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Motivation

I From the 2024 National Academies Report: Foundational Research
Gaps and Future Directions for Digital Twins

‘A digital twin is a set of virtual information constructs that mimics
the structure, context, and behavior of a natural, engineered, or
social system (or system of systems), is dynamically updated with
data from its physical twin, has a predictive capability, and informs
decisions that realize value. The bidirectional interaction between
the virtual and the physical is central to the digital twin.’

I Consider a dynamical system twin.

I Used to compute optimal controls for physical twin,

I Dynamical system depends on quantities that are estimated from
physical twin data.

I What data are needed to reduce impact of model error?

I Subproblem within digital twin contruction/update.
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Motivation
I Dynamical systems in many applications depend on quantities that

are only known experimentally or are expensive to compute.

I Lift/drag/moment coefficients of a hypersonic vehicle.

I Relative permeability and mobility in subsurface flows.

I Constitutive laws.

Concept art for a Boeing X51 waverider vehicle.

Credit: U.S. Air Force. Accessed 3/27/2025.

https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104467/x-51a-waverider/
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Motivation

I Cost of experiments makes many-query tasks like simulation and
optimization impractical or intractable.

I Can approximate expensive (or high-fidelity) models by inexpensive
surrogate models, but this introduces inexactness.

I Relationship between surrogate accuracy and solution accuracy is
problem-dependent.

I Surrogate accuracy is adjustable, e.g., by interpolating high-fidelity
model at user-specified points.

I Goal: select interpolation points such that the resulting surrogate
yields an accurate solution.
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Motivation

I Why not just pick a bunch of interpolation points?

I Requires many expensive high-fidelity computations.

I Can cause numerical issues in the surrogate.

I Can make the surrogate itself too expensive.

I To avoid these issues, must prioritize “good” interpolation points,
i.e., points where model error has greatest impact on trajectory.

I Key idea: define acquisition function that combines sensitivity
information from simulation/optimization problem with surrogate
error bounds to determine “good” interpolation points.
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Literature review

I Many acquisition functions for adaptive surrogate-assisted
optimization using Gaussian process (GP) surrogates:

I Expected improvement [Jones et al., 1998]

I U-function [Moustapha et al., 2016]

I Gradient-enhanced inspection of local minima
[Surmann et al., 2021]

I Sobol sensitivity indices [Vohra et al., 2019]

I Crowding distance [Sun et al., 2022]

I Maximum posterior variance [Cangelosi et al., 2024]

I Existing approaches are mostly statistical/Bayesian + parametric.

I First sensitivity-driven + deterministic + parametric approach given
in [Hart et al., 2023].

I ASMR approach is sensitivity-driven + deterministic +
parameter-free and extends [Hart et al., 2023].

Matthias Heinkenschloss April 17, 2025 7



Outline

Motivation

ASMR for Trajectory Simulation
Sensitivity Analysis for ODEs with Component Functions
Sensitivity -Based Error Bound
Surrogate Construction via Kernel Interpolation
Surrogate Model Refinement Procedure
Numerical Example: Hypersonic Vehicle

ASMR for Trajectory Optimization
Sensitivity Analysis for OCPs with Component Functions
Derivative Error Bounds for Kernel Interpolation
Surrogate Model Refinement Procedure
Numerical Example: Hypersonic Vehicle

Conclusions

Matthias Heinkenschloss April 17, 2025 8



Problem formulation

I Consider the initial value problem

x′(t) = f
(
t,x(t),g

(
t,x(t)

))
, a.a. t ∈ I,

x(t0) = x0

where I := (t0, tf ).

I Solution x : I → R depends on state-dependent component function
g : I × Rnx → Rng .

I Let g∗ be the “true” model, and let ĝ be a surrogate.

I Computing x∗ := x(· ;g∗) too expensive; can only compute
x̂ := x(· ; ĝ).

I Can estimate solution error using sensitivity of solution mapping
x(· ;g) to perturbations in g.
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Differentiability of the dynamics
I To compute sensitivity of x(· ;g), need to set problem in appropriate

function spaces and establish continuous Fréchet differentiability.

