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Introduction

Optimization Problem

min
w∈Rd

f (w)

f : Rd → R is continuously differentiable, bounded below, potentially nonconvex

Expectation Problem

f (w) := Eζ [F (w , ζ)]

F : Rd × Ω → R, ζ has a probability
space (Ω,F ,P).

Eζ [·] with respect to P

Finite-Sum Problem

f (w) :=
1

n

n∑
i=1

Fi (w)

Fi : Rd → R, stochastic realizations
of F (w , ζi ).

n: Number of samples

Key Challenges

Expensive stochastic function evaluations or large n

Severe nonlinearity (ill-conditioned problems)

High dimensional settings (large d)
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Introduction

Applications: Supervised Machine Learning

Learn a parametric model (m(x ;w))

e.g., linear models, neural networks

Optimize using a loss function
e.g., squared loss, logistic loss

Empirical Risk: min
w∈Rd

1

n

n∑
i=1

l(m(xi ;w), yi )

Expected Risk: min
w∈Rd

E(x,y)[l(m(x ;w), y)]
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Introduction

Applications: Digital Twins

Antil 2024

Model calibration, stochastic inverse problems, neural operator training, surrogate
modeling, control optimization, etc.
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Introduction

Deterministic Algorithms

Gradient Descent

wk+1 = wk − αk∇f (wk)

Requires only gradient oracles

Relies on small step size (αk)

Exhibits slow local linear
convergence

Sensitive to ill-conditioning

Newton’s Method

wk+1 = wk + αkpk , ∇2f (wk)pk = −∇f (wk)

Requires gradient and Hessian oracles

Allows large (often unit) step sizes (αk)

Achieves fast local quadratic
convergence

Robust to ill-conditioning

∇f and ∇2f are expensive or unavailable

∇f : O(nd); ∇2f : O(nd2)

Not suitable for stochastic or large-scale settings
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Introduction

Stochastic Gradient

wk+1 = wk − αk∇FS
g
k
(wk), ∇F g

Sk
(wk) :=

1

|Sg
k |

∑
i∈S

g
k

∇Fi (wk)

Choose a subset Sg
k ⊂ {1, 2, . . . } of data at random.

|Sg
k | very small (128, 256)

Low cost per iteration (O(d))

Simple and easy to implement

Widely used in machine learning

αk is heuristic, requires tuning

Slower sublinear convergence

Sensitive to ill-conditioning

Hours of computing time

Our Goal

Design efficient optimization algorithms with fast convergence and low
computational cost
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Adaptive Gradient Sampling

Adaptive Sampling - Motivation

wk+1 = wk − αk∇FS
g
k
(wk), ∇F g

Sk
(wk) :=

1

|Sg
k |

∑
i∈S

g
k

∇Fi (wk)

Choose a subset Sg
k ⊂ {1, 2, . . . } of data at random.

Gradually increase sample size |Sg
k |

Improves accuracy of gradient estimation

Inaccurate gradients suffice far from the solution

Accuracy increases as iterates approach the
solution

Gradient computation can be parallelized
0 2 4 6 8 10

Accessed Data Points 105

10-10

10-5

100

105

O
pt

im
al

ity
 G

ap

GD
SG

How should |Sg
k | be chosen for optimal theoretical and practical performance?
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Adaptive Gradient Sampling

Adaptive Sampling Condition

For any θk > 0, ιk > 0,

ES
g
k
[∥∇FS

g
k
(wk)−∇f (wk)∥2|wk ] ≤ θk∥∇f (wk)∥2 + ιk

Choose |Sg
k | to satisfy relaxed norm condition

Controls variance relative to the gradient norm

Ensures quality in the search direction

If the population gradient variance is bounded, i.e.,
E[∥∇F (w , ζ)−∇f (w)∥2|w ] = σ2 < ∞, then relaxed norm condition is satisfied if

|Sg
k | ≥

σ2

θk∥∇f (wk)∥2 + ιk

In practice, estimate population quantities using samples
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Adaptive Gradient Sampling

Theoretical Results

ES
g
k
[∥∇FS

g
k
(wk)−∇f (wk)∥2|wk ] ≤ θk∥∇f (wk)∥2 + ιk

f is bounded below, ∇f is Lipschitz continuous, and the gradient variance is
bounded

Theorem [B & Gupta 2025]

Under stated assumptions, with f ∗ as optimal value and αk sufficiently small, we have:

Setting Decay Condition Global Convergence Rate Type Gradient Complexity
Strongly Convex: ιk = ρk E[f (wk)− f ∗] = O(ρk) Linear O(ϵ−1)

General Convex:
∑

ιk < ∞ E[f (wk)− f ∗] = O( 1
k
) Sublinear O(ϵ−2)

Nonconvex:
∑

ιk < ∞ min
i=0,...,k−1

E[∥∇f (wi )∥2] = O( 1
k
) Sublinear O(ϵ−2)

Retains global convergence rate of gradient descent

Matches gradient complexity of stochastic gradient

No fast local convergence
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Fast Hessian Averaging

Subsampled Newton Methods

wk+1 = wk + αkpk

∇2FSh
k
(wk)pk =−∇f (wk), ∇2FSh

k
(wk) :=

1

|Sh
k |

∑
i∈Sh

k

∇2Fi (wk)

Choose a subset Sh
k ⊂ {1, 2, . . . } of data at random.

