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Games and Equilibria under Uncertainty: Existence and Computation

Mathematical Preliminaries

Mathematical Preliminaries I

Proposition 1

Suppose X ⊆ Rn is a closed and convex set and f is a convex and C1 on an
open set containing X. Consider the convex optimization problem given by

Opt minimize
x

f (x)

subject to x ∈ X .

Then the following holds.

[ x∗ solves (Opt) ] ⇐⇒ [ x∗ solves VI(X ,∇x f ) ] (1)

This necessitates defining the variational inequality problem VI(X ,F ).
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Games and Equilibria under Uncertainty: Existence and Computation

Mathematical Preliminaries

Mathematical Preliminaries II

Definition 2 (Variational Inequality Problem VI(X ,F ))

Given a set X ⊆ Rn and a continuous map F : X → Rn, the variational
inequality problem VI(X ,F ) requires finding an x ∈ X such that

( y − x )⊤F (x) ≥ 0, ∀ y ∈ X . (2)

We denote the solutions of VI(X ,F ) by SOL(X ,F ).

▶ The variational inequality problem can be cast as a generalized equation.
▶ A generalized equation is an extension of a standard nonlinear equation,

given by H(x) = 0 where H : Rn ⇒ Rn is a set-valued map.

0 ∈ H(x).

▶ To restate VI(X ,F ) as a generalized equation, we define the normal
cone of a set X at a point x̃ . Recall that a set C ⊆ Rn is called a cone if
λx ∈ C for any x ∈ C and λ ≥ 0.
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Mathematical Preliminaries

Mathematical Preliminaries III

Definition 3 (Normal cone NX (x))

Given a set X ⊆ Rn, the normal cone of a set X at x̃ is defined as

NX (x̃) ≜
{

d ∈ Rn | d⊤(y − x̃) ≤ 0, ∀ y ∈ X
}
. (3)

Any element of NX (x) is called a normal vector to X at x .

When X is a convex set,

[ x solves VI(X ,F ) ] ⇐⇒ [−F (x) ∈ NX (x) ] ≡
[

0 ∈ H(x) ≜ F (x) +NX (x)
]
.

The problem VI(X ,F ) can be seen to capture a range of equilibrium
problems, including, of course, optimization problems.
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Mathematical Preliminaries

Mathematical Preliminaries IV

Lemma 4 (Root-finding and saddle-point problems)

(a) (Root-finding problem). Suppose X = Rn. Then x ∈ SOL(X ,F ) if and
only if x is a zero of the mapping F, i.e. F (x) = 0.

(b) (Saddle-point problem). Suppose X and Y are closed and convex sets
and L is a smooth convex-concave function on Z ≜ X × Y. Then the
following holds.

(x , y) solves
{

min
x ∈ X

max
y ∈ Y

L(x , y)
}

⇐⇒ (x , y) solves VI(Z ,F )

where Z ≜ X × Y and F (x , y) ≜

(
∇x L(x , y)

−∇y L(x , y)

)
.

When X is a cone, VI(X ,F ) ≡ a complementarity problem CP(X ,F ).

Definition 5 (Complementarity Problem CP(X ,F ))
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Mathematical Preliminaries

Mathematical Preliminaries V

Given a cone X and a mapping F : X → Rn, the complementarity problem
CP(X ,F ) requires finding an x ∈ Rn such that

X ∋ x ⊥ F (x) ∈ X∗,

where u ⊥ v implies that u⊤v = 0 and X∗ is the dual cone of X , defined as

X∗ ≜
{

v | v⊤d ≥ 0, ∀d ∈ X
}
. (4)

The orthogonality requirement x⊤F (x) can be expressed as componentwise products as being zero, i.e. xi Fi (x) = 0, ∀, i ∈ [ n ].

In fact, VI(X ,F ) ≡ CP(X ,F ), when X is a cone.

Proposition 6 (Equivalence between VI(X ,F ) and CP(X ,F ))
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Mathematical Preliminaries

Mathematical Preliminaries VI

Let X be a cone in Rn.

[ x solves VI(X ,F ) ] ⇐⇒ [ x solves CP(X ,F ) ] . (5)

There are some important special cases of CP(X ,F ) that deserve further
discussion as they appear later in our course.
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Mathematical Preliminaries

Mathematical Preliminaries VII

Definition 7 (Examples of CPs)

Given a mapping F : X → Rn and a cone X ⊆ Rn.

(a) If X ≜ Rn
+, then CP(X ,F ) reduces to the nonlinear complemenarity

problem NCP(F ), defined as

0 ≤ x ⊥ F (x) ≥ 0.

(b) If X ≜ Rn
+ and F (x) = Mx + q, where M ∈ Rn×n and q ∈ Rn, CP(X ,F )

reduces to the linear complemenarity problem LCP(M, q), defined as

0 ≤ x ⊥ Mx + q ≥ 0.
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Mathematical Preliminaries

Mathematical Preliminaries VIII

Lemma 8
(a) (Linear program). Then the following holds.

(x, λ) solves


min c⊤x

subject to Ax ≥ b (λ)

x ≥ 0

 ⇐⇒ (x, λ) solves LCP(q,M)

where M ≜
(

0 −A⊤

A 0

)
and q ≜

(
c
−b

)
.

(b) (Quadratic program). Then the following holds.

(x, λ) solves


min 1

2 x⊤Qx + c⊤x

subject to Ax ≥ b (λ)

x ≥ 0

 ⇐⇒ (x, λ) solves LCP(q,M)

where M ≜
(

Q −A⊤

A 0

)
and q ≜

(
c
−b

)
.
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A taxonomy of games

Continuous-strategy NEPs I

Definition 9 (Noncooperative games G )

The class of games G consists of N-player noncooperative games
comprising of a collection of players, indexed by i . Suppose player i is
characterized by strategy set Xi and objective fi(•, x−i), defined as fi(x i , x−i),

where x i ∈ Xi ⊆ Rni , n ≜
N∑

i=1

ni , and x−i ≜ (x j)j ̸=i .

