Stochastic Inverse Problems in Digital Twins

Yunan Yang

April 17, 2025

Department of Mathematics, Cornell University

This is a joint work with Qin Li (UW Madison), Li Wang (UMN Twin Cities) and Maria Oprea (Cornell).

- Qin Li, Li Wang, and Y., 2024. Differential Equation–Constrained Optimization with Stochasticity. SIAM/ASA Journal on Uncertainty Quantification, 12(2), pp.549-578.
- Li, Q., Oprea, M., Wang, L. and Y., 2024. Stochastic Inverse Problem: stability, regularization and Wasserstein gradient flow. *arXiv preprint arXiv:2410.00229*.
- Li, Q., Wang, L. and Y., 2025. Least-Squares Problem Over Probability Measure Space. *arXiv preprint arXiv:2501.09097.*

East Coast Optimization Meeting (ECOM) April 17 to 18, 2025

Collaborators

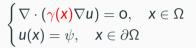
Qin Li (UW Madison)

Li Wang (UMN Twin Cities)

Maria Oprea (Cornell)

Motivation

Calderón's Problem (Electrical Impedance Tomography, EIT)



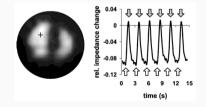
Given "Dirichlet-to-Neumann" map

$$\begin{array}{ll} \Lambda_{\gamma} : & \mathcal{H}^{1/2}(\partial\Omega) \longrightarrow \mathcal{H}^{-1/2}(\partial\Omega) \\ \Lambda_{\gamma} : & \psi & \longrightarrow \gamma \nabla u_{\psi} \cdot \mathbf{n} \big|_{\partial\Omega} \end{array}$$

the goal is to find

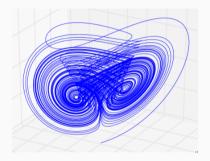
 $\gamma(\mathbf{X}), \quad \mathbf{X} \in \Omega.$

Kohn, R. V., & Vogelius, M. (1987). Relaxation of a variational method for impedance computed tomography. CPAM.



Learning the Dynamics

"Chen" System [Chen-Ueta, 1999]



Y.-Nurbekyan-Negrini-Martin-Pasha, 2023. SIADS. Botvinick-Greenhouse, J., Martin, R. & Y., 2023. Chaos. Parameterized dynamical system in the Lagrangian form

 $\dot{\mathbf{x}} = \mathbf{v}(\mathbf{x}; \theta)$ or $dX_t = \mathbf{v}(\mathbf{x}; \theta)dt + \sigma dW_t$

or the Eulerian form (Fokker-Planck Eqn.)

$$\partial_t \rho(\mathbf{x}, t) + \nabla \cdot (\mathbf{v}(\mathbf{x}; \theta) \rho(\mathbf{x}, t)) = \frac{\sigma^2}{2} \Delta \rho(\mathbf{x}, t)$$

where $\boldsymbol{\theta}$ can correspond to

- basis coefficients
 e.g., SINDy [Brunton-Proctor-Kutz, 2016],
- neural network weights e.g., Neural-ODE [Chen et al., 2018],
- other parameterizations [Lu-Maggioni-Tang,2021]
- or nonparametric using Frobenius–Perron or Koopman operators [Kloeckner, 2018]

$$\mathsf{M}(\boldsymbol{\theta}) = \boldsymbol{g}, \quad \mathsf{M} : \mathcal{P} \mapsto \mathcal{D},$$
 (1)

$$\mathsf{M}(\boldsymbol{\theta}) = \boldsymbol{g}, \quad \mathsf{M} : \mathcal{P} \mapsto \mathcal{D},$$
 (1)

Examples

• In image processing, θ is the clean image and g is the noisy/blurred image.

$$\mathsf{M}(\boldsymbol{\theta}) = \boldsymbol{g}, \quad \mathsf{M} : \mathcal{P} \mapsto \mathcal{D},$$
 (1)

Examples

• In image processing, θ is the clean image and g is the noisy/blurred image.

• Calderón's Problem:
$$\begin{cases} \nabla \cdot (\theta \nabla u) = 0 & \text{on } \Omega \\ u = \phi & \text{on } \partial \Omega \end{cases}$$
, *g* is the DtN map.

$$\mathsf{M}(\boldsymbol{\theta}) = \boldsymbol{g}, \quad \mathsf{M} : \mathcal{P} \mapsto \mathcal{D},$$
 (1)

Examples

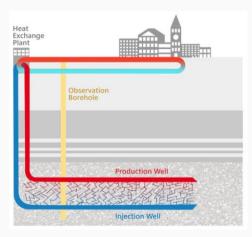
• In image processing, θ is the clean image and g is the noisy/blurred image.

