On Resolution of ℓ_1 -Norm Minimization via a Two-metric Adaptive Projection Method

Hanju Wu, Yue Xie

University of Hong Kong

April 18, 2025

(日) (四) (문) (문) (문)

Bound-Constrained Problem

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad x^i \ge 0, i = 1, \dots, n. \tag{1}$$

• $f: \mathbb{R}^n \to \mathbb{R}$ is bounded below by f_{low} on the feasible region.

3

イロト 不得下 イヨト イヨト

Two-Metric Projection [Bertsekas(1982)]

$$x_{k+1} := P(x_k - \alpha_k D_k \nabla f(x_k)),$$

• P(z) is the projection onto the feasible region, i.e.

$$[P(z)]^i = \max\{z^i, 0\},\$$

• $D_k \in \mathbb{R}^{n imes n}$, positive definite matrix

• To ensure descent in f, require $D_k[i,j] = 0$, $\forall i, j \in I_k^+$, $j \neq i$.

$$D_{k} = \begin{pmatrix} \bar{D}_{k} & 0 & \cdots & 0 \\ 0 & d^{r_{k}+1} & 0 \\ \vdots & & \ddots \\ 0 & 0 & d^{n} \end{pmatrix}$$

$$I_k^+ \triangleq \{i \mid 0 \leq x_k^i \leq \epsilon_k, \nabla_i f(x_k) > 0\}.$$

Convergence properties

Main result

• Global convergence under suitable line search.

$$\left[\bar{D}_{k}^{-1}\right]_{ij} = \frac{\partial^{2}f(x_{k})}{\partial x^{i}\partial x^{j}} \quad \forall i, j \notin I_{k}^{+}.$$

Strict Complementarity + Local Strong Convexity \Rightarrow Identification of Active Set $(I_k^+ = \mathcal{A}(x^*))$ + Quadratic Convergence rate.

- Eigenvalues of D_k should be uniformly bounded.
- Newton's equation should be solved exactly.

These requirements are rarely met in practice.

Bound-constrained formulation of ℓ_1 -norm minimization

ℓ_1 -norm regularization

$$\min_{x \in \mathbb{R}^n} \psi(x) = f(x) + h(x), \quad h(x) = \gamma \|x\|_1$$
(2)

Let $x = x^{+} - x^{-}$ in (2), where $x^{+} = \max(0, x)$ and $x^{-} = -\min(0, x)$. Then (2) can be reformulated as the following constrained problem

Bound-constrained formulation

$$\min_{\substack{x^+, x^- \in \mathbb{R}^n \\ \text{s.t.}}} f(x^+ - x^-) + \gamma \sum_i [x_i^+ + x_i^-] \\ x^+ \ge 0, \quad x^- \ge 0.$$
(3)

- 4 同 ト 4 ヨ ト 4 ヨ ト

Why Two-metric projection can not be used directly?

Given an ϵ_k , let I_k^1 and I_k^2 are the " I_k^- part" corresponding to x_k^+ and x_k^- respectively. Then we have

$$I_{k}^{1} = \{i \mid 0 \le (x_{k}^{+})^{i} \le \epsilon_{k}, g_{k}^{i} + \gamma \le 0\} \cup \{i \mid (x_{k}^{+})^{i} > \epsilon_{k}\}$$
$$I_{k}^{2} = \{i \mid 0 \le (x_{k}^{-})^{i} \le \epsilon_{k}, -g_{k}^{i} + \gamma \le 0\} \cup \{i \mid (x_{k}^{-})^{i} > \epsilon_{k}\}$$

•
$$I_k^1 \cap I_k^2 \neq \emptyset$$
 if $(x_k^+)^i > \epsilon_k, (x_k^-)^i \le \epsilon_k, -g_k^i + \gamma \le 0$ or $(x_k^-)^i > \epsilon_k, (x_k^+)^i \le \epsilon_k, g_k^i + \gamma \le 0.$

- \overline{D}_k is singular if $I_k^1 \cap I_k^2 \neq \emptyset$.
- Newton's equation is unsolvable even if $\nabla^2 f \succ 0$.
- Inexact apporximation $\nabla^2 f(x_k) + \mu_k I$ will lead to numerical instability when μ_k is small.