A Nash equilibrium (NE) of a noncooperative game G ∈ G is a tuple
x∗ ≜ {x1,∗, · · · , xN,∗}, where

x i,∗ ∈ argmin
x i∈Xi

fi(x i , x−i,∗), ∀ i ∈ [N ]. (NE)

▶ An NE is a set of decisions at which no player has a desire to unilaterally
deviate [Nash, 1950].
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A taxonomy of games

Continuous-strategy NEPs II

▶ In some instances, we require articulating an ϵ-Nash equilibrium,
denoted by x∗

ϵ ≜ {x1,∗
ϵ , · · · , xN,∗

ϵ }, such that ϵ-optimality holds for for the
i th player’s problem for i ∈ [N ], i.e.

fi(x i,∗
ϵ , x−i,∗

ϵ ) ≤ min
x i∈Xi

fi(x i , x−i,∗
ϵ ) + ϵ, ∀ i ∈ [N ]. (ϵ-NE)
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A taxonomy of games

Smooth Convex Games I

Definition 10 (Smooth convex games G sc)

The class of smooth convex games G sc ⊆ G contains N-player games in
which for any i ∈ N , Xi is a closed and convex set in Rni and for any

x−i ∈
n∏

j=1,j ̸=i

Xj , fi(•, x−i) is convex and continuously differentiable on an open

set containing Xi .

▶ Specifically, if for any x−i,∗ ∈
∏

j ̸=i Xj , fi(x i , x−i,∗) is C1 and convex in x i

on an open set containing Xi and Xi is a closed and convex set, then any
minimizer x i,∗ satisfies the following variational inequality problem.

(x̃ i − x i,∗)⊤∇x i fi(x i,∗, x−i,∗) ≥ 0, ∀x̃ i ∈ Xi . (6)

▶ Consequently, the necessary and sufficient conditions for an equilibrium
{x1,∗, · · · , xN,∗} are (6) for i = 1, · · · ,N.
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A taxonomy of games

Smooth Convex Games II

▶ In fact, it can be shown [Facchinei and Pang, 2003] that
x∗ ≜ {x1,∗, · · · , xN,∗} satisfies (6) for i = 1, · · · ,N if and only if x∗ is a
solution of VI(X ,F ), where X and F are defined as follows.

F (x) ≜

 ∇x1 f1(x1, x−1)
...

∇xN fN(xN , x−N)

 and X ≜
N∏

i=1

Xi , (7)

▶ Equivalence between computing an (NE) of a game lying in (G sc) and
solving a suitably defined variational inequality problem.

Theorem 11 (NE of G sc and Solutions of VI(X ,F ))

Consider an N-player noncooperative game in G sc. Suppose X and F are as
defined in (7). Then the following holds.

[ x is an NE ] ⇐⇒ [ x ∈ SOL(X ,F ) ] .
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A taxonomy of games

Smooth Convex Games III

Example 12 (Nash-Cournot equilibrium problem (NCEP))
Consider a setting where a collection of N players sell a product. Suppose the i th player is characterized by a convex and twice

continuously differentiable production cost ci (x
i ) and capacities Capi while the inverse demand function p is a non-increasing, concave,

and twice continuously differentiable function in X where X ≜
N∑

i=1
xi . If Xi ≜ {xi | 0 ≤ xi ≤ Capi} for i ∈ [ N ], then a

Nash-Cournot equilibrium is a tuple {x1,∗, · · · , xN,∗} such that

xi,∗ ∈ argmin
xi∈Xi

(ci (x
i ) − p(xi + X−i )xi ), i = 1, · · · , N. (8)

We may observe that the associated noncooperative game lies in G sc , since ci (x
i ) − p(X)xi is a smooth convex function in xi for any

x−i ∈
∏

j ̸=i Xj . By Theorem 11, x∗ is a Nash-Cournot equilibrium if and only if x∗ is a solution to VI(X , F ), where

F (x) ≜


c′1(x1) − p′(X)x1 − p(X)

.

.

.
c′N (x1) − p′(X)xN − p(X)

 .
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A taxonomy of games

Nonsmooth convex games I

We now consider the subclass of nonsmooth convex games G nc, where
player problems are convex but player objectives are not necessarily smooth.

Definition 13 (Nonsmooth convex games G nc)

The class of nonsmooth convex games G nc ⊆ G contains N-player games in
which for any i ∈ N , Xi is a closed and convex set in Rni and any x−i , player
i ’s objective fi(·, x−i) is assumed to be a continuous and convex function on
an open set containing Xi .

▶ Since fi(•, x−i) admits a subdifferential at x i denoted by ∂x i fi(x i , x−i),
given any x−i,∗ and any vi ∈ ∂x i fi(x i , x−i,∗),

( x̃ i − x i,∗ )⊤vi ≥ 0, ∀ x̃i ∈ Xi . (9)
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A taxonomy of games

Nonsmooth convex games II

▶
[
{x1,∗, · · · , xN,∗} solves (9) for i ∈ [N ]

]
⇐⇒ [ x∗ solves VI(X ,Φ) ] ,

where Φ is a set-valued map defined as follows.

Φ(x) ≜
N∏

i=1

∂x i fi(x i , x−i). (10)

▶ We define the generalized variational inequality problem in which the
map Φ : X ⇒ Rn is a set-valued map.

Definition 14 (Generalized variational inequality problem VI(Φ,X ))

Given a set X ⊆ Rn and a map Φ : X ⇒ Rn is a set-valued map. Then x is a
solution of VI(X ,Φ) if there exists an x and a vector u ∈ Φ(x) such that

( y − x )⊤u ≥ 0, ∀ y ∈ X . (11)
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A taxonomy of games

Nonsmooth convex games III

It can be seen that x i,∗ is a minimizer of fi(•, x−i,∗) over Xi if and only if x i,∗ is
a solution of VI(Xi , ∂x i fi(•, x−i,∗)). This allows us to derive a relationship
between the (NE) of a game in G nc and a solution of a variational inequality
problem with a set-valued map is presented next.

Theorem 15 (NE of G nc and Solutions of VI(X ,Φ))
Consider an N-player noncooperative game in G nc. Suppose X and Φ are
defined as (7) and (10), respectively. Then the following holds.

[ x is an NE ] ⇐⇒ [ x ∈ SOL(X ,Φ) ] .