I Superposition/Nemytskii operator

F :
(
L∞(I)

)nx ×
(
G2(I)

)ng →
(
L∞(I)

)nx

representing the right-hand side

F(x,g) := f
(
·,x(·),g

(
·,x(·)

))
is continuous Fréchet diff’ble under suitable conditions on f , where(
G2(I)

)ng
:=
{
g : I × Rnx → Rng : g(t, x) is twice continuously

partially differentiable with respect to x ∈ Rnx for a.a. t ∈ I,
is measurable in t for each x ∈ Rnx , and ‖g‖(G2(I))ng <∞

}
,

‖g‖(G2(I))ng :=
2∑

n=0

ess sup
t∈I

sup
x∈Rnx

∥∥∥∥ ∂n∂xng(t, x)

∥∥∥∥ .
[Cangelosi and Heinkenschloss, 2024]
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Sensitivity of ODE solution

I Use Implicit Function Theorem to establish continuous Fréchet
differentiability of solution mapping(

G2(I)
)ng 3 g 7→ x(· ;g) ∈

(
W 1,∞(I)

)nx

under suitable assumptions on f .

I Sensitivity δx := xg(g)δg given by solution of linear IVP

δx′(t) = A(t)δx(t) + B(t)δg
(
t,x(t)

)
, a.a. t ∈ I,

δx(t0) = 0

where x(·) := x(· ;g) and

A(·) := fx

(
·,x(·),g

(
·,x(·)

))
+ fg

(
·,x(·),g

(
·,x(·)

))
gx
(
·,x(·)

)
,

B(·) := fg

(
·,x(·),g

(
·,x(·)

))
.
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Sensitivity of QoI

I Quantity of interest (QoI) that depends on the ODE solution x(· ;g):

q(x,g) := ϕ
(
x(tf )

)
+

∫ tf

t0

l
(
t,x(t),g

(
t,x(t)

))
dt,

q̃(g) := q
(
x(· ;g),g

)
.

I QoI (
G2(I)

)ng 3 g 7→ q̃(g) ∈ R

is continuous Fréchet diff’ble under suitable assumptions on ϕ, l, f .
[Cangelosi and Heinkenschloss, 2024]
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Sensitivity of QoI

I Shorthand: x(·) := x(· ;g), l[·] := l
(
·,x(·),g

(
·,x(·)

))
I QoI sensitivity δq := q̃g(g)δg given by∫ tf

t0

[
B(t)Tλ(t) +∇gl[t]

]T
δg
(
t,x(t)

)
dt

where λ ∈
(
W 1,∞(I)

)nx solves the linear adjoint equation

−λ′(t) = A(t)Tλ(t) +∇xl[t] + gx
(
t,x(t)

)T∇gl[t], a.a. t ∈ I,
λ(tf ) = ∇xϕ

(
x(tf )

)
with A, B from sensitivity IVP.

I After one linear adjoint ODE solve, can compute for any δg.
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Classical Perturbation Analysis

I Given f ∈ C1(Rnx × Rng ,Rnx), g ∈ C1(Rnx ,Rng ), consider ODE

x′(t) = f
(
t,x(t),g

(
t,x(t)

))
, t ∈ (t0, tf ),

x(t0) = x0.

I f is known, g is approximated.
True model g∗ expensive to compute, or may not be exactly known.
Can only compute with current surrogate model gc.

I ODE solution x(·,g). Error bound for x(·,g∗)− x(·,gc)?

I Existing ODE perturbation results,
e.g., [Hairer et al., 1993],
[Söderlind, 2006], extremely
pessimistic (bound capped at 1010).

Applied to ODE for hypersonic
vehicle simulation (specified later)
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New Sensitivity-Based Error Bound
I Have proven Fréchet differentiability of g 7→ x(·,g).
I Use sensitivity x(gc)− x(g∗) ≈ xg(gc)(gc − g∗) and

bound on model error along current trajectory∣∣gc(xc(t))− g∗(xc(t))
∣∣ ≤ c(g∗) ε(xc(t)).

I Upper bound for weighted L2-norm error computed via solution of
linear-quadratic optimal control problem (LQOCP)

max
δ, δx

∫
I

δx(t)TQ(t)δx(t) dt (error norm)

s.t. δx′(t) = Ac(t)δx(t) + Bc(t)δ(t), a.a. t ∈ I, (sens. eqn.)

