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Bound-Constrained Problem

min
x∈Rn

f (x) subject to x i ≥ 0, i = 1, . . . , n. (1)

f : Rn → R is bounded below by flow on the feasible region.
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Two-Metric Projection [Bertsekas(1982)]

xk+1 := P(xk − αkDk∇f (xk)),

P(z) is the projection onto the feasible region, i.e.

[P(z)]i = max{z i , 0},

Dk ∈ Rn×n, positive definite matrix
To ensure descent in f , require Dk [i , j ] = 0, ∀i , j ∈ I+k , j ̸= i .

Dk =


D̄k 0 · · · 0
0 d rk+1 0
...

. . .
0 0 dn


︸ ︷︷ ︸

I+k

I+k ≜ {i | 0 ≤ x ik ≤ ϵk ,∇i f (xk) > 0}.
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Convergence properties

Main result
Global convergence under suitable line search.

[
D̄−1
k

]
ij
=
∂2f (xk)

∂x i∂x j
∀i , j /∈ I+k .

Strict Complementarity + Local Strong Convexity ⇒ Identification of
Active Set (I+k = A(x∗)) + Quadratic Convergence rate.

Eigenvalues of Dk should be uniformly bounded.
Newton’s equation should be solved exactly.

These requirements are rarely met in practice.
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Bound-constrained formulation of ℓ1-norm minimization

ℓ1-norm regularization

min
x∈Rn

ψ(x) = f (x) + h(x), h(x) = γ∥x∥1 (2)

Let x = x+ − x− in (2), where x+ = max(0, x) and x− = −min(0, x).
Then (2) can be reformulated as the following constrained problem

Bound-constrained formulation

min
x+,x−∈Rn

f (x+ − x−) + γ
∑

i

[
x+i + x−i

]
s.t. x+ ≥ 0, x− ≥ 0.

(3)
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Why Two-metric projection can not be used directly?

Given an ϵk , let I 1k and I 2k are the “I−k part” corresponding to x+k and x−k
respectively. Then we have

I 1k = {i | 0 ≤ (x+k )i ≤ ϵk , g
i
k + γ ≤ 0} ∪ {i | (x+k )i > ϵk}

I 2k = {i | 0 ≤ (x−k )i ≤ ϵk ,−g i
k + γ ≤ 0} ∪ {i | (x−k )i > ϵk}

I 1k ∩ I 2k ̸= ∅ if (x+k )i > ϵk , (x
−
k )i ≤ ϵk ,−g i

k + γ ≤ 0 or
(x−k )i > ϵk , (x

+
k )i ≤ ϵk , g

i
k + γ ≤ 0.

D̄k is singular if I 1k ∩ I 2k ̸= ∅.
Newton’s equation is unsolvable even if ∇2f ≻ 0.
Inexact apporximation ∇2f (xk) + µk I will lead to numerical instability
when µk is small.
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Two-metric Adaptive Projection

Slightly modify the definition of I 1k and I 2k and reduce the problem size
by aggregating x+k and x−k to avoid the intersection.

I−+
k ≜

{
i :

x ik > ϵk or
0 ≤ x ik ≤ ϵk , g

i
k ≤ −γ

}
⊆ I 1k ,

I−−
k ≜

{
i :

x ik < −ϵk or
−ϵk ≤ x ik ≤ 0, g i

k ≥ γ

}
⊆ I 2k ,

I−k ≜ I−+
k ∪ I−−

k , I−+
k ∩ I−−

k = ∅.

The Newton’s equation doesn’t need to be solved exactly i.e.

(Hk + µk I )[pk ]I−k
= [gk + ωk,ϵ]I−k

+ rk

Reserve identification of active set (I+k = A(x∗)) and superlinear
convergence under a weaker condition than local strong convexity.