We now apply this result to a nonsmooth variant of NCEP.
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A taxonomy of games

Nonsmooth convex games IV

Example 16 (Nonsmooth Nash-Cournot equilibrium problem (NCEP))
Consider Example 12 where for any i ∈ N , ci (x

i ) is assumed to be convex and continuous over an open set
containing Xi . We may observe that the associated noncooperative game lies in G nc, since ci (x

i ) − p(X)xi is a

nonsmooth convex function in x i for any x−i ∈
N∏

j=1,j ̸=i

Xj . By Theorem 15, x∗ is a Nash-Cournot equilibrium if and

only if x∗ is a solution to VI(X ,Φ), where

Φ(x) ≜

 N∏
i=1

∂xi ci (x
i )

− p′(X)x − p(X)1.
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A taxonomy of games

Monotone games I

Definition 17 (Monotone maps)

Consider a single-valued continuous map F : X ⊆ Rn → Rn. F is said to be
(a) (strictly) monotone on X if

(F (x)− F (y))⊤(x − y) (>) ≥ 0, ∀ x , y , ∈ X . (12)

(b) strongly monotone on X if there exists a c > 0,

(F (x)− F (y))⊤(x − y) ≥ c∥x − y∥2, ∀ x , y , ∈ X . (13)

A set-valued map Φ : X ⇒ Rn is monotone if

( x − y )⊤( u − v ) ≥ 0, (14)

for all x , y ∈ X and for all u ∈ Φ(x) and v ∈ Φ(y).
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A taxonomy of games

Monotone games II

▶ Consider the following optimization problem in which f : X → Rn is
convex and C1 on an open set containing X , a closed and convex set.

min
x

f (x)

subject to x ∈ X .
(15)

▶ Then ∇x f is a monotone map on X , i.e.

(∇x f (x)−∇x f (y))⊤(x − y) ≥ 0, ∀ x , y , ∈ X . (16)

▶ Similarly, if f is strictly convex on X , then ∇x f is strictly monotone, i.e.

(∇x f (x)−∇x f (y))⊤(x − y) > 0, ∀ x , y , ∈ X . (17)

▶ Next, we consider the class of monotone games where the map of the
equivalent variational inequality problem (either F or Φ) is monotone.
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A taxonomy of games

Monotone games III

Definition 18 (Monotone games)

The class of monotone games G mn ⊆ (G sc ∪ G nc) ⊆ G contains N-player
games in which the associated map in the variational inequality problem
(either F or Φ) is monotone on X .

Consider Example 16. We proceed to show that the mapping Φ is monotone
on X if p(X ) ≜ a − bX . Let y1, y2 ∈ X and let ϕ1 ∈ Φ(y1) and ϕ2 ∈ Φ(y2). By
the definition of Φ(x), we have that if ϕ ∈ Φ(x), it follows that

ϕ = ϕc + b(I + 11⊤)x − a1, where ϕc =
(
ϕi,c)N

i=1
and ϕi,c ∈ ∂x i ci(x i).

Then we have that

(ϕ1 − ϕ2)
⊤(y1 − y2) =

N∑
i=1

(ϕi,c
1 − ϕi,c

2 )⊤(yi
1 − yi

2)︸ ︷︷ ︸
(∗∗)≥ 0

+b(y1 − y2)⊤(I + 11⊤)(y1 − y2)

≥ b∥y1 − y2∥2,
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A taxonomy of games

Monotone games IV

where the (**) inequality follows from the monotonicity of the subdifferential
map and the first inequality is a consequence of v⊤(I + ee⊤)v ≥ b∥v∥2 for
any v .
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A taxonomy of games

Potential games I

▶ We initiate our discussion by considering the following problem.

min
x∈X

h(x), (Opt)

where h is a C1 on an open set containing X , a closed and convex set.
▶ If x is a local minimizer of (Opt), then

(x̃ − x)⊤∇x h(x) ≥ 0, ∀x̃ ∈ X .

Specifically, if x is a local minimizer of (Opt), then x solves VI(X ,∇x h).
▶ In fact, if one imposes an additional assumption of convexity on h, then x

is a solution of (Opt) if and only if x solves VI(X ,∇x h).
▶ Is computing a solution to VI(X ,F ) always reducible to obtaining a

stationary point of a suitably defined optimization problem?
▶ This holds when there exists an h such that F (x) = ∇x h(x) over the

domain of F . This is clarified by the next result.
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A taxonomy of games

Potential games II

Theorem 19
Consider VI(X ,Φ) associated with a game in G . Suppose the mapping Φ can be expressed as

Φ(x) ≜ G(x) +
N∏

i=1

∂xi ci (x
i ), where ci is continuous and convex function defined on an open set containing Xi for

i = 1, · · · ,N and G is a continuously differentiable map on an open set containing X with a symmetric Jacobian
∇x G(x) matrix for every x ∈ X . Then the following hold.

(i) There exists a real-valued function h such that G(x) = ∇x h(x) for all x ∈ dom(G).

(ii) The function h is given by h(x) =
∫ 1

0 G(x0 + t(x − x0))⊤(x − x0)dt for any arbitrary x0 ∈ X .

(iii) The variational inequality problem VI(X ,Φ) represents the stationarity conditions of (OptG ).

min
x∈X

h(x) +
N∑

i=1

ci (xi )

 . (OptG )

This result allows for obtaining an equilibrium of the relevant game by
obtaining a stationary point of (OptG ). We provide an example of this result
by revisiting the nonsmooth Nash-Cournot equilibrium problem.
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A taxonomy of games

Potential games III

Example 20 (Nash-Cournot equilibrium problem)

Consider Example 16 and VI(X ,Φ). By definition, Φ(x) = G(x) +
n∏

i=1

∂xi ci (xi ), where G(x) ≜ b(I + ee⊤)x − ae.

