(P) — H(D) . (2)

We say v = My if for any Borel measurable set B, v(B) = 1 (M~"(B)).

Intuitively, a change of variable through the map M



Deterministic Inverse Problem to Stochastic Inverse Problem

A diagram showing the relations between the deterministic (1) and the stochastic
problem (2).



Computational Aspects




Stochastic Inverse Problem — Solvers

+ Deterministic Inverse problem:
M(0) =g
 Optimization problem:
min do(M(6), g")

 Optimization algorithms: gradient
descent, nonlinear CG, etc.
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Stochastic Inverse Problem — Solvers

+ Deterministic Inverse problem: « Stochastic Inverse problem:
M) =g pg = Mypo
 Optimization problem: + Optimization problem:
mein do(M(0),g") rT;)Ln D(M;ypg, pg)
 Optimization algorithms: gradient « Optimization algorithms: ??? over
descent, nonlinear CG, etc. the probability space

There are two important metric/divergence that matter here (D and &):

pp = argmin  D(Mypy, pg) - (3)
po€(N(P),8)




Gradient Flow (Analogous to Gradient Descent)

The gradient flow for the energy J(pg) := D(Mypy, p5) under the metric & is

Oeps = —gradg)(ps) = —grade D(M;pp. pj) |- (4)

10
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Gradient Flow (Analogous to Gradient Descent)

The gradient flow for the energy J(pg) := D(Mypy, p5) under the metric & is

Oeps = —gradg)(ps) = —grady D(M;p9. pj) |- (4)

Example 1: Consider & = W, and D = KL:
dtpg = Vg - <,09V6 (Iog ZE(M(Q))>> :

g
Example 2: Consider & = W, and D = W,:

depg = Vo - (paVe 4(M())) ¢ is the Kantorovich potential
Example 3: Consider & = H? (Hellinger) and D = *:
_ Pg Pg
oum =800 | [ LMD ~ S m(0)

9 9
10



Well-Posedness: Stability




We need probability metrics to quantify the size of the blue and red balls.

1"



M is invertible

Suppose M~ exists and is Holder continuous:

IM~(g1) = M7(g2)[| < Cu—llgs — Go[|”, B € (0,1].
(Deterministic inverse problem is well-posed.)
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M is invertible

Suppose M~ exists and is Holder continuous:

IM7(gr) = M7(g2)]| < Cu—liga — G275 € (0,1].
(Deterministic inverse problem is well-posed.)
Let pg, pg € M(R™) be two data distributions. Their parameter distributions are
po=M;"pg, and s =M;"5

Theorem (Ernst et al.,2022) .
Consider the p-Wasserstein metric.

Wy (po, 79) < Cu— Wp (pg, 7g)”

Theorem (Qin-Oprea-Wang-Y.,2024)
Under any f-divergence (Dy), we have

Dy (poll o) = D5 (pgllng)

12



Solution Characterization




M is non-invertible

We have two cases for a general nonlinear M:

1. Mis “under-determined”, i.e., M is not injective
2. Mis “over-determined”, i.e., M is not surjective

[Li, Oprea, Wang, Y., 2025] 13
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M is non-invertible

We have two cases for a general nonlinear M:

1. Mis “under-determined”, i.e., M is not injective
2. Mis “over-determined”, i.e., M is not surjective

In the under-determined case, we lose uniqueness.
In the over-determined case, we lose existence.

Both can be “regularized” by considering an optimization framework:
1. M is under-determined:

Py = argmin Elpol
S={po:Mypo=pq}

2. Mis over-determined:

[Li, Oprea, Wang, Y., 2025] Po = argp;nin D(M#pg, Pg) 13



Under-determined Case (Entropy)

py = argmin Elpg],  E[pe] = /Pe log pgdf
My po=pg

Theorem (Sketch)

Denote the optimizer pj, to the problem above with E[pg] = [ pg log pedf. Then for
any g € supp(pg), we have its preimage under M given by

O©g :={0:M(0) =g}.
pp Is constant on the set ©g.

The recovered pj is a uniform distribution conditioned on each level set!

[Li, Oprea, Wang, Y., 2025] 14



Under-determined Case (p-th Moment)

pi = angrmin Elpl, Elpal = [ 10Ppoa0.
M. po=pg

Theorem (Sketch)

Denote the optimizer p}; to the problem above with E[pg] = [ |0|Ppedf. For any
g € supp(pg), define H such that

H(g) := argmin |0|P. (5)
M(0)=g
Then pg = Hupg -

The recovered p} is supported only on a (least p-norm) point at each level set!

[Li, Oprea, Wang, Y., 2025] 15



Under-determined Case: Illustrations

(@) £ = [ pxlog pxdx (b) £ = [ |x|* pxdx
[Li, Oprea, Wang, Y., 2025] 16



Over-determined Case (f-divergence)

X . d
py = argmin D(Mypg, pg),  D(p,v) = /f<du> dv
po w

Theorem (Sketch)

Denote the optimizer pj, to the problem with D being the f-divergence. Let R be
the range of M. Then we have

M. p; = conditional distribution of pg on R.

[Li, Oprea, Wang, Y., 2025] 17



Over-determined Case (Wasserstein distance)

py = argmin D(Mypg, pg) . D(Mypg, pg) = Wa(Mype, pg) -
Po

Theorem (Sketch) _ _ _ .
Denote the optimizer pj, to the problem with D being the Wasserstein metric of

cost function d. Define the projection operator Py : R" — R as

Pu(g) = argmind(y, g).
YER

Then we have the reconstructed data distribution
Mpp = Pm 4pq

Extract the “marginal” distribution of pg along the projection direction.

[Li, Oprea, Wang, Y., 2025] 18



Over-determined Case: Illustrations (linear)

(c) f~divergence optimizer (d) W, optimizer

[Li, Oprea, Wang, Y., 2025] 19



Over-determined Case: Illustrations (nonlinear)

(e) Data distribution py () f-divergence optimizer (g) W, optimizer

[Li, Oprea, Wang, Y., 2025] 20



« A different stochastic framework
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« A different stochastic framework
with respect to Bayesian Inversion

« Well-posedness:
metric/divergence-dependent
stability

« Implicit Regularization: depending
on both D (energy) and &
(dissipation)

« Rich geometry in probability space
yields various (ensemble) particle
methods

21



Inverse Problem Analysis Inverse Problem Computation

(
N, (implicit &
(co:t\;eb)ﬂits;)an explicit)

uQ for
probability-
valued soln.

Objective/loss
functional

Regularization

22



Acknowledgment

Thanks for your attention!

s ple Rese%,; :
Sey,

Cnce ¢ Tedmo\o‘%ﬁ

23



Comparisons with Bayesian Framework

Bayesian Framework | Stochastic Inverse Problem
source of noise prior & measurement parameter
consistency Dirac delta parameter distribution
prior information Yes No
measure-theoretic Yes Yes
require sampling Yes Yes
solution is a distribution Yes Yes

One can regard the new setup as a “deterministic inverse problem” over the
M(P) (all prob. measures over P) rather than the classic setup over P.
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