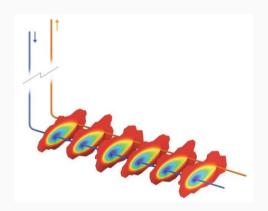
• Calderón's Problem:
$$\begin{cases} \nabla \cdot (\theta \nabla u) = \mathsf{o} & \text{on } \Omega \\ u = \phi & \text{on } \partial \Omega \end{cases}$$
, *g* is the DtN map.

• In dynamical system modeling, θ parameterizes the drift/diffusion, and g is the observed trajectory.

New Types of Inverse Problem: Sand Percentage in River

Enhanced Geothermal Systems





[Arson et al., 2024;arXiv:2412.11421]

Stochastic Inverse Problem [Breidt-Butler-Estep, 2011]

In certain applications, the deterministic framework is challenging.

- The math modeling is based on data gathered from a variety of subjects.
- It is impractical to conduct *repeated* measurements on a single subject.

Stochastic Inverse Problem [Breidt-Butler-Estep, 2011]

In certain applications, the deterministic framework is challenging.

- The math modeling is based on data gathered from a variety of subjects.
- It is impractical to conduct *repeated* measurements on a single subject.

Thus, one must employ a model that incorporates **a parameter distribution**, which gives rise to the so-called <u>Stochastic Inverse Problem</u>.

Stochastic Inverse Problem [Breidt-Butler-Estep, 2011]

In certain applications, the deterministic framework is challenging.

- The math modeling is based on data gathered from a variety of subjects.
- It is impractical to conduct *repeated* measurements on a single subject.

Thus, one must employ a model that incorporates **a parameter distribution**, which gives rise to the so-called <u>Stochastic Inverse Problem</u>.

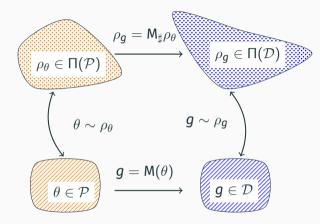
For forward problem is a push-forward map and ρ_{θ} is the unknown:

$$\rho_{g} = \mathsf{M}_{\sharp}\rho_{\theta} =: F_{\mathsf{M}}(\rho_{\theta}) , \quad F_{\mathsf{M}} : \Pi(\mathcal{P}) \mapsto \Pi(\mathcal{D}) .$$
(2)

We say $\nu = M_{\sharp}\mu$ if for any Borel measurable set *B*, $\nu(B) = \mu(M^{-1}(B))$.

Intuitively, a change of variable through the map ${\it M}$

Deterministic Inverse Problem to Stochastic Inverse Problem



A diagram showing the relations between the deterministic (1) and the stochastic problem (2).

Computational Aspects

Stochastic Inverse Problem — Solvers

• Deterministic Inverse problem:

 $\mathsf{M}(\theta) = g$

• Optimization problem:

 $\min_{\theta} d_o(\mathsf{M}(\theta), g^*)$

• Optimization algorithms: gradient descent, nonlinear CG, etc.

Stochastic Inverse Problem — Solvers

• **Deterministic** Inverse problem:

 $\mathsf{M}(\theta) = g$

• Optimization problem:

 $\min_{\theta} d_o(\mathsf{M}(\theta), g^*)$

• Optimization algorithms: gradient descent, nonlinear CG, etc.

• Stochastic Inverse problem:

 $\rho_{\mathbf{g}} = \mathbf{M}_{\sharp} \rho_{\theta}$

• Optimization problem:

 $\min_{\rho_{\theta}} \mathcal{D}(\mathsf{M}_{\sharp}\rho_{\theta},\rho_{\boldsymbol{g}}^{*})$

• Optimization algorithms: ??? over the probability space

Stochastic Inverse Problem — Solvers

• **Deterministic** Inverse problem:

 $\mathsf{M}(\theta) = g$

• Optimization problem:

 $\min_{\theta} d_o(\mathsf{M}(\theta), g^*)$

• Optimization algorithms: gradient descent, nonlinear CG, etc.