Since Jx G(x) = b(I + ee⊤), a constant and symmetric matrix, we may invoke Theorem 19. It follows that a
Nash-Cournot equilibrium can be obtained through the solution of the following problem.

min
x∈X

 b
2 x⊤(I + 11⊤)x − a1⊤x +

N∑
i=1

ci (x
i )

 . (NCOPT)

Definition 21 (Potential and weighted potential games G pot)
Consider the subclass of N-player weighted potential games G pot ⊂ G . Associated with any game G ∈ G pot is a
weighted potential function h(x) such that the following holds for any i ∈ N and any x i , y i ∈ Xi and positive
scalars w1, · · · ,wN .

wi (h(x
i
, x−i ) − h(y i

, x−i )) = fi (x
i
, x−i ) − fi (y

i
, x−i ). (18)

If wi = 1 for every i , then G is referred to as a potential game. □
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A taxonomy of games

Potential games IV

In fact, when the objective functions are continuously differentiable,
condition (18) for w ≡ 1 is equivalent to the requirement that for any
x−i ∈ X−i , we have that

∇x i fi(x i , x−i) = ∇x i h(x i , x−i). (19)

In Monderer and Shapley (1996), a necessary and sufficient condition for the
potentiality of a game has been provided under the twice continuous
differentiability of player objectives.
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A taxonomy of games

Potential games V

Proposition 22 (Potentiality under C2 objectives)

Suppose for i = 1, · · · ,N, fi(x) is twice continuously differentiable in x on an
open set containing X , where X is a rectangle. Then G ∈ G sc is a potential
game if and only if

∇2
xi ,xj

fi(x) = ∇2
xj ,xi

fj(x) for every i ∈ N and ∀x ∈ X . (20)

Furthermore, if the player objectives satisfy (20) and x0 ∈ X , then a potential
for G is given by

P(x) ≜
N∑

i=1

∫ 1

0

∂fi(x̃(t))
∂xi

x̃i(t)dt ,

where x̃ : [0, 1] → X is a piecewise continuously differentiable path in X that
connects x0 to x1. □
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A taxonomy of games

Potential games VI

We conclude this section with our main result. A Nash equilibrium of a
potential game is obtainable as a stationary point of the optimization problem

min
x∈X

h(x). (Pot-Opt)

Theorem 23
Consider an N-player noncooperative game G. Suppose for i ∈ [N ], Xi is
closed, convex, and compact. For every i ∈ [N ], fi(•, x−i) is a convex and
C1 function on an open set Oi ⊇ Xi for any x−i ∈ X−i . Finally, there exists a
potential function h such that for any i ∈ [N ], (18) for any x−i ∈ X−i . Then
the following holds.

[ x is an NE ] ⇐⇒ [ x is a stationary point of (Pot-Opt) ] . (21)
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Stochastic Nash Equilibrium Problems

Stochastic Optimization I

▶ Consider a decision-maker faced by a cost function ψ dependent on her
decision x ∈ X and a random variable ξ, defined as ξ : Ω → Rd , where
(Ω,F ,P) denotes the associated probability space.

▶ Suppose Ξ is given by { ξ(ω) | ω ∈ Ω }.
▶ For ease of exposition, we refer to ψ(x , ξ(ω)) as ψ(x , ξ) where ψ is a

real-valued function given by ψ : O × Ω → R̄.
▶ A function ψ : O × Ω → R̄ is said to be a random function if for every

x ∈ X , ψ(x , •) is F-measurable.
▶ It then makes sense for the decision-maker to consider minimizing the

expected value function θ, where

θ(x) ≜ E [ψ(x , ξ) ] =

∫
Ω

ψ(x , ξ)dP. (22)

The resulting optimization problem may then be defined as follows.

minimize
x∈X

θ(x) ≜ E [ψ(x , ξ) ] . (23)
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Stochastic Nash Equilibrium Problems

Stochastic Optimization II

▶ Recall that the function θ is said to be well defined on X ⊆ Rn if for
every x ∈ X , either E [ [ψ(x , ξ)]+ ] <∞ or E [ [−ψ(x , ξ)]+ ] <∞.

▶ The expectation function θ inherits a host of properties from the function
ψ(•, ξ) for ω ∈ Ω, as stated in Theorem 24.
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Stochastic Nash Equilibrium Problems

Stochastic Optimization III

Theorem 24
Consider the random function ψ : Rn × Ω → R̄.
(a) Suppose for almost every ω ∈ Ω, ψ(•, ξ) is a lower semicontinuous at a point x0 and there exists an integrable
function Z : Ω → R such that ψ(x, ξ) ≥ Z (ξ) for almost every ω ∈ Ω and for all x in a neighborhood of x0.

(b) Suppose for almost every ω ∈ Ω, ψ(•, ξ) is a convex function.

(c) Suppose θ is well defined and finite-valued at a given point x0. There exists a positive-valued random variable
Lip : Ω → R++ such that E [ Lip(ξ) ] < +∞ and for all x1, x2 in a neighborhood of x0 and for almost every
ω ∈ Ω, |ψ(x1, ξ) − ψ(x2, ξ)| ≤ Lip(ξ)∥x1 − x2∥.
(d) For almost every ω ∈ Ω, ψ(•, ξ) is directionally differentiable at x0.

(e) For almost every ω ∈ Ω, ψ(•, ξ) is differentiable at x0.

Then the following hold.

(i) If (a) holds, then for all x in a neighborhood of x0, θ is well defined and lower semicont. in a nbhd of x0.

(ii) If (b) holds, then θ is a convex function; (iii) If (c) holds, then θ is locally Lipschitz at x0.

(iv) If (c) and (d) hold, then θ is directionally differentiable at x0 and θ′(x0, h) = E
[
ψ′(x0, ξ, h)

]
for all h ∈ Rn.

(v) If (c) and (e) hold, then θ is differentiable at x0 and ∇xθ(x0) = E [∇xψ(x0, ξ) ] .
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Stochastic Optimization IV

▶ If X is a convex set and θ is differentiable at a local minimizer x̄ of (23),

∇θ(x̄)⊤(x − x̄) ≥ 0, ∀ x ∈ X . (24)

▶ Under conditions (c) and (e) of Theorem 24, we may interchange
derivatives and expectations, i.e.

∇xθ(x̄) = E [∇xψ(x , ξ) ] , (25)

where the expectation of a vector, as denoted by E [∇xψ(x , ξ)], is
implied in a component-wise fashion, i.e.

E [∇xψ(x , ξ) ] ≜

E [∇x1ψ(x , ξ)]
...

