

Optimization under Uncertainty for Efficient Laser Powder Bed Fusion Manufacturing

Yulin Guo and Boris Kramer

Department of Mechanical and Aerospace Engineering, University of California San Diego

East Coast Optimization Meeting 2025 | April 17, 2025

Laser powder bed fusion

• Goal: part qualification ~ process parameters (laser power, scanning speed, etc.)

Problem overview

 $\begin{array}{ll} \min_{P,v} & Pl/v & \text{Energy consumption} \\ \text{subject to} & \bar{p}_t(\sigma_{\max}(P,v,\pmb{Z};\pmb{\theta})) \leq 1 - \alpha_T, & \text{Buffered probability or} \\ & T_{\text{liq}} < T_{\max} < 1.1 \times T_{\text{liq}}, & \text{Constraint on liquidus} \\ & P_L \leq P \leq P_U, & \text{Bounds on laser powe} \\ & v_L \leq v \leq v_U & \text{Bounds on scanning spectrum} \end{array}$

- Design variables: laser power P, scanning speed v
- Simulate printing process in Abaqus with weaklycoupled thermal and mechanical models
 - Gaussian-form heat flux from laser
 - Elastic-plastic strain and thermal strain

Buffered probability of failure constraint on stress Constraint on liquidus temperature Bounds on laser power Bounds on scanning speed

Buffered probability of failure \bar{p}_{t}

- Adds a buffer to probability of failure
- Considers the magnitude of failure in addition to failure frequency
- Eliminates the guess work associated with choosing safety margins

Surrogate models

Choosing the number of features

$$\mathsf{err}_{\mathbf{T}}(k) = \frac{1}{120} \sum_{i=1}^{120} \frac{\|\mathbf{T}_{i,:} - \hat{\mathbf{T}}_{i,:}(k)\|_2}{\|\mathbf{T}_{i,:}\|_2}$$

$$\operatorname{err}_{\mathbf{S}}(k) = \frac{1}{120} \sum_{i=1}^{120} \frac{\|\mathbf{S}_{i,:} - \hat{\mathbf{S}}_{i,:}(k)\|_2}{\|\mathbf{S}_{i,:}\|_2}$$

UC San Diego

Number of features $K^*_{\mathcal{T}}=2$

 $K_{\mathcal{S}}^* = 6$

Thermal model – feature 1

Mechanical model – feature 1

Optimization results

- Optimizations with 4 different initial guesses
- SLSQP and COBYLA solvers
- All converged to consumed energy of about 0.4J

Optimization results

- Optimizations with 4 different initial guesses
- SLSQP and COBYLA solvers
- All converged to consumed energy of about 0.4J

Validation

- [417.33 mm/s, 82.97 W], $\bar{Q}_{0.95}$ = 762.08 MPa
- 50 FEM simulations, $\bar{Q}_{0.95}$ = 768.12 MPa

Optimization results

- Optimizations with 4 different initial guesses
- SLSQP and COBYLA solvers
- All converged to consumed energy of about 0.4J

Validation

- [417.33 mm/s, 82.97 W], $\bar{Q}_{0.95}$ = 762.08 MPa
- 50 FEM simulations, $\bar{Q}_{0.95}$ = 768.12 MPa

-0.79%

- [614.5 mm/s, 115.8 W], $\bar{Q}_{0.95}$ = 790.69 MPa
- 50 FEM simulations, $\bar{Q}_{0.95}$ = 804.89 MPa

Conclusion

UC San Diego

- BPOF-constrained design optimization enhances manufacturing quality while minimizing energy
- Finite element analysis captures the thermal and mechanical behavior of the manufactured part
- Surrogate models for temperature and residual stress via SVD and active subspace discovery to reduce computational costs while maintaining prediction accuracy
- Validated optimization through independent FEA: decreased energy and reduced build failures

Funding: Air Force Office of Scientific Research (PM Fahroo) under award number FA9550-24-1-0237

yulinguo.com