• Stochastic Inverse problem:

 $\rho_{\mathbf{g}} = \mathbf{M}_{\sharp} \rho_{\theta}$

• Optimization problem:

 $\min_{\rho_\theta} \mathcal{D}(\mathsf{M}_\sharp \rho_\theta, \rho_g^*)$

• Optimization algorithms: ??? over the probability space

There are two important metric/divergence that matter here (D and G):

$$\rho_{\theta}^{*} = \operatorname*{argmin}_{\rho_{\theta} \in (\Pi(\mathcal{P}), \mathfrak{G})} D(\mathsf{M}_{\sharp} \rho_{\theta}, \rho_{g}^{*}) \,. \tag{3}$$

The gradient flow for the energy $J(\rho_{\theta}) := D(M_{\sharp}\rho_{\theta}, \rho_{q}^{*})$ under the metric \mathfrak{G} is

$$\partial_t \rho_\theta = -\operatorname{grad}_{\mathfrak{G}} J(\rho_\theta) = -\operatorname{grad}_{\mathfrak{G}} D(\mathsf{M}_{\sharp} \rho_\theta, \rho_g^*) \ . \tag{4}$$

The gradient flow for the energy $J(\rho_{\theta}) := D(M_{\sharp}\rho_{\theta}, \rho_{q}^{*})$ under the metric \mathfrak{G} is

$$\partial_t \rho_\theta = -\operatorname{grad}_{\mathfrak{G}} J(\rho_\theta) = -\operatorname{grad}_{\mathfrak{G}} D(\mathsf{M}_{\sharp}\rho_\theta, \rho_g^*) \, .$$
 (4)

Example 1: Consider $\mathfrak{G} = W_2$ and D = KL:

$$\partial_{\mathrm{t}}
ho_{ heta} =
abla_{ heta} \cdot \left(
ho_{ heta}
abla_{ heta} \left(\log rac{
ho_{\mathrm{g}}}{
ho_{\mathrm{g}}^{*}}(\mathrm{M}(heta))
ight)
ight) \, .$$

The gradient flow for the energy $J(\rho_{\theta}) := D(M_{\sharp}\rho_{\theta}, \rho_{q}^{*})$ under the metric \mathfrak{G} is

$$\partial_t \rho_\theta = -\operatorname{grad}_{\mathfrak{G}} J(\rho_\theta) = -\operatorname{grad}_{\mathfrak{G}} D(\mathsf{M}_{\sharp}\rho_\theta, \rho_g^*) \, .$$
 (4)

Example 1: Consider $\mathfrak{G} = W_2$ and D = KL:

$$\partial_t
ho_ heta =
abla_ heta \cdot \left(
ho_ heta
abla_ heta \left(\log rac{
ho_{m{g}}}{
ho_{m{g}}^*}(m{M}(heta))
ight)
ight)$$

Example 2: Consider $\mathfrak{G} = W_2$ and $D = W_2$:

 $\partial_t \rho_{\theta} = \nabla_{\theta} \cdot (\rho_{\theta} \nabla_{\theta} \phi(\mathsf{M}(\theta))) \quad \phi \text{ is the Kantorovich potential}$

The gradient flow for the energy $J(\rho_{\theta}) := D(M_{\sharp}\rho_{\theta}, \rho_{q}^{*})$ under the metric \mathfrak{G} is

$$\partial_t \rho_\theta = -\operatorname{grad}_{\mathfrak{G}} J(\rho_\theta) = -\operatorname{grad}_{\mathfrak{G}} D(\mathsf{M}_{\sharp}\rho_\theta, \rho_g^*) \, .$$
 (4)

Example 1: Consider $\mathfrak{G} = W_2$ and D = KL:

$$\partial_t
ho_ heta =
abla_ heta \cdot \left(
ho_ heta
abla_ heta \left(\log rac{
ho_{m{g}}}{
ho_{m{g}}^*}(m{M}(heta))
ight)
ight)$$

Example 2: Consider $\mathfrak{G} = W_2$ and $D = W_2$:

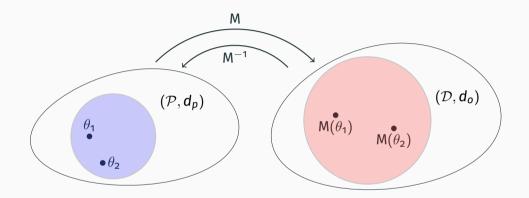
 $\partial_t \rho_{\theta} = \nabla_{\theta} \cdot (\rho_{\theta} \nabla_{\theta} \phi(\mathsf{M}(\theta))) \quad \phi \text{ is the Kantorovich potential}$