E [∇xnψ(x , ξ) ]

 . (26)

▶ Note that (24) is a special case of a stochastic variational inequality
problem, a generalization of the deterministic variational inequality
problem, where the components of the map are expectation-valued.
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Stochastic Optimization V

Definition 25 (Stochastic VI and CP)

Let F : O → Rn and F̃ : O ×Ω → Rn be vector functions, where O is an open
set containing the closed set X and Fi(x) = E

[
F̃i(x ,ω)

]
for i = 1, . . . , n.

The stochastic variational inequality problem (SVI), defined by the pair
(F̃ ,X ), is to find a vector x̄ ∈ X such that

E
[
F̃ (x̄ , ξ)

]⊤
(x − x̄) ≥ 0, ∀ x ∈ X .

SVI(E ,F ,X ) is equivalent to the stochastic complementarity problem (SCP):

X ∋ x̄ ⊥ E
[

F̃ (x̄ , ξ)
]
∈ X∗, (27)

when X is additionally a cone and X∗ is its dual. □
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Stochastic Optimization VI

▶ In a single-stage stochastic optimization model, a decision x is made
prior to the revelation of uncertainty and the decision-maker selects an x
that minimizes the expected outcome E [ψ(x , ξ) ] over a feasible set X .
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Stochastic Optimization VII

Example 26 (Single-stage newsvendor problem)

Consider a newsvendor faced by ordering decision x and faced by uncertain
demand, embodied by random variable ξ, where ξ : Ω → R++ and (Ω,F ,P)
represents the associated probability space. Suppose the unit cost of
newspapers is denoted by c > 0 while the unit back-order and storage costs
are b > 0 and h > 0, respectively. Consequently, the random cost function
ψ(•, ξ(ω)) is defined as

ψ(x , ξ(ω)) ≜ cx + b[ξ(ω)− x ]+ + h[x − ξ(ω)]+. (28)

Then problem of minimizing expected cost is defined as

minimize
x≥0

E [ψ(x , ξ) ] . (29)

▶ From Example 26, ψ(•, ξ) is convex for every ξ but not necessarily
smooth.
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Stochastic Optimization VIII

▶ Consequently, the minimizers of (29) are entirely captured by the
generalized variational inequality GVI(Φ,X ) where

Φ(x) ≜ ∂xE [ψ(x , ξ) ] = E [∂xψ(x , ξ)] .

▶ Interchange between the subdifferential and expectation operator holds
under suitable regularity conditions (cf. [Shapiro et al., 2009, Chapter 7]).

▶ In fact, one may observe that the expectation E [∂xψ(x ,D(ω))] is an
integral of a set.

▶ We may then define the stochastic generalized VI, where Φ is an
expectation of a set-valued random map.
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Stochastic Optimization IX

Definition 27 (Stochastic generalized VI(X ,Φ))

Let Φ : O ⇒ Rn and Φ̃ : O × Ω ⇒ Rn be set-valued maps with closed and
nonempty images, where O is an open set containing the closed set X and
Φ(x) = E

[
Φ̃(x , ξ)

]
.

The stochastic generalized variational inequality problem (SGVI), defined by
the pair (Φ̃,X ), is to find a pair (x̄ , ȳ) ∈ X × Φ(x̄) such that

ȳ⊤(x − x̄) ≥ 0, ∀ x ∈ X .

□

▶ Consequently, x̄ is a minimizer of the single-stage newsvendor problem
if and only x̄ is a solution of SGVI(∂Φ̃,X ).
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Stochastic Nash Equilibrium Problems I

▶ Consider an N-player noncooperative game in which the i th player is
characterized by a real-valued random cost function θ̃i : O × Ω → R, a
probability space (Ω,F ,P), a random variable ξ, defined as ξ : Ω → Rd ,
and a strategy set X i , a closed subset of Oi ⊆ Rni .

▶ As defined realier, O is an open set containing the Cartesian product
X =

∏N
i=1 X i , where the elements of X are the tuples of player

strategies. Furthermore, we remind the reader that elements of X i and
X −i ≜

∏
j ̸=i X j are denoted by x i and x−i , respectively.

▶ Anticipating the tuple x−i ∈ X−i of rivals’ strategies, a (risk-neutral)
player i ’s objective θi is defined as

θi(x i , x−i) ≜ E
[
θ̃i(x i , x−i , ξ)

]
, (30)

and she makes her decision by solving the risk-neutral problem:

minimize
x i∈X i

θi(x i , x−i) ≜ E
[
θ̃i(x i , x−i , ξ)

]
, (31)
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Stochastic Nash Equilibrium Problems II

▶ By defining Θ̃ ≜
(
θ̃i

)N

i=1
as the vector of player-specific random cost

functions, we employ the notation EG(Θ̃,X ) to denote a risk-neutral
Nash equilibrium problem . We now present a formal definition.

Definition 28 (Risk-neutral NEP)

Given a probability space (Ω,F ,P), a tuple x̄ ≜
(
x̄ i)N

i=1 ∈ X is a stochastic
Nash equilibrium (NE) of the game EG(Θ̃,X ) if

x̄ i ∈ argmin
x i∈X i

E
[
θ̃i(x i , x̄−i , ξ)

]
, ∀ i ∈ [N].

EG(Θ̃,X ) as a convex risk-neutral game if X i is a convex set for every i ∈ [N]
and for almost every ξ, θ̃i(•, x−i , ξ) is a convex function for x−i ∈ X−i . □

Under convexity assumptions, the equilibria of the risk-neutral game can be
entirely captured by a stochastic variational inequality problem.
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Stochastic Nash Equilibrium Problems III

Proposition 29

Consider the N-player convex risk-averse NEP and convex risk-neutral NEP
defined in Definition 28. Then the following hold.

(i) x̄ ∈ X is a risk-neutral Nash equilibrium of EG(Θ̃,X ) if and only if x̄ is a
solution of SVI(Φ̃,X ) where Φ̃(x , ξ) is defined as

Φ̃(x , ξ) ≜
N∏

i=1

Φ̃i(x , ξ), where Φ̃i(x , ξ) ≜ ∂x i

[
θ̃i(x , ξ)

]
. (32)
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Stochastic Generalized Nash Equilibrium Problems I

▶ In many instances, noncooperative games are characterized by the
presence of coupled strategy sets, i.e. for any i ∈ [N ], we have

x i ∈ Ci(x−i), (33)

where Ci is a set-valued map defined as Ci : Rn−i ⇒ Rni with convex and
closed images.