イロト イヨト イヨト イヨト

Two-metric Adaptive Projection

• Slightly modify the definition of I_k^1 and I_k^2 and reduce the problem size by aggregating x_k^+ and x_k^- to avoid the intersection.

$$\begin{split} I_{k}^{-+} &\triangleq \left\{ i: \begin{array}{l} x_{k}^{i} > \epsilon_{k} \text{ or } \\ 0 \leq x_{k}^{i} \leq \epsilon_{k}, g_{k}^{i} \leq -\gamma \end{array} \right\} \subseteq I_{k}^{1}, \\ I_{k}^{--} &\triangleq \left\{ i: \begin{array}{l} x_{k}^{i} < -\epsilon_{k} \text{ or } \\ -\epsilon_{k} \leq x_{k}^{i} \leq 0, g_{k}^{i} \geq \gamma \end{array} \right\} \subseteq I_{k}^{2}, \\ I_{k}^{-} &\triangleq I_{k}^{-+} \cup I_{k}^{--}, I_{k}^{-+} \cap I_{k}^{--} = \emptyset. \end{split}$$

• The Newton's equation doesn't need to be solved exactly i.e.

$$(H_k + \mu_k I)[p_k]_{I_k^-} = [g_k + \omega_{k,\epsilon}]_{I_k^-} + r_k$$

Reserve identification of active set (I⁺_k = A(x*)) and superlinear convergence under a weaker condition than local strong convexity.

Two-metric Adaptive Projection

$$x_{k+1} := \mathcal{P}_{k,\epsilon} \left(x_k - t_k p_k \right), \quad \forall k \ge 0,$$

where $t_k > 0$ is the stepsize determinded by line search. The step p_k is defined as below:

$$[p_k]_{I_k^+} \triangleq [g_k + \omega_{k,\epsilon}]_{I_k^+}$$

and $[p_k]_{I_k^-}$ satisfies

$$(H_k + \mu_k I)[p_k]_{I_k^-} = [g_k + \omega_{k,\epsilon}]_{I_k^-} + r_k$$
(4)

where H_k is a symmetric positive semi-definite matrix. μ_k is a positive scalar such that

$$\mu_{k} = c \left\| \begin{bmatrix} [x_{k} - \operatorname{Prox}_{h}(x_{k} - g_{k})]_{I_{k}^{+}} \\ [g_{k} + \omega_{k}]_{I_{k}^{-}} \end{bmatrix} \right\|^{\delta}, \delta \in (0, 1),$$

and $r_k \in \mathbb{R}^{|I_k^-|}$ is a residual that satisfies the following condition for a fixed $\tau \in (0, 1)$:

$$\|r_k\| \le \tau \min\{\mu_k \| [p_k]_{I_k^-} \|, \| [g_k + \omega_k]_{I_k^-} \|\}$$

Two-metric Adaptive Projection

 $\mathcal{P}_{k,\epsilon}$ and $\omega_{k,\epsilon}$ are associated to x_k, ϵ and defined as below (recall that S_t denotes the soft thresholding operator):

$$\mathcal{P}_{k,\epsilon}^{i}(v) = \begin{cases} \max\{v^{i}, 0\} & \text{if } i \in I_{k}^{-+} \\ \min\{v^{i}, 0\} & \text{if } i \in I_{k}^{--} \\ S_{t_{k}\gamma}(v^{i}) & \text{if } i \in I_{k}^{+} \end{cases}$$
$$\omega_{k,\epsilon}^{i} = \begin{cases} \gamma & \text{if } i \in I_{k}^{-+} \\ -\gamma & \text{if } i \in I_{k}^{--} \\ 0 & \text{if } i \in I_{k}^{+} \end{cases}$$

イロン イ理 とくほとう モン・

Convergence properties

EΒ

For an optimal point $x^* \in X^*$, there exists a neighborhood $B(x^*, \delta)$ such that for all $x \in B(x^*, \delta)$,

$$\kappa r(x) \geq \operatorname{dist}(x, X^*)$$

where r(x) is a residual function $||x - prox_h(x - g)||$ and $\kappa > 0$ is a constant.