δx(t0) = 0,

− ε
(
xc(t)

)
≤ δ(t) ≤ ε

(
xc(t)

)
, a.a. t ∈ I, (model err. bd.)

where

Ac(·) := fx

(
xc(·),gc

(
xc(·)

))
+ fg

(
xc(·),gc

(
xc(·)

))
(gc)x

(
xc(·)

)
,

Bc(·) := fg

(
xc(·),gc

(
xc(·)

))
.
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New Sensitivity-Based Bound

I Sensitivity-based error bound tight (left) even when traditional ODE
perturbation bound fails (right) (bound is capped at 1010).

I Adjoint equation approach to avoid LQOCP when computing error
bounds for quantity of interest q̂(g) := q

(
x(·;g)

)
.

I Can use these bounds
I to assess quality of current model gc and, if needed,
I to improve the model.

I Next construct gc models using reproducing Kernel Hilbert spaces
(RKHSs) and use new sensitivity-based bound to guide refinement.
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Reproducing kernel Hilbert spaces (RKHSs)

I Surrogate models with pointwise error bounds may be constructed
via standard kernel interpolation/optimal recovery methods. Similar
to GP regression, but from a deterministic viewpoint. [?], [?]

I RKHS with kernel k : Ω× Ω→ R, denoted Hk(Ω), is completion of

span{k(y, ·) | y ∈ Ω}

with respect to the inner product〈
n∑
i=1

αi k(yi, ·),
m∑
j=1

βj k(yj , ·)

〉
=

n∑
i=1

m∑
j=1

αiβjk(yi, yj).

I Let g∗ ∈ Hk(Ω) with known evaluations

Y := (y1, . . . , yN ), G :=
(
g∗(y1), . . . ,g∗(yN )

)
.

I Want an interpolant of these points in Hk(Ω) and a pointwise error
bound for the interpolant.
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Kernel interpolation
I Kernel interpolation/optimal recovery problem:

min ‖g‖Hk(Ω)

s.t. g(yi) = g∗(yi), i = 1, . . . , N.

I Optimal solution given by

g(y) = k(y, Y )k(Y, Y )−1G

where k(y, Y ) :=
(
k(y, y1) · · · k(y, yN )

)
.

I Pointwise error bound given by

|g(y)− g∗(y)| ≤ ‖g∗‖Hk(Ω) P (y;Y ),

P (y;Y ) =
√
k(y, y)− k(y, Y )k(Y, Y )−1 k(Y, y).

I Note: error bound does not depend on outputs of g∗, only the norm
of g∗ and its inputs.

I ‖g∗‖Hk(Ω) not known in practice; must estimate somehow. Can use
‖g‖Hk(Ω), but it will be an underestimate.
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Adaptive surrogates

I gc := g(· ;Yc, Gc) = current model

I g+[y+] := g(· ;Y+, G+) = refined model

I Y+ := Yc ∪ {y+}

I Consider adding one point, but can add multiple points.

I Given any y+, can compute magnitude of error bars for g+[y+]
without computing the expensive g∗(y+).

Matthias Heinkenschloss April 17, 2025 19



Workflow

1. Using current surrogate gc, solve ODE to obtain xc := x(· ;gc).

2. Use sensitivity + surrogate error bounds to choose an “optimal” y+.

I Details discussed next.

3. Compute g∗(y+) and obtain refined model g+.

4. Solve ODE again to obtain better solution x+ := x(· ;g+).

5. Continue refining until some stopping criterion is met.
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Reducing the solution error
I First-order Taylor approximation in Banach spaces gives

x(g+[y+])− x(g∗)︸ ︷︷ ︸
solution error

≈ xg(g+[y+])︸ ︷︷ ︸
sensitivity

(g+[y+]− g∗)︸ ︷︷ ︸
model error

(can apply similar approximation for QoI error).

I Want to choose y+ to make solution error small.

I Can’t use xg(g+[y+]) since y+ not chosen yet. Instead, approximate

x(g+[y+])− x(g∗) ≈ xg(gc)(g+[y+]− g∗).