Use ∇FS
g
k
(wk) via adaptive sampling

instead of exact ∇f (wk)

∇f (wk) shown for simplicity in
presentation and discussion

Reduces the Hessian cost:

∇2f : O(nd2) vs. ∇2FSh
k
: O(|Sh

k |d2)

∇2FSh
k
may not retain positive

definiteness of ∇2f

|Sh
k | must grow for fast local

convergence:

Expectation problem: |Sh
k | → ∞

Finite-Sum Problem: |Sh
k | → n

[B, Byrd & Nocedal 2019; Roosta-Khorasani & Mahoney 2019]

Can we relax the requirements on |Sh
k |?
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Fast Hessian Averaging

Hessian Averaging - Motivation

Ĥk :=
1

k + 1

k∑
i=0

∇2FSh
i
(wi )

Reduce the error in Hessian approximation via average of previous Hessians

Ĥk −∇2f (wk) =
1

k + 1

k∑
i=0

(
∇2FSh

i
(wi )−∇2FSh

i
(wk)

)
︸ ︷︷ ︸

Hessian memory error

+
1

k + 1

k∑
i=0

∇2FSh
i
(wk)−∇2f (wk)︸ ︷︷ ︸

sampling error

sampling error goes to 0 as k increases

Hessian memory error goes to zero as iterates converge (wi ,wk → w∗)

Key Observation: Convergence driven by gradients, not Hessians

|Sh
k | can be remained fixed
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Fast Hessian Averaging

Cyclic Sampling

Focus on finite-sum problems for the rest of the talk

1

k + 1

k∑
i=0

∇2FSh
i
(wk)−∇2f (wk)︸ ︷︷ ︸

sampling error

Sh
k ⊂ {1, 2, . . . , n} of data drawn at random in Hessian averaging

[Na, Dereziňski & Mahoney 2023]

Need k → ∞ for sampling error→ 0

Instead, use cyclic sampling: |Sh
i | = m, n = pm

1, . . . ,m︸ ︷︷ ︸
Sh
0

, m + 1, . . . , 2m︸ ︷︷ ︸
Sh
1

, . . . , . . . , n︸ ︷︷ ︸
Sh
p−1

sampling error= 0 after each full cycle

Yields better convergence
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Fast Hessian Averaging

Algorithm

H̃k =

{
|Ĥk | if λmin(|Ĥk |) ≥ µ̃

|Ĥk |+
(
µ̃− λmin(|Ĥk |)

)
I otherwise,

Ĥk may not be positive-definite

Earlier works skipped the update – expensive
[Na, Dereziňski & Mahoney 2023]

Modified H̃k ⪰ µ̃I

Hessian Averaging Algorithm

Input: x0 ∈ Rd ; Hessian sample size m; {αk} > 0

1: for k = 0, 1, 2, ... do
2: Compute ∇f (wk )

3: Choose Sh
k samples in a cyclic manner with |Sh

k | = m

4: Compute sample Hessian: ∇2F
Sh
k
(wk )

5: Compute average Hessian Ĥk = 1
k+1

(
kĤk−1 + ∇2F

Sh
k
(wk )

)
6: Modify Ĥk to get H̃k

7: Solve the linear system: H̃kpk = −∇f (wk )
8: Update: wk+1 = wk + αkpk
9: end for

O(d2) memory required

Step sizes via line search

Raghu Bollapragada (UT Austin) Adaptive, Fast, and Scalable Algorithms East Coast Optimization 2025 16 / 26



Fast Hessian Averaging

Algorithm

H̃k =

{
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|Ĥk |+
(
µ̃− λmin(|Ĥk |)
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Fast Hessian Averaging Theoretical Results

Global Convergence

f is bounded below, globally nonconvex,
and locally strongly convex

∇2FSh
k
are bounded above and are

Lipschitz continuous

Theorem [O’Leary-Roseberry & B 2024]

Under stated assumptions, with f ∗ as optimal value and αk sufficiently small, we have:

Setting Convergence Rate Type
Global Nonconvex: min

i=0,...,k−1
E[∥∇f (wi )∥2] = O( 1

k
) Sublinear

Local Strongly Convex: E[f (wk)− f ∗] = O(ρk) Linear

Retains global convergence rate of gradient descent
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Fast Hessian Averaging Theoretical Results

Global Convergence
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After k ≥ cn

m
iterations, the following holds under stated assumptions:

H̃k = Ĥk

Retains positive-definiteness of Hessian
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Fast Hessian Averaging Theoretical Results

Local Superlinear Convergence

Theorem [O’Leary-Roseberry & B 2024]

Under the stated assumptions, with w∗ being a local minimizer and αk = 1 for all
k ≥ ksup, we have:

