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Motivation



Calderón’s Problem (Electrical Impedance Tomography, EIT)

{
∇ · (γ(x)∇u) = 0, x ∈ Ω

u(x) = ψ, x ∈ ∂Ω

Given “Dirichlet-to-Neumann” map

Λγ : H1/2(∂Ω) −→ H−1/2(∂Ω)

Λγ : ψ −→ γ∇uψ · n
∣∣
∂Ω

the goal is to find

γ(x), x ∈ Ω.

Kohn, R. V., & Vogelius, M. (1987). Relaxation of a variational method for impedance
computed tomography. CPAM.

2



Learning the Dynamics

“Chen” System [Chen-Ueta, 1999]

Y.-Nurbekyan-Negrini-Martin-Pasha, 2023. SIADS.

Botvinick-Greenhouse, J., Martin, R. & Y., 2023. Chaos.

Parameterized dynamical system in the Lagrangian form

ẋ = v(x; θ) or dXt = v(x; θ)dt+ σdWt

or the Eulerian form (Fokker–Planck Eqn.)

∂tρ(x, t) +∇ · (v(x; θ)ρ(x, t)) = σ2

2 ∆ρ(x, t)

where θ can correspond to

• basis coefficients
e.g., SINDy [Brunton-Proctor-Kutz, 2016],

• neural network weights
e.g., Neural-ODE [Chen et al., 2018],

• other parameterizations [Lu-Maggioni-Tang,2021]

• or nonparametric using Frobenius–Perron or
Koopman operators [Kloeckner, 2018] 3



Deterministic Inverse Problem

M(θ) = g , M : P 7→ D , (1)
where θ ∈ P is the function space of parameters, M is the forward operator, with
g ∈ D, the function space of data. M can be implicitly defined.

Examples

• In image processing, θ is the clean image and g is the noisy/blurred image.

• Calderón’s Problem:

∇ · (θ∇u) = 0 on Ω

u = ϕ on ∂Ω
, g is the DtN map.

• In dynamical system modeling, θ parameterizes the drift/diffusion, and g is
the observed trajectory.
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New Types of Inverse Problem: Sand Percentage in River

5



Enhanced Geothermal Systems

[Arson et al., 2024;arXiv:2412.11421] 6



Stochastic Inverse Problem [Breidt-Butler-Estep, 2011]

In certain applications, the deterministic framework is challenging.

• The math modeling is based on data gathered from a variety of subjects.
• It is impractical to conduct repeated measurements on a single subject.

Thus, one must employ a model that incorporates a parameter distribution,
which gives rise to the so-called Stochastic Inverse Problem.

For forward problem is a push-forward map and ρθ is the unknown:

ρg = M♯ρθ =: FM (ρθ) , FM : Π(P) 7→ Π(D) . (2)

We say ν = M♯µ if for any Borel measurable set B, ν(B) = µ (M−1(B)).

Intuitively, a change of variable through the map M
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Deterministic Inverse Problem to Stochastic Inverse Problem

θ ∼ ρθ
g ∼ ρg

ρθ ∈ Π(P)
ρg ∈ Π(D)

θ ∈ P g ∈ D

ρg = M♯ρθ

g = M(θ)

A diagram showing the relations between the deterministic (1) and the stochastic
problem (2).
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Computational Aspects



Stochastic Inverse Problem — Solvers

• Deterministic Inverse problem:

M(θ) = g

• Optimization problem:

min
θ
do(M(θ),g∗)

• Optimization algorithms: gradient
descent, nonlinear CG, etc.

• Stochastic Inverse problem:

ρg = M♯ρθ

• Optimization problem:

min
ρθ

D(M♯ρθ, ρ∗g)

• Optimization algorithms: ??? over
the probability space

There are two important metric/divergence that matter here (D and G):

ρ∗θ = argmin
ρθ∈(Π(P),G)

D(M♯ρθ, ρ∗g) . (3)
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Gradient Flow (Analogous to Gradient Descent)

The gradient flow for the energy J(ρθ) := D(M♯ρθ, ρ∗g) under the metric G is

∂tρθ = −gradGJ(ρθ) = −gradG D(M♯ρθ, ρ∗g) . (4)

Example 1: Consider G = W2 and D = KL:

∂tρθ = ∇θ ·
(
ρθ∇θ

(
log

ρg
ρ∗g

(M(θ))
))

.

Example 2: Consider G = W2 and D = W2:
∂tρθ = ∇θ · (ρθ∇θ ϕ(M(θ))) ϕ is the Kantorovich potential

Example 3: Consider G = H2 (Hellinger) and D = χ2:

∂tρθ = 8ρθ
[∫

ρg
ρ∗g

(M(θ))ρθdθ −
ρg
ρ∗g

(M(θ))
]
.
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Well-Posedness: Stability



Stability

θ2

θ1 M(θ1)
M(θ2)

M

M−1

(P,dp) (D,do)

We need probability metrics to quantify the size of the blue and red balls.
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M is invertible

Suppose M−1 exists and is Hölder continuous:

‖M−1(g1)−M−1(g2)‖ ≤ CM−1‖g1 − g2‖β , β ∈ (0, 1] .

(Deterministic inverse problem is well-posed.)