▶ Anticipating the tuple x−i ∈ X−i of rivals’ strategies, a (risk-neutral)
player i ’s objective θi is defined as

θi(x i , x−i) ≜ E
[
θ̃i(x i , x−i , ξ)

]
, (34)

and she makes her decision by solving the risk-neutral problem:

minimize θi(x i , x−i) ≜ E
[
θ̃i(x i , x−i , ξ)

]
(35)

subject to x i ∈ Ci(x−i).
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Stochastic Generalized Nash Equilibrium Problems II

▶ By defining Θ̃ ≜
(
θ̃i

)N

i=1
as the vector of player-specific random cost

functions and C as the collection of set-valued maps C1, · · · ,CN , we
employ the notation EG(Θ̃, C) to denote a risk-neutral generalized Nash
equilibrium problem . We now present a formal definition.

Definition 30 (Risk-neutral GNEP)

Given a probability space (Ω,F ,P), a tuple x̄ ≜
(
x̄ i)N

i=1 ∈ X is a stochastic
generalized Nash equilibrium (NE) of the game EG(Θ̃, C) if

x̄ i ∈ argmin
x i∈Ci (x−i )

E
[
θ̃i(x i , x̄−i , ξ)

]
, ∀ i ∈ [N].

EG(Θ̃,X ) as a convex risk-neutral coupled-constraint game if Ci(x−i) is a
convex set for any x−i and any i ∈ [N] and for almost every ξ, θ̃i(•, x−i , ξ) is a
convex function for x−i ∈ X−i . □
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Stochastic Generalized Nash Equilibrium Problems III

▶ Before proceeding, we define the stochastic quasi-variational inequality
problem.

Definition 31 (Stochastic quasi-variational inequality problem
QVI(C,F ))

Let F : Rn → Rn be a single-valued map and C : Rn ⇒ Rn be a set-valued
map with closed, convex, and nonempty images

The stochastic quasi-variational inequality problem (SQVI), defined by the
pair (C,F ), is to find a vector x̄ such that

F (x̄)⊤(x − x̄) ≥ 0, ∀ x ∈ C(x̄).

□
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Stochastic Generalized Nash Equilibrium Problems IV

▶ Under convexity assumptions, the equilibria of the risk-neutral
coupled-constraint game can be entirely captured by a stochastic
quasi-variational inequality problem.

Proposition 32 (Stochastic Convex GNEPs and Stochastic QVIs)

Consider the N-player convex risk-neutral GNEP defined in Definition 30.
Then the following holds. x̄ is a risk-neutral generalized Nash equilibrium of
EG(Θ̃,C) if and only if x̄ is a solution of SQVI(C,F ) where
C(x) ≜

∏N
i=1 Ci(x−i), F (x) ≜ E

[
F̃ (x , ξ)

]
, and F̃ (x , ξ) is defined as

F̃ (x , ξ) ≜


∇x1

[
θ̃1(x , ξ)

]
...

∇xN

[
θ̃N(x , ξ)

]
 . (36)
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Summary I

[ x is an NE ] ⇐⇒ [ x solves VI(X ,F ) ] (Smooth convex: G sc)

[ x is an NE ] ⇐⇒ [ x solves VI(X ,Φ) ] (Nonsm. convex: G ns)

[ x is an SNE ] ⇐⇒
[

x solves SVI(X , F̃ )
]

(Stoch. G sc)

[ x is an SNE ] ⇐⇒
[

x solves SVI(X , Φ̃)
]

(Stoch. G ns)

[ x is an SGNE ] ⇐⇒
[

x solves SQVI(X , F̃ )
]

(Stoch. gener. G sc)

[ x is an NE ] ⇐⇒
[

x is stat. pt of
{
min
x∈X

h(x)
}]

(Pot. game)
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Existence of solutions I

Consider the variational inequality problem VI(X ,F ) which requires an x ∈ X
such that

(y − x)T F (x) ≥ 0, ∀y ∈ X . (VI(X ,F ))

Then the existence of a solution can be claimed as follows.

Proposition 33 ([Facchinei and Pang, 2003])
Consider VI(X ,F ) and suppose X ⊆ Rn is closed, convex, and nonempty
and F (x) is a continuous mapping defined as F : X → Rn. Suppose one of
the following holds.

(a) Suppose X is compact.

(b) Suppose there exists an x ref ∈ X such that

lim inf
∥x∥→∞,x∈X

F (x)T (x − x ref) > 0. (37)

Then VI(X ,F ) admits a solution.
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Existence of solutions II

When X is a cone, then this problem reduces to CP(X ,F ), defined as follows.

X ∋ x ⊥ F (x) ∈ X∗. (CP(X ,F ))

Existence of solutions to CP(X ,F ) can be proven as follows.

Proposition 34

Consider CP(X ,F ) and suppose X ⊆ Rn is a closed, convex, and nonempty
cone and F is a continuous mapping defined as F : X → Rn. Suppose E is a
copositive matrix on X such that (X ,E) is an R0 pair and⋃

τ>0

SOL(X ,F + τE) is bounded. (38)

Then CP(X ,F ) admits a solution.
(X, E) is an R0 pair if SOL(X∞, 0, E) = {0}.
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Existence of solutions: Deterministic Problems

Challenge

In stochastic variational problems, existence statements are difficult to
acquire:

1. Any result is directly tied to distribution function

2. Integration (wrt measure) introduces significant complexity, generally
precluding a “deterministic” analysis

▶ Earliest formulations can be traced to [King and Rockafellar, 1993]; modeled as a
generalized equation with an expectation-valued map.

▶ Stability statements examined by [Liu, Romisch, and Xu, 2014]

▶ Little available for existence analysis of such problems.