Hold for a class of structured convex optimization problems.

Main result

Strict Complementarity + Error Bound \Rightarrow Identification of Active Set $(I_k^+ = \mathcal{A}(x^*))$ + Superlinear convergence $(1 + \delta)$.

Numerical experiments

logistic regression

$$\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m \log\left(1 + \exp\left(-b_i \cdot a_i^T x\right)\right) + \gamma \|x\|_1, \gamma = \frac{1}{m}$$

- Second-order method: IRPN [Yue et al.(2019)Yue, Zhou, and So] (SQA-type method), newGLMNET
- First-order method: SpaRSA, FISTA

datasets		IRPN	TMAP
rcv1_train	outer iter.	6	-
	inner iter.	492	13
	time	1.46	0.17
news20	outer iter.	9	-
	inner iter.	1197	18
	time	40.42	1.64
real-sim	outer iter.	13	-
	inner iter.	547	21
	time	4.30	1.11

TMAP \gg SQA-type method and newGLMNET (3-10 times associate to the sparsity) > SpaRSA and FISTA.

3

A (10) A (10)

Numerical experiments

LASSO (large-scale reconstruction problem)

$$\min_{x\in\mathbb{R}^n}\frac{1}{2}\|Ax-b\|_2^2+\gamma\|x\|_1.$$

- Second-order method: ASSN [Xiao et al.(2018)Xiao, Li, Wen, and Zhang] (Semi-smooth Newton method).
- First-order method: SpaRSA, FPC_AS, ADMM

dataset size

$$n = 512^2 = 262144$$
, $m = n/8 = 32768$, sparsity $= 2.5\%$.

Table: N_A denotes the total number of calls to A and A^T and the CPU time (in seconds) is averaged over 10 independent runs.

Dynamic range		ASSN	TMAP
20dB	N _A	298.2	300.6
	time	1.31	1.30
40dB	NA	459.2	408.9
	time	2.51	2.32
60dB	N _A	635.4	624.9
	time	2.29	2.23
80dB	NA	858.2	791.5
OUUD	time	2.99	2.74

 $\mathsf{TMAP}\approx\mathsf{Semi-smooth}$ Newton method $\gg\mathsf{SpaRSA},$ <code>FPC_AS</code> and <code>ADMM</code>.

< □ > < 同 > < 回 > < 回 > < 回 >

Summary

	Our algorithm	Bertsekas algorithm
Problem class	ℓ_1 -norm minimization	Bound-constrained
Regularity condition	Error Bound	Local Strong Convexity
Newton's equation	Inexact	Exact
Global convergence	\checkmark	
Local convergence rate	Superlinear $(1+\delta)$	Quadratic

Competitive against the state-of-the-art algorithms for large-scale ℓ_1 -norm minimization (LASSO, logistic regression).

< ロ ト (同 ト (三 ト (三 ト

References

BERTSEKAS D P.

Projected newton methods for optimization problems with simple constraints[J].

SIAM Journal on control and Optimization, 1982, 20(2): 221-246.

YUE M C, ZHOU Z, SO A M C.

A family of inexact sqa methods for non-smooth convex minimization with provable convergence guarantees based on the luo-tseng error bound property[J].

Mathematical Programming, 2019, 174(1): 327-358.

XIAO X, LI Y, WEN Z, et al.

A regularized semi-smooth newton method with projection steps for composite convex programs[J].

Journal of Scientific Computing, 2018, 76: 364-389.