∥wk+1 − w∗∥
∥wk − w∗∥ = O

(
1

k

)
∀ k ≥ ksup = c max

{ n

m
, κ2

}

κ : Condition Number

Deterministic Q-superlinear rate: O
(
1
k

)
Unit step size is naturally accepted via line search

ksup — Iteration index marking transition to local superlinear rate
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Fast Hessian Averaging Theoretical Results

Comparison of Superlinear Results

κ : Condition Number; ksup : Transition Iterations; |Sh
k | = m

Sampling |Sh
k | Assumptions ∇2FSh

k
Rate Type ksup Cite

Random ↑ Strongly Convex - Expectation - [1]

Random ↑ - - Probability - [2]

Random m Subexp. Errors O
(√

log(k)
k

)
Probability O

(
κ6

)
[3]

Cyclic m Lipschitz O
(
1
k

)
Deterministic O

(
max{ n

m
, κ2}

)
[4]

[1]: B, Byrd & Nocedal 2019 [2]: Roosta-Khorasani & Mahoney 2019

[3]: Na, Dereziňski & Mahoney 2023 [4]: This Work

Improved superlinear rate deterministically with better or comparable transition
iterations

[3] has improved transition iterations ksup = O(κ2) for nonuniform averaging
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Fast Hessian Averaging Numerical Results

Hessian Averaging and Exact Gradients

f (w) =
1

n

n∑
i=1

log(1 + exp(−yi (w
T xi )) +

1

2n
∥w∥2

0 50 100 150 200

Iterations

10−7

10−6

10−5

10−4

10−3

10−2

10−1

f
(w

k
)
−
f

(w
∗ )

Objective Value vs. Iterations τX ≈ 1, κX = d

0 5 10 15 20 25 30

Iterations

10−7

10−6

10−5

10−4

10−3

10−2

f
(w

k
)
−
f

(w
∗ )

Objective Value vs. Iterations τX ≈ 1, κX = d0.5

Subsampled Newton stochastic

Subsampled Newton cyclic

Uni. Averaging stochastic

Uni. Averaging cyclic

Newton

n = 1000; d = 100; κX : condition number

All methods except Newton’s method have same per iteration cost

Additional Experiments
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Fast Hessian Averaging Numerical Results

Hessian Averaging and Adaptive Gradient Sampling
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Objective Value vs. Time τX ≈ 1, κX = d0.5

Uni. Averaging cyclic adaptive θ k = 0.99/k Uni. Averaging cyclic

n = 1000; d = 100; κX : condition number

Remarks
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Scalable Diagonal Approximations
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Scalable Diagonal Approximations

Large-Scale Problems

When d is very large, forming (O(d2)) and inverting Hessian (O(d3)) is infeasible

Need efficient and scalable Hessian approximations

Idea: Use diagonal approximations of Hessians
[Yao et al., 2021]

Efficient diagonal estimate via Hutchinson’s randomized estimator:

Dk = diag(∇2FSh
k
(wk)) ≈ Ez

[
z∇2FSh

k
(wk)z

T
]

Diagonal averaged Hessian:

D̂k =
1

k + 1

k∑
i=0

Di

Note: Different averaging scheme than AdaHessian

Diagonally Averaged Newton (DAN): wk+1 = wk − αkD̃
−1∇F g

Sk
(wk)
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Scalable Diagonal Approximations

Numerical Results: Neural Operator Training

Reaction-Diffusion u(m)
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1.0
Observations
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1.0

Derivative informed Neural operator (DINO) for reaction diffusion PDE problem

min
w

Eπ

[
∥y − yw∥2Y + ∥Dxy − Dxyw∥2HS(X ,Y)

]
SGD ADAM AdaHessian DAN

yr rel error ↘ 0.042 0.008 0.010 0.007
∇xr yr rel error ↘ 0.310 0.255 0.258 0.256

n = 4500; d = 742, 050;
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Final Remarks & Extensions
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Final Remarks & Extensions

Final Remarks

min
w∈Rd

f (w) = Eζ [F (w , ζ)] or min
w∈Rd

f (w) =
1

n

n∑
i=1

Fi (w)

Proposed efficient adaptive gradient sampling with Hessian averaging

Adaptive sampling: Retains gradient descent behavior with optimal stochastic
gradient complexity

Cyclic Hessian averaging: Enables fast local superlinear convergence — (O( 1
k
)) for

finite-sum problems

Introduced scalable diagonal variants for high-dimensional problems

Demonstrated efficient and robust performance in practice

Extensions

Several interesting research questions

Inexact functions, simple constraints (proximal Newton methods), general nonlinear
constraints (SQP methods), distributed settings, · · ·
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Final Remarks & Extensions

Thank You!

Questions?
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Hessian Averaging - Logistic Regression
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Objective Value vs. Iterations τX ≈ 10, κX = d0.5
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Subsampled Newton stochastic

Subsampled Newton cyclic

Uni. Averaging stochastic

Uni. Averaging cyclic

Newton

Main Presentation
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Reaction Diffusion Problem

lognormal diffusion coefficient field m ∼ N (0,C), s, is a sum of 25 smoothed point
sources
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