Example 3: Consider $\mathfrak{G} = H^2$ (Hellinger) and $D = \chi^2$:

$$\partial_t \rho_{\theta} = 8 \rho_{\theta} \left[\int \frac{\rho_g}{\rho_g^*} (M(\theta)) \rho_{\theta} \mathrm{d}\theta - \frac{\rho_g}{\rho_g^*} (M(\theta)) \right] \,.$$

Well-Posedness: Stability

Stability



We need probability metrics to quantify the size of the blue and red balls.

M is invertible

Suppose M⁻¹ exists and is Hölder continuous:

$$\|\mathsf{M}^{-1}(g_1) - \mathsf{M}^{-1}(g_2)\| \le C_{\mathsf{M}^{-1}} \|g_1 - g_2\|^{eta} \,, \quad eta \in (\mathsf{O},\mathsf{I}] \,.$$

(Deterministic inverse problem is well-posed.)

M is invertible

Suppose M⁻¹ exists and is Hölder continuous:

$$\|\mathsf{M}^{-1}(g_1) - \mathsf{M}^{-1}(g_2)\| \le C_{\mathsf{M}^{-1}} \|g_1 - g_2\|^{eta} \,, \quad eta \in (\mathsf{O},\mathsf{1}] \,.$$

(Deterministic inverse problem is well-posed.)

Let $ho_g, \widehat{
ho_g} \in \Pi(\mathbb{R}^n)$ be two data distributions. Their parameter distributions are

$$\rho_{\theta} = \mathsf{M}_{\sharp}^{-1} \rho_{g}, \quad \text{and} \quad \widehat{\rho_{\theta}} = \mathsf{M}_{\sharp}^{-1} \widehat{\rho_{g}}$$

M is invertible

Suppose M^{-1} exists and is Hölder continuous:

$$\|\mathsf{M}^{-1}(g_1) - \mathsf{M}^{-1}(g_2)\| \leq C_{\mathsf{M}^{-1}} \|g_1 - g_2\|^{eta}\,, \quad eta \in (\mathsf{O},\mathsf{1}]\,.$$

(Deterministic inverse problem is well-posed.)

Let $\rho_a, \hat{\rho_a} \in \Pi(\mathbb{R}^n)$ be two data distributions. Their parameter distributions are

$$\rho_{\theta} = \mathsf{M}_{\sharp}^{-1} \rho_{g}, \quad \text{and} \quad \widehat{\rho_{\theta}} = \mathsf{M}_{\sharp}^{-1} \widehat{\rho_{g}}$$

Theorem (Ernst et al., 2022)

Consider the p-Wasserstein metric.

$$W_{p}\left(
ho_{ heta}, \ \widehat{
ho_{ heta}}
ight) \leq C_{\mathsf{M}^{-1}} W_{p}\left(
ho_{g}, \ \widehat{
ho_{g}}
ight)^{eta}$$
 .

Theorem (Qin-Oprea-Wang-Y., 2024) Under any f-divergence (\mathcal{D}_{f}) , we have

$$\mathcal{D}_{f}(\rho_{\theta}||\widehat{\rho_{\theta}}) = \mathcal{D}_{f}(\rho_{g}||\widehat{\rho_{g}})$$

Solution Characterization

M is non-invertible

We have two cases for a general nonlinear M:

- 1. *M* is "under-determined", i.e., *M* is not injective
- 2. M is "over-determined", i.e., M is not surjective

M is non-invertible

We have two cases for a general nonlinear M:

- 1. M is "under-determined", i.e., M is not injective
- 2. *M* is "over-determined", i.e., *M* is not surjective

In the under-determined case, we lose **uniqueness**.

M is non-invertible

We have two cases for a general nonlinear M:

- 1. M is "under-determined", i.e., M is not injective
- 2. *M* is "over-determined", i.e., *M* is not surjective

In the under-determined case, we lose **uniqueness**. In the over-determined case, we lose **existence**. We have two cases for a general nonlinear M:

- 1. M is "under-determined", i.e., M is not injective
- 2. *M* is "over-determined", i.e., *M* is not surjective

In the under-determined case, we lose **uniqueness**. In the over-determined case, we lose **existence**.