I Model error g+[y+]− g∗ is expensive to compute. Assume we have
an error bound

|g+[y+](y)− g∗(y)| ≤ c(g∗) ε(y;Y+, Gc)

which is independent of g∗(y+). (g assumed scalar)

I Idea: use pointwise error bound to obtain upper bound on
‖xg(gc)(g+[y+]− g∗)‖ (in some seminorm), and minimize over y+.
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Bound on solution error

I Upper bound on weighted L2-(semi)norm of xg(gc)(g+[y+]− g∗)
computed by finding solution

δx ∈
(
W 1,∞(I)

)nx
, δg ∈

(
G2(I)

)ng of

max
δx,δg

1

2

∫ tf

t0

δx(t)TQ(t)δx(t) dt

s.t. δx′(t) = Ac(t)δx(t) + Bc(t)δg
(
yc(t)

)
δx(t0) = 0

− c(g∗) ε
(
yc(t);Y+, Gc

)
≤ δg

(
yc(t)

)
≤ c(g∗) ε

(
yc(t);Y+, Gc

)
I Solution approximates worst-case trajectory error given error bound

for refined model as a function of y+.
Problem ill-suited for discretization as δg is state-dependent.
Can “relax” the problem to obtain something more tractable.
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Bound on solution error

I Upper bound on weighted L2-(semi)norm of xg(gc)(g+[y+]− g∗)
computed by finding solution

δx ∈
(
W 1,∞(I)

)nx
, δ ∈

(
L∞(I)

)ng of

max
δx,δ

1

2

∫ tf

t0

δx(t)TQ(t)δx(t) dt

s.t. δx′(t) = Ac(t)δx(t) + Bc(t)δ(t)

δx(t0) = 0

− c(g∗) ε
(
yc(t);Y+, Gc

)
≤ δ(t) ≤ c(g∗) ε

(
yc(t);Y+, Gc

)
I Convex maximization problem; global solution is NP-hard

(assuming it exists).
Solve using a tailored interior point method with zero as the initial
point that leverages symmetry of problem.

I c(g∗) not known, but problem is scale-invariant.
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Bound on QoI error

I Can similarly obtain approximate upper bound on QoI error by
obtaining λc ∈

(
W 1,∞(I)

)nx from adjoint equation and solving

max
δg

∣∣∣ ∫ tf

t0

(
Bc(t)

Tλc(t) +∇glc[t]
)T
δg
(
yc(t)

)
dt
∣∣∣

s.t. − c(g∗) ε
(
yc(t);Y+, Gc

)
≤ δg

(
yc(t)

)
≤ c(g∗) ε

(
yc(t);Y+, Gc

)

I This is a linear program; much easier to solve. In fact,
“L∞ relaxation” has a simple analytical solution.
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Bound on QoI error

I Can similarly obtain approximate upper bound on QoI error by
obtaining λc ∈

(
W 1,∞(I)

)nx from adjoint equation and solving

max
δ

∣∣∣ ∫ tf

t0

(
Bc(t)

Tλc(t) +∇glc[t]
)T
δ(t) dt

∣∣∣
s.t. − c(g∗) ε

(
yc(t);Y+, Gc

)
≤ δ(t) ≤ c(g∗) ε

(
yc(t);Y+, Gc

)
,

I Analytical solution given by

δ(t) = c(g∗) sgn
(
Bc(t)

Tλc(t) +∇glc[t]
)
ε
(
yc(t);Y+, Gc

)
with objective value

δq̃UB[y+] = c(g∗)

∫ tf

t0

∣∣∣Bc(t)
Tλc(t) +∇glc[t]

∣∣∣T ε(yc(t);Y+, Gc
)
dt.
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Bound on QoI error

I Can similarly obtain approximate upper bound on QoI error by
obtaining λc ∈

(
W 1,∞(I)

)nx from adjoint equation and solving

max
δ

∣∣∣ ∫ tf

t0

(
Bc(t)

Tλc(t) +∇glc[t]
)T
δ(t) dt

∣∣∣
s.t. − c(g∗) ε

(
yc(t);Y+, Gc

)
≤ δ(t) ≤ c(g∗) ε

(
yc(t);Y+, Gc

)
,

I Analytical solution given by

δ(t) = c(g∗) sgn
(
Bc(t)