Let ρg, ρ̂g ∈ Π(Rn) be two data distributions. Their parameter distributions are

ρθ = M−1
♯ ρg, and ρ̂θ = M−1

♯ ρ̂g

Theorem (Ernst et al.,2022)
Consider the p-Wasserstein metric.

Wp (ρθ, ρ̂θ) ≤ CM−1 Wp
(
ρg, ρ̂g

)β
.

Theorem (Qin-Oprea-Wang-Y.,2024)
Under any f-divergence (Df), we have

Df (ρθ||ρ̂θ) = Df
(
ρg||ρ̂g

)
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Solution Characterization



M is non-invertible

We have two cases for a general nonlinear M:

1. M is “under-determined”, i.e., M is not injective
2. M is “over-determined”, i.e., M is not surjective

In the under-determined case, we lose uniqueness.
In the over-determined case, we lose existence.

Both can be “regularized” by considering an optimization framework:

1. M is under-determined:

ρ∗θ = argmin
S={ρθ:M#ρθ=ρg}

E [ρθ]

2. M is over-determined:

ρ∗θ = argmin
ρθ

D(M#ρθ, ρg)

[Li, Oprea, Wang, Y., 2025] 13
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Under-determined Case (Entropy)

ρ∗θ = argmin
M#ρθ=ρg

E [ρθ], E [ρθ] =
∫
ρθ log ρθdθ

Theorem (Sketch)

Denote the optimizer ρ∗θ to the problem above with E [ρθ] =
∫
ρθ log ρθdθ. Then for

any g ∈ supp(ρg), we have its preimage under M given by

Θg := {θ : M(θ) = g} .

ρ∗θ is constant on the set Θg.

The recovered ρ∗θ is a uniform distribution conditioned on each level set!

[Li, Oprea, Wang, Y., 2025] 14



Under-determined Case (p-th Moment)

ρ∗θ = argmin
M#ρθ=ρg

E [ρθ] , E [ρθ] =
∫

|θ|pρθdθ .

Theorem (Sketch)

Denote the optimizer ρ∗θ to the problem above with E [ρθ] =
∫
|θ|pρθdθ. For any

g ∈ supp(ρg), define H such that
H(g) := argmin

M(θ)=g
|θ|p . (5)

Then ρ∗θ = H#ρg .

The recovered ρ∗θ is supported only on a (least p-norm) point at each level set!

[Li, Oprea, Wang, Y., 2025] 15



Under-determined Case: Illustrations

r = M(x1, x2) =
√
(x1 − 1)2 + (x2 − 1)2 µr = U([0, 1])

(a) E =
∫
ρx log ρxdx (b) E =

∫
|x|2ρxdx

[Li, Oprea, Wang, Y., 2025] 16



Over-determined Case (f-divergence)

ρ∗θ = argmin
ρθ

D(M#ρθ, ρg) , D(µ, ν) =

∫
f
(

dµ
dν

)
dν

Theorem (Sketch)

Denote the optimizer ρ∗θ to the problem with D being the f-divergence. Let R be
the range of M. Then we have

M#ρ
∗
θ = conditional distribution of ρg on R.

[Li, Oprea, Wang, Y., 2025] 17



Over-determined Case (Wasserstein distance)

ρ∗θ = argmin
ρθ

D(M#ρθ, ρg) , D(M#ρθ, ρg) = Wd(M#ρθ, ρg) .

Theorem (Sketch)
Denote the optimizer ρ∗θ to the problem with D being the Wasserstein metric of
cost function d. Define the projection operator PM : Rn → R as

PM(g) = argmin
y∈R

d(y,g) .

Then we have the reconstructed data distribution
M#ρ

∗
θ = PM #ρg

Extract the “marginal” distribution of ρg along the projection direction.

[Li, Oprea, Wang, Y., 2025] 18



Over-determined Case: Illustrations (linear)

N (A⊤)

cρ∞g

Col(A)

ρ∗g

(c) f-divergence optimizer

Col(A)

N (A⊤)

ρ∗g

πA#

ρ∞g

(d)Wp optimizer

[Li, Oprea, Wang, Y., 2025] 19



Over-determined Case: Illustrations (nonlinear)

(e) Data distribution ρy (f) f-divergence optimizer (g)Wp optimizer

[Li, Oprea, Wang, Y., 2025] 20



Conclusions

θ ∼ ρθ
g ∼ ρg

ρθ ∈ Π(P)
ρg ∈ Π(D)

θ ∈ P g ∈ D

ρg = M♯ρθ

g = M(θ)

• A different stochastic framework
with respect to Bayesian Inversion

• Well-posedness:
metric/divergence-dependent
stability

• Implicit Regularization: depending
on both D (energy) and G

(dissipation)
• Rich geometry in probability space
yields various (ensemble) particle
methods
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Future Work

Inverse Problem Analysis Inverse Problem Computation
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Comparisons with Bayesian Framework

Bayesian Framework Stochastic Inverse Problem
source of noise prior & measurement parameter
consistency Dirac delta parameter distribution

prior information Yes No
measure-theoretic Yes Yes
require sampling Yes Yes

solution is a distribution Yes Yes

One can regard the new setup as a “deterministic inverse problem” over the
Π(P) (all prob. measures over P) rather than the classic setup over P .


	Motivation
	Computational Aspects
	Well-Posedness: Stability
	Solution Characterization
	Appendix