Both can be "regularized" by considering an optimization framework:

1. *M* is under-determined:

$$\rho_{\theta}^{*} = \operatorname*{argmin}_{\mathsf{S} = \{\rho_{\theta}: \mathsf{M}_{\#} \rho_{\theta} = \rho_{g}\}} \mathcal{E}[\rho_{\theta}]$$

2. *M* is over-determined:

$$\mathcal{D}_{ heta}^{*} = \operatorname*{argmin}_{
ho_{ heta}} \mathcal{D}(\mathsf{M}_{\#}
ho_{ heta},
ho_{\mathsf{g}})$$
 13

Under-determined Case (Entropy)

$$\rho_{\theta}^{*} = \underset{M_{\#}\rho_{\theta}=\rho_{g}}{\operatorname{argmin}} \, \mathcal{E}[\rho_{\theta}], \qquad \mathcal{E}[\rho_{\theta}] = \int \rho_{\theta} \log \rho_{\theta} \mathrm{d}\theta$$

Theorem (Sketch)

Denote the optimizer ρ_{θ}^* to the problem above with $\mathcal{E}[\rho_{\theta}] = \int \rho_{\theta} \log \rho_{\theta} d\theta$. Then for any $g \in \text{supp}(\rho_g)$, we have its preimage under M given by

$$\Theta_{\boldsymbol{g}} := \left\{ \boldsymbol{\theta} : \boldsymbol{\mathsf{M}}(\boldsymbol{\theta}) = \boldsymbol{g} \right\}.$$

 ρ_{θ}^* is constant on the set Θ_g .

The recovered ρ_{θ}^* is a **uniform distribution** conditioned on each level set!

Under-determined Case (*p*-th Moment)

$$\rho_{\theta}^{*} = \underset{M_{\#}\rho_{\theta}=\rho_{g}}{\operatorname{argmin}} \mathcal{E}[\rho_{\theta}], \qquad \mathcal{E}[\rho_{\theta}] = \int |\theta|^{p} \rho_{\theta} \mathrm{d}\theta.$$

Theorem (Sketch)

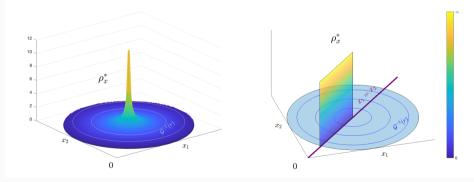
Denote the optimizer ρ_{θ}^* to the problem above with $\mathcal{E}[\rho_{\theta}] = \int |\theta|^p \rho_{\theta} d\theta$. For any $g \in supp(\rho_g)$, define \mathcal{H} such that $\mathcal{H}(g) := \underset{M(\theta)=g}{\operatorname{argmin}} |\theta|^p$. (5)

Then
$$ho^*_ heta=\mathcal{H}_{\#}
ho_{ extbf{g}}$$
 .

The recovered ρ_{θ}^* is supported only on a (least p-norm) point at each level set!

Under-determined Case: Illustrations

$$r = M(x_1, x_2) = \sqrt{(x_1 - 1)^2 + (x_2 - 1)^2}$$
 $\mu_r = \mathcal{U}([0, 1])$



(a)
$$\mathcal{E} = \int \rho_x \log \rho_x \mathrm{d}x$$

(b) $\mathcal{E} = \int |\mathbf{x}|^2 \rho_{\mathbf{x}} \mathrm{d}\mathbf{x}$

$$\rho_{\theta}^{*} = \operatorname*{argmin}_{\rho_{\theta}} \mathcal{D}(\mathbf{M}_{\#}\rho_{\theta},\rho_{g}), \quad \mathcal{D}(\mu,\nu) = \int f\!\left(\frac{\mathrm{d}\mu}{\mathrm{d}\nu}\right) \mathrm{d}\nu$$

Theorem (Sketch)

Denote the optimizer ρ_{θ}^* to the problem with \mathcal{D} being the f-divergence. Let \mathcal{R} be the range of M. Then we have

 $M_{\#}\rho_{\theta}^{*} =$ conditional distribution of ρ_{g} on \mathcal{R} .