Tλc(t) +∇glc[t]
)
ε
(
yc(t);Y+, Gc

)
with objective value

δq̃UB[y+] = c(g∗)

∫ tf

t0

∣∣∣Bc(t)
Tλc(t) +∇glc[t]

∣∣∣T ε(yc(t);Y+, Gc
)
dt.
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Refinement

I Optimization problem is parametrized by refinement point y+, which
affects the box constraints

− c(g∗) ε
(
yc(t);Y+, Gc

)
≤ δ(t) ≤ c(g∗) ε

(
yc(t);Y+, Gc

)
I Choose y+ such that the worst-case perturbation is minimized over a

set of candidates, i.e. worst-case perturbation is acquisition function.

I Multiple possible strategies:

I Randomly generate finitely many candidates and solve by brute
force.

I Consider points in a continuous range and use a numerical
method.

I Currently use the first strategy; second approach part of future work.
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Dynamic model

chord line

horizon

v

D

L

α
γ

x2

x1

δ

Dynamic model for longitudinal flight with flap deflection control.

I Elevator/flap angle δ → pitch rate q → angle of attack α
→ lift L and drag D → speed v and flight path angle γ
→ downrange x1 and altitude x2
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Setup

I Lift/drag/moment coefficients CL, CD, CM modeled using
surrogates:

g =

CL(α, δ)
CD(α, δ)
CM (α, δ)


each constructed in RKHS Hk(R2) for Gaussian kernel.
Lengthscale adjusted based on average distance between data points.

I True model (synthetic):

CL(α, δ) = −0.04 + 0.8α+ 0.13δ

CD(α, δ) = 0.012− 0.01α+ 0.6α2 − 0.02δ + 0.12δ2

CM (α, δ) = 0.1745− α− δ

I In practice, would use CFD as high-fidelity model, which is much
more expensive.
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Initialization

I Initial models for aerodynamic coefficients CL, CD, CM constructed
from high-fidelity data at 3 Latin hypercube (LH) samples in range

α ∈ [−5◦, 25◦], δ ∈ [−15◦, 10◦]

I Simulated with initial surrogates to obtain nominal trajectory.

Nominal trajectory, true trajectory
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Three model refinement approaches

I ASMR approach: Generate candidates yi+ and select refinement
point using sensitivity-based upper bound on solution error as
acquisition function.

I Max error bound (MEB) approach: Generate candidates yi+ and
select refinement point using

arg max
i

∥∥∥∥∥∥
 ‖(CL)c‖Hk(R2)PL(yi+;Yc)
‖(CD)c‖Hk(R2)PD(yi+;Yc)
‖(CM )c‖Hk(R2)PM (yi+;Yc)

∥∥∥∥∥∥
2

as acquisition function.

I LH approach: Simply generate 3 + r LH samples (not adaptive).

I Candidate generation strategy: selected (α, δ) values at 10
equispaced times in [t0, tf ] along the current trajectory, plus 10
additional LH candidates (20 total).
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Refinement point

ASMR:

MEB:
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Trajectories (r = 1)
ASMR:

MEB:
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ASMR acquisition function vs. post-refinement error

ASMR acquisition function, trajectory error after refinement
(log scale)
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Trajectory error comparison

I ASMR outperforms both approaches, but convergence quickly
flattens out due to inability to reduce interpolation error as increased
density of samples worsens conditioning of k(Y, Y ).

I May observe better performance with hierarchical modeling
approaches or compactly supported kernels, e.g., Wendland kernels.
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Problem formulation

I Consider the optimal control problem

min ϕ
(
x(tf )

)
+

∫ tf

t0

l
(
t,x(t),u(t),g

(
x(t),u(t)

))
dt

s.t. x′(t) = f
(
t,x(t),u(t),g

(
x(t),u(t)

))
, a.a. t ∈ I,

x(t0) = x0

I Optimization variable: time-dependent control input
u ∈

(
L∞(I)

)nu .

I To obtain a sensitivity result, apply Implicit Function Theorem to
first-order necessary optimality conditions.