Hanju Wu (HKU) Two-metric Adaptive Projection 6 / 15



Two-metric Adaptive Projection

xk+1 := Pk,ϵ (xk − tkpk) , ∀k ≥ 0,

where tk > 0 is the stepsize determinded by line search. The step pk is
defined as below:

[pk ]I+k
≜ [gk + ωk,ϵ]I+k

and [pk ]I−k
satisfies

(Hk + µk I )[pk ]I−k
= [gk + ωk,ϵ]I−k

+ rk (4)

where Hk is a symmetric positive semi-definite matrix. µk is a positive
scalar such that

µk = c

∥∥∥∥∥
[
[xk − Proxh(xk − gk)]I+k

[gk + ωk ]I−k

]∥∥∥∥∥
δ

, δ ∈ (0, 1),

and rk ∈ R|I−k | is a residual that satisfies the following condition for a fixed
τ ∈ (0, 1):

∥rk∥ ≤ τ min{µk∥[pk ]I−k ∥, ∥[gk + ωk ]I−k
∥}
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Two-metric Adaptive Projection

Pk,ϵ and ωk,ϵ are associated to xk , ϵ and defined as below (recall that St
denotes the soft thresholding operator):

P i
k,ϵ(v) =


max

{
v i , 0

}
if i ∈ I−+

k

min
{
v i , 0

}
if i ∈ I−−

k

Stkγ(v
i ) if i ∈ I+k

ωi
k,ϵ =


γ if i ∈ I−+

k

−γ if i ∈ I−−
k

0 if i ∈ I+k

.
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Convergence properties

EB
For an optimal point x∗ ∈ X ∗, there exists a neighborhood B (x∗, δ) such
that for all x ∈ B (x∗, δ),

κr(x) ≥ dist (x ,X ∗)

where r(x) is a residual function ∥x − proxh(x − g)∥ and κ > 0 is a
constant.

Hold for a class of structured convex optimization problems.

Main result
Strict Complementarity + Error Bound ⇒ Identification of Active Set
(I+k = A(x∗)) + Superlinear convergence (1 + δ).
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Numerical experiments

logistic regression

min
x∈Rn

1
m

m∑
i=1

log
(
1 + exp

(
−bi · aTi x

))
+ γ∥x∥1, γ =

1
m

Second-order method: IRPN [Yue et al.(2019)Yue, Zhou, and So]
(SQA-type method), newGLMNET
First-order method: SpaRSA, FISTA
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datasets IRPN TMAP

rcv1_train
outer iter. 6 -
inner iter. 492 13

time 1.46 0.17

news20
outer iter. 9 -
inner iter. 1197 18

time 40.42 1.64

real-sim
outer iter. 13 -
inner iter. 547 21

time 4.30 1.11

TMAP ≫ SQA-type method and newGLMNET (3-10 times associate to
the sparsity) > SpaRSA and FISTA.
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Numerical experiments

LASSO (large-scale reconstruction problem)

min
x∈Rn

1
2
∥Ax − b∥2

2 + γ∥x∥1.

Second-order method: ASSN
[Xiao et al.(2018)Xiao, Li, Wen, and Zhang] (Semi-smooth Newton
method).
First-order method: SpaRSA, FPC_AS, ADMM

dataset size
n = 5122 = 262144, m = n/8 = 32768, sparsity = 2.5%.

Hanju Wu (HKU) Two-metric Adaptive Projection 12 / 15



Table: NA denotes the total number of calls to A and AT and the CPU time (in
seconds) is averaged over 10 independent runs.

Dynamic range ASSN TMAP

20dB
NA 298.2 300.6
time 1.31 1.30

40dB
NA 459.2 408.9
time 2.51 2.32

60dB
NA 635.4 624.9
time 2.29 2.23

80dB
NA 858.2 791.5
time 2.99 2.74

TMAP ≈ Semi-smooth Newton method ≫ SpaRSA, FPC_AS and
ADMM.
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Summary

Our algorithm Bertsekas algorithm
Problem class ℓ1-norm minimization Bound-constrained

Regularity condition Error Bound Local Strong Convexity
Newton’s equation Inexact Exact
Global convergence

√ √

Local convergence rate Superlinear (1 + δ) Quadratic

Competitive against the state-of-the-art algorithms for large-scale ℓ1-norm
minimization (LASSO, logistic regression).
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