$$\rho_{\theta}^{*} = \operatorname*{argmin}_{\rho_{\theta}} \mathcal{D}(\mathsf{M}_{\#}\rho_{\theta},\rho_{g}), \quad \mathcal{D}(\mathsf{M}_{\#}\rho_{\theta},\rho_{g}) = \mathsf{W}_{\mathsf{d}}(\mathsf{M}_{\#}\rho_{\theta},\rho_{g}).$$

Theorem (Sketch)

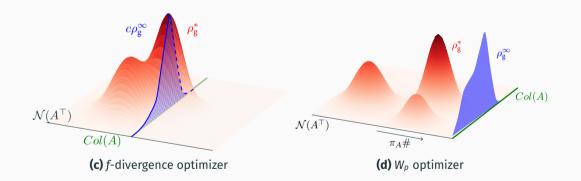
Denote the optimizer ρ_{θ}^* to the problem with \mathcal{D} being the Wasserstein metric of cost function d. Define the **projection operator** $\mathcal{P}_{\mathsf{M}} : \mathbb{R}^n \to \mathcal{R}$ as

$$\mathcal{P}_{\mathsf{M}}(g) = \operatorname*{argmin}_{y \in \mathcal{R}} d(y,g)$$
.

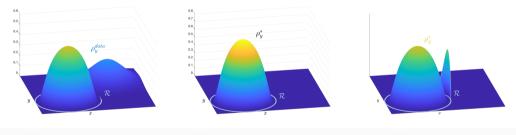
Then we have the reconstructed **data** distribution $M_{\#}\rho_{ heta}^{*}=\mathcal{P}_{M\,\#}\rho_{g}$

Extract the "marginal" distribution of ρ_g along the projection direction.

Over-determined Case: Illustrations (linear)



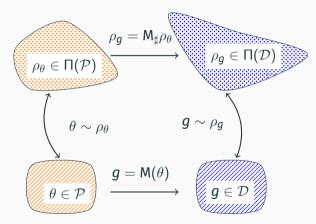
Over-determined Case: Illustrations (nonlinear)



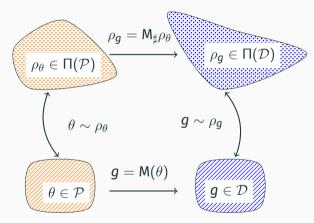
(e) Data distribution ρ_y

(f) f-divergence optimizer

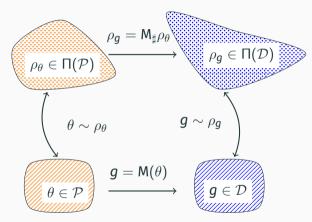
(g) W_p optimizer



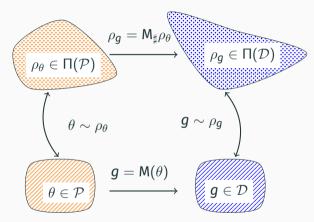
• A different stochastic framework with respect to Bayesian Inversion



- A different stochastic framework with respect to Bayesian Inversion
- Well-posedness: metric/divergence-dependent stability



- A different stochastic framework with respect to Bayesian Inversion
- Well-posedness: metric/divergence-dependent stability
- Implicit Regularization: depending on both D (energy) and & (dissipation)

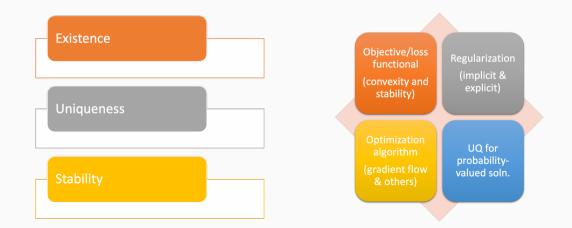


- A different stochastic framework with respect to Bayesian Inversion
- Well-posedness: metric/divergence-dependent stability
- Implicit Regularization: depending on both D (energy) and & (dissipation)
- Rich geometry in probability space yields various (ensemble) particle methods

Future Work

Inverse Problem Analysis

Inverse Problem Computation



Thanks for your attention!

	Bayesian Framework	Stochastic Inverse Problem
source of noise	prior & measurement	parameter
consistency	Dirac delta	parameter distribution
prior information	Yes	No
measure-theoretic	Yes	Yes
require sampling	Yes	Yes
solution is a distribution	Yes	Yes

One can regard the new setup as a "deterministic inverse problem" over the $\Pi(\mathcal{P})$ (all prob. measures over \mathcal{P}) rather than the classic setup over \mathcal{P} .