I Need strong second-order sufficient conditions to satisfy hypotheses
of IFT and handle two-norm discrepancy.
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Differentiability of the dynamics
I One additional derivative of g needed for IFT in optimization setting:(
G3(Ω)

)ng
:=
{
g : Ω→ Rng : g(y) is three times continuously

differentiable with respect to y ∈ Ω, and ‖g‖(G3(Ω))ng <∞
}
,

‖g‖(G3(Ω))ng :=

3∑
n=0

sup
y∈Ω

∥∥∥∥ ∂n∂yng(y)

∥∥∥∥ .
I Right-hand side operator

F :
((
W 1,∞(I)

)nx ×
(
L∞(I)

)nu
)
×
(
G3(Ω)

)ng →
(
L∞(I)

)nx

representing the right-hand side

F(x,u;g) := f
(
·,x(·),u(·),g

(
x(·),u(·)

))
is continuously Fréchet differentiable due to continuous embedding
of G3(Ω) in G2(Ω) and W 1,∞(I) in L∞(I).

(Recall differentiability was established in L∞ spaces.)
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Optimality conditions
I Let (x,u) ∈

(
W 1,∞(I)

)nx ×
(
L∞(I)

)nu be a local minimum. Then

there exists λ ∈
(
W 1,∞(I)

)nx such that

ψ(x,u,λ;g)

:=


f [·]− x′(·)
x0 − x(t0)

λ
′
(·) + A[·]Tλ(·) +

(
∇xl[·] + gx[·]T∇gl[·]

)
∇xϕ[tf ]− λ(tf )

B[·]Tλ(·) +
(
∇ul[·] + gu[·]T∇gl[·]

)


= 0

where

A[·] = fx[·] + fg[·]gx[·], B[·] = fu[·] + fg[·]gu[·].

I ψ continuously Fréchet differentiable and ψ(x,u,λ) bijective

⇒ z(g) :=
(
x(g),u(g),λ(g)

)
is continuously Fréchet diff’ble by

IFT.
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Sensitivity computation

I Partial Fréchet derivatives:

ψ(x,u,λ)(x,u,λ;g)(δx, δu, δλ)

=


A[·]δx(·) + B[·]δu(·)− δx′(·)

−δx(t0)
δλ′(·) + Hxx[·]δx(·) + Hxu[·]δu(·) + A[·]T δλ(·)

∇2
xxϕ[tf ]δx(tf )− δλ(tf )

Hux[·]δx(·) + Huu[·]δu(·) + B[·]T δλ(·)


and

ψg(x,u,λ;g)δg =


fg[·]δg[·]

0

Hxg[·]δg[·] + δgx[·]Td[·]
0

Hug[·]δg[·] + δgu[·]Td[·]


where

H[·] = l[·] + λ(·)T f [·], d[·] = fg[·]Tλ(·).
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Sensitivity computation
I Sensitivity given by δz = −ψ−1

(x,u,λ)ψgδg, which is solution of the

linear quadratic optimal control problem (LQOCP)

min
δx,δu

∫ tf

t0

(
cx(t)
cu(t)

)T (
δx(t)
δu(t)

)
dt

+
1

2

∫ tf

t0

(
δx(t)
δu(t)

)T (
Hxx[t] Hxu[t]
Hux[t] Huu[t]

)(
δx(t)
δu(t)

)
dt

+ σTf δx(tf ) +
1

2
δx(tf )T∇2

xxϕ[tf ]δx(tf )

s.t. δx′(t) = A[t]δx(t) + B[t]δu(t) + r(t), a.a. t ∈ I,
δx(t0) = r0

with

r(t) = fg[t]δg[t],

(
cx(t)
cu(t)

)
=

(
Hxg[t]δg[t] + δgx[t]Td[t]

Hug[t]δg[t] + δgu[t]Td[t]

)
,

r0 = σf = 0.
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Sensitivity computation

I Consider the QoI

q(x,u;g) := φ
(
x(tf )

)
+

∫ tf

t0

`
(
t,x(t),u(t),g

(
x(t),u(t)

))
dt.

(May be different from objective of OCP, hence φ, ` instead of ϕ, l.)

I QoI as a function of OCP solution given by

q̃(g) = q
(
x(g),u(g);g

)
.

I QoI sensitivity computed by solving “adjoint OCP” given by same
LQOCP as before, but with

r(t) ≡ 0,

(
cx(t)
cu(t)

)
=

(
∇x`[t] + gx[t]T∇g`[t]
∇u`[t] + gu[t]T∇g`[t]

)
,

r0 = 0, σf = ∇xφ[tf ].
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Sensitivity computation

I QoI sensitivity given by

q̃g(g)δg =

∫ tf

t0

(
Hgx[t]δ̃x(t) + Hgu[t]δ̃u(t) + fg[t]

T δ̃λ(t) +∇g`[t]
)T
δg[t]

+ d[t]T δgx[t]δ̃x(t) + d[t]T δgu[t]δ̃u(t) dt

where δ̃x, δ̃u solve adjoint OCP with adjoint δ̃λ.

I After one adjoint LQOCP solve, can compute for any δg.

I Sensitivity of solution/QoI depends on derivatives of δg; need error
bounds for these as well.
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Derivative error bound

I Need error bound for model and its first derivatives to define
acquisition function in optimization setting.

I Notation: Dα
i denotes partial differentiation of the i-th argument of

a function with respect to the multi-index α.

I If Dα
1D

α
2 k(·, ·) exists and is continuous, derivatives of kernel

interpolants in Hk(Ω) also have pointwise error bounds:

|Dαg(y)−Dαg∗(y)| ≤ ‖g∗‖Hk(Ω) P
α(y;Y ),

Pα(y;Y ) =
√
Dα

1D
α
2 k(y, y)−Dα

1 k(y, Y )k(Y, Y )−1Dα
2 k(Y, y).
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Bound on QoI sensitivity

I Worst-case bound on QoI sensitivity obtained by finding solution

δg ∈
(
G3(Ω)

)ng of

max
δg

∣∣∣ ∫ tf

t0

(
Hgx[t]δ̃x(t) + Hgu[t]δ̃u(t) + fg[t]

T δ̃λ(t) +∇g`[t]
)T
δg[t]

+ d[t]T δgx[t]δ̃x(t) + d[t]T δgu[t]δ̃u(t) dt
∣∣∣

s.t. − c(g∗) ε
(
yc(t);Y+, Gc

)
≤ δg

(
yc(t)

)
≤ c(g∗) ε

(
yc(t);Y+, Gc

)
,

− c(g∗) εx
(
yc(t);Y+, Gc

)
≤ δgx

(
yc(t)

)
≤ c(g∗) εx

(
yc(t);Y+, Gc

)
,

− c(g∗) εu
(
yc(t);Y+, Gc

)
≤ δgu

(
yc(t)

)
≤ c(g∗) εu

(
yc(t);Y+, Gc

)
I Once again, perform “L∞ relaxation” to obtain optimal control

problem.
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Bound on QoI sensitivity

I Worst-case bound on QoI sensitivity obtained by finding solution

δ ∈
(
L∞(I)

)ng
, δx ∈

(
L∞(I)

)ng×nx
, δu ∈

(
L∞(I)

)ng×nu of

max
δg

∣∣∣ ∫ tf

t0

(
Hgx[t]δ̃x(t) + Hgu[t]δ̃u(t) + fg[t]

T δ̃λ(t) +∇g`[t]
)T
δ(t)

+ d[t]T δx(t)δ̃x(t) + d[t]T δu(t)δ̃u(t) dt
∣∣∣

s.t. − c(g∗) ε
(
yc(t);Y+, Gc

)
≤ δ(t) ≤ c(g∗) ε

(
yc(t);Y+, Gc

)
,

− c(g∗) εx
(
yc(t);Y+, Gc

)
≤ δx(t) ≤ c(g∗) εx

(
yc(t);Y+, Gc

)
,

− c(g∗) εu
(
yc(t);Y+, Gc

)
≤ δu(t) ≤ c(g∗) εu

(
yc(t);Y+, Gc

)

I Analytical solution easily obtainable for this problem.
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Bound on QoI sensitivity

max
δg

∣∣∣ ∫ tf

t0

(
Hgx[t]δ̃x(t) + Hgu[t]δ̃u(t) + fg[t]

T δ̃λ(t) +∇g`[t]
)T
δ(t)

+ d[t]T δx(t)δ̃x(t) + d[t]T δu(t)δ̃u(t) dt
∣∣∣

s.t. − c(g∗) ε
(
yc(t);Y+, Gc

)
≤ δ(t) ≤ c(g∗) ε

(
yc(t);Y+, Gc

)
,

− c(g∗) εx
(
yc(t);Y+, Gc

)
≤ δx(t) ≤ c(g∗) εx

(
yc(t);Y+, Gc

)
,

− c(g∗) εu
(
yc(t);Y+, Gc

)
≤ δu(t) ≤ c(g∗) εu

(
yc(t);Y+, Gc

)
solved by

δ(t) = c(g∗) sgn
(
Hgx[t]δ̃x(t) + · · ·

)
ε
(
yc(t);Y+, Gc

)
,

δxi (t) = c(g∗) sgn
(
d[t]δ̃xi(t)

)
εxi
(
yc(t);Y+, Gc

)
, i = 1, . . . , nx,

δui (t) = c(g∗) sgn
(
d[t]δ̃ui(t)

)
εui
(
yc(t);Y+, Gc

)
, i = 1, . . . , nu

with objective value

δq̃UB[y+] = c(g∗)

∫ tf

t0

∣∣∣Hgx[t]δ̃x(t) + Hgu[t]δ̃u(t) + fg[t]
T δ̃λ(t) +∇gl[t]

∣∣∣T ε[t]
+
∣∣d[t]

∣∣T εx[t]
∣∣δ̃x(t)

∣∣ +
∣∣d[t]

∣∣T εu[t]
∣∣δ̃u(t)

∣∣ dt
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Reference tracking
I Trajectory optimization problem:

min ϕ
(
x(tf )

)
+

∫ tf

t0

l
(
t,x(t),u(t),g

(
x(t),u(t)

))
dt

s.t. x′(t) = f
(
t,x(t),u(t),g

(
x(t),u(t)

))
, a.a. t ∈ I,

x(t0) = x0,

b
(
x(tf )

)
= 0,

C
(
t,x(t),u(t),g

(
t,x(t),u(t)

))
≤ 0, a.a. t ∈ I

I Not in the form used for sensitivity analysis; however, can solve for
reference trajectory x, u and consider reference tracking problem

min
1

2

∫ tf

t0

(
x(t)− x(t)

)T
Q(t)

(
x(t)− x(t)

)
dt

+
1

2

∫ tf

t0

(
u(t)− u(t)

)T
R(t)

(
u(t)− u(t)

)
dt

s.t. x′(t) = f
(
t,x(t),u(t),g

(
x(t),u(t)

))
, a.a. t ∈ I,

x(t0) = x0
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Reference tracking

I Optimal solution of reference tracking problem with g is (x,u); no
need to re-solve.

I In this scenario, model refinement improves ability to track reference
trajectory in real time when viewing surrogate errors as
“disturbance,” easing demands on a feedback controller.

I Use final downrange x1(T ) as QoI.

I Re-solve original OCP for new reference trajectory after each
refinement.
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QoI error comparison

I Difference in downrange between reference trajectory and optimal
tracking trajectory with true model.

I Similar convergence behavior as before, except it takes 2 refinements
to reduce the error.

I Better model construction approaches would help reduce error
further.
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Trajectories
Initial:

ASMR (r = 2):
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Motivation

ASMR for Trajectory Simulation
Sensitivity Analysis for ODEs with Component Functions
Sensitivity -Based Error Bound
Surrogate Construction via Kernel Interpolation
Surrogate Model Refinement Procedure
Numerical Example: Hypersonic Vehicle

ASMR for Trajectory Optimization
Sensitivity Analysis for OCPs with Component Functions
Derivative Error Bounds for Kernel Interpolation
Surrogate Model Refinement Procedure
Numerical Example: Hypersonic Vehicle

Conclusions

Matthias Heinkenschloss April 17, 2025 51



Conclusions

I Derived sensitivity analysis results for ODEs and OCPs with
dynamics involving Nemytskii operators that generalizes parametric
sensitivity analysis to state-dependent component functions.

I Developed and implemented the ASMR framework for trajectory
simulation and optimization problems with kernel-based surrogate
models; outperformed other data acquisition approaches in
numerical examples.

I This is a sensitivity-driven, deterministic, parameter-free approach to
surrogate-assisted optimization and control.
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