Goal: Develop sufficiency conditions that do NOT require integration
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Existence of stochastic Nash equilibria

Existence analysis for stochastic games

▶ Integrable quadratic games
▶ Non-integrable quadratic games
▶ Generalizations

49 / 146



Games and Equilibria under Uncertainty: Existence and Computation

Existence of stochastic Nash equilibria

Integrable Quadratic Games I

For i ∈ [N ], associated with the i th player are random matrices
Q̃ij : Ξ → Rni×nj for j ∈ [N ] and a random vector di : Ξ → Rni . Consequently,
for i ∈ [N ], the i th player is characterized by the following problem with an
expectation-valued quadratic objective, denoted by θi and defined as

θi(x) ≜ E
[
θ̃i(x i , x i , ξ)

]
, (39)

where θ̃i(x i , x−i , ξ) ≜ 1
2 (x

i)⊤Q̃ii(ξ)x i +
∑
j ̸=i

(x j)⊤Q̃ij(ξ)x i + d̃i(ξ)
⊤x i . (40)

Suppose for i ∈ [N ], the i th player is faced by the following problem where
θi is defined as (39), Ãi : Ξ → Rmi×ni , and b̃i : Ξ → Rmi .

minimize
x i ≥ 0

θi(x i , x−i)

subject to E
[
Ãi(ξ)x i − b̃i(ξ)

]
≥ 0.

(41)
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Integrable Quadratic Games II

We refer to this quadratic game as EG(Q̃, d̃ , Ã, q̃). The following assumption
ensures the convexity of player problems.

Assumption 1

For i ∈ [N ], suppose Q̃ii(ξ) is a positive semidefinite matrix for a.e. ξ ∈ Ξ. □

Before proceeding, we define the stochastic counterpart of the linear
complementarity problem.
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Integrable Quadratic Games III

Definition 35 (Stochastic LCP)

Suppose M̃ : Ξ → Rn×n and q̃ : Ξ → Rn denote a random matrix and vector
respectively. Then the stochastic linear complementarity problem
SLCP(q̃, M̃) requires an x such that

0 ≤ x ⊥ E
[

M̃(ξ)
]

x + E [ q̃(ξ) ] ≥ 0. (SLCP(q̃, M̃))

Suppose M̃ is a degenerate random matrix and q̃ is a degenerate random
vector, i.e. M̃(ξ) = M and q̃(ξ) = q for every ξ ∈ Ξ. Then SLCP(q̃, M̃)
reduces to LCP(q,M), defined above. □

In this section, we consider subclasses of games where the equilibrium
conditions (captured by a linear complementarity problem) can be
equivalently viewed as the necessary and sufficient optimality conditions of a
quadratic program, i.e integrable quadratic games.
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Integrable Quadratic Games IV

Example 36

Consider a Cournot game where the inverse demand function, a random variable denoted by p̃

 N∑
i=1

x i , ξ

,

defined as p̃

 N∑
i=1

x i , ξ

 = a(ξ) − r(ξ)
∑N

i=1 x i , where a : Ξ → R++ and r : Ξ → R++. For i ∈ [ N ], the i th

player is characterized by a random cost function 1
2 ci (ξ)(x

i )2 + di (ξ)x
i for i ∈ [ N ] where ci : Ξ → R+ and

di : Ξ → R. Consequently, the i th player’s objective is defined as

θi (x
i
, x−i ) ≜ E

 1
2 ci (ξ)(x

i )2 + di (ξ)x
i − p̃

 N∑
i=1

x i
, ξ

 x i

 (42)

for i ∈ [ N ].
(a) x̄ = {x1, · · · , xN} is a Nash-Cournot equilibrium if and only if x̄ is a solution to SLCP(q̃, M̃) where

q̃(ξ) ≜


d1(ξ) − a(ξ)

.

.

.
dN (ξ) − a(ξ)

 and M̃(ξ) ≜


c1(ξ) + 2r(ξ) · · · r(ξ)

.

.

.
. . .

.

.

.
r(ξ) · · · cN (ξ) + 2r(ξ)

 .
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Integrable Quadratic Games V

Example 37
(b) Since M̃(ξ) is a symmetric positive semidefinite matrix for every ξ ∈ Ξ, x̄ is a Nash-Cournot equilibrium if and
only if x̄ is a solution to the following convex quadratic program, where I denotes the identity matrix and 1 represents
the column of ones.

minimize
x ≥ 0

E

 N∑
i=1

1
2 ci (ξ)(x

i )2 + (di (ξ) − a(ξ)) x i

 + r(ξ) x⊤
(

I + 11⊤
)

x

 ,

We may now generalize the previous example to derive such a relationship
for the stochastic quadratic game given by EG(Q̃, Ã, d̃ , b̃). This necessitates
defining the random vector q̃(ξ) and the random matrix M̃(ξ) as

q̃(ξ) ≜

(
d̃(ξ)
−b̃(ξ)

)
, where d̃(ξ) ≜


d̃1(ξ)

...

d̃N(ξ)

 , b̃(ξ) ≜


b̃1(ξ)

...

b̃N(ξ)

 (43)
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Integrable Quadratic Games VI

and

M̃(ξ) =

[
Q̃(ξ) −Ã(ξ)⊤

Ã(ξ)

]
, (44)

where

Q̃(ξ) ≜


Q̃11(ξ) · · · Q̃1N(ξ)

...
. . .

...

Q̃N1(ξ) · · · Q̃NN(ξ)

 and Ã(ξ) ≜


Ã1(ξ)

. . .

ÃN(ξ)

 .

(45)

We observe that the random matrix M̃(ξ) has a block skew-symmetric
structure, where Q̃(ξ) is matrix-valued random variable taking symmetric and
positive semidefinite values in Rn×n. Consequently, it can be shown that the
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Integrable Quadratic Games VII

equilibrium conditions represent the optimality conditions of the following
quadratic program with expectation-valued objectives and constraints where
Q̃ : Ξ → Rn×n, Ã : Ξ → Rm×n, d̃ : Ξ → Rn, and b̃ : Ξ → Rm, where

m ≜
N∑

i=1

mi and n ≜
N∑

i=1

ni .

minimize
x ≥ 0

E
[

1
2 x⊤Q̃(ξ) x + d̃(ξ)⊤x

]
subject to E [A(ξ)x − b(ξ) ] ≥ 0.

(Stoch-QP)
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Integrable Quadratic Games VIII

Proposition 38

[Integrable Quadratic Games] Consider the N-player game given by
EG(Q̃, Ã, q̃, d̃) in which the ith player solves (41). Then the following hold.

(a) Suppose Assumption 1 holds.[
x̄ is an NE of EG(Q̃, Ã, q̃, d̃)

]
⇐⇒

[ (
x̄ , λ̄

)
solves SLCP(q̃, M̃).

]
(46)

(b) Suppose Assumption 1 holds and Q̃(ξ) is a symmetric positive
semidefinite matrix for almost every ξ ∈ Ξ.

[
x̄ is an NE of EG(Q̃, Ã, q̃, d̃)

]
⇐⇒ [ x̄ solves (Stoch-QP). ] (47)

□
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Integrable Quadratic Games IX

Definition 39 (Stochastic generalizations of positive definiteness)

Consider the random matrix M̃ : Ξ → Rn×n. Then the following hold.

(a) M̃(ξ) is said to be a random positive semidefinite matrix if M̃(ξ) ⪰ 0 for
a.e. ξ ∈ Ξ ; we characterize the positive semidefiniteness of M̃(ξ) as
M̃(ξ) ∈ Psd.

(b) M̃(ξ) is said to be a random positive definite matrix if M̃(ξ) is a random
positive semidefinite matrix and

M̃(ξ) ≻ 0 for ξ ∈ Ξc , where Ξc ≜ { ξ(ω) | ω ∈ Ωc ⊆ Ω where µ [Ωc ] > 0 } .

We characterize positive definiteness of M̃(ξ) ∈ Pd
Ξc . Note that if Ξc = Ξ,

then M̃(ξ) ≻ 0 for a.e. ξ ∈ Ξ and we classify such a random matrix as
M̃(ξ) ∈ Pd. □
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Integrable Quadratic Games X

Lemma 40
Consider the random matrix M̃ : Ξ → Rn×n.

(a) Suppose M̃(ξ) ∈ Psd. Then E
[

M̃(ξ)
]
⪰ 0, i.e.[

M̃(ξ) ⪰ 0 for a.e. ξ ∈ Ξ
]

=⇒ E
[

x⊤M(ξ) x
]
≥ 0, ∀ x ∈ Rn.

(b) Suppose M̃(ξ) ∈ Pd
Ξc . Then E

[
M̃(ξ)

]
≻ 0, i.e.[

M̃(ξ) ≻ 0 for ξ ∈ Ξc

]
=⇒ E

[
x⊤M(ξ) x

]
> 0, ∀ 0 ̸= x ∈ Rn,

where Ξc is defined in (39). □
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Integrable Quadratic Games XI

Proposition 41 (Sufficiency conditions: Integrable Quadratic Games)

Consider the quadratic game EG(Q̃, Ã, d̃ , b̃). Suppose the random matrix
Q̃(ξ) satisfies Q̃(ξ) ∈ Psd and θ̃(x , ξ) ≜ 1

2 x⊤Q̃(ξ) x + d̃(ξ)⊤x, and X is
assumed to be a nonempty polyhedron defined as
X ≜ { x | E [A(ξ)x − b(ξ)] ≥ 0, x ≥ 0 } . Then EG(Q̃, Ã, d̃ , b̃) admits a
Nash equilibrium if one of the following hold.

(a) Suppose X is bounded.
(b) Suppose there exists a deterministic scalar b such that the function
θ̃(x , ξ) ≥ b for any x ∈ X and almost every ξ ∈ Ξ.
(c) Suppose there exists a vector x ref ∈ X such that

lim inf
x∈X ,∥x∥→∞

(
Q̃(ξ) x ref + d̃(ξ)

)⊤ (
x − x ref

)
> 0 holds a.s. (48)

and there exists a nonnegative integrable function u : Ξ → R such that(
Q̃(ξ) x ref + d̃(ξ)

)⊤ (
x − x ref

)
≥ −u(ξ) holds a.s. for any x. (49)
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Non-integrable Quadratic Games I

[ x is an NE ] ⇐⇒
[

x solves SLCP(q̃, M̃)
]
.

In other words, we focus on developing integration-free conditions for
solvability of SLCP(q̃, M̃).

Theorem 42
Suppose M̃(ξ) and q̃(ξ) represent a random matrix and random vector,
respectively. Suppose M̃(ξ) ∈ Psd. If SLCP(q̃, M̃) is feasible, then it is
solvable.

In other words,

[
∃x ≥ 0,E

[
M̃(ξ)x + q̃(ξ)

]
≥ 0

]
=⇒

[
SLCP(q̃, M̃) is solvable .

]
(50)
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Lemma 43
Suppose M̃(ξ) ∈ Pd

Ξc . Then there exists a vector z such that

E
[

M̃(ξ)z
]
> 0, z > 0. (51)

Proof sketch. Leverage Ville’s theorem of the alternative + positive
definiteness.

Recall that a matrix M is said to be an S-matrix (where S stands for Stiemke)
if there exists a z such that

Mz > 0, z > 0. (52)

In fact, the above claim holds if and only if

Mz > 0, z ≥ 0. (53)
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Naturally, (53) is implied by (52). The reverse claim holds by observing that
since M(z + λ1) for λ sufficiently small since Mz > 0. Consequently, we have
discovered a vector z + λ1 > 0 satisfying M(z + λ1) > 0 since z ≥ 0. We
now introduce the definition of a random S matrix.

Definition 44 (Random S matrix)

The random matrix, defined as M̃ : Ξ → Rn×n, satisfies M̃(ξ) ∈ SΞc if there
exists a deterministic vector z > 0 such that

M̃(ξ) z ≥ 0, ∀ ξ ∈ Ξ and M̃(ξ) z > 0, ∀ ξ ∈ Ξc ,

where Ξc ≜ { ξ(ω) | ω ∈ Ωc ⊆ Ω where µ [Ωc ] > 0 }. □
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Lemma 45 (Positive definiteness =⇒ S)

Suppose M̃(ξ) represents a random matrix. Then

M̃(ξ) ∈ Pd
Ξc =⇒ M̃(ξ) ∈ SΞc .

Proposition 46

Suppose M̃(ξ) and q̃(ξ) represent a random matrix and random vector,
respectively. Suppose M̃(ξ) ∈ SΞc . Then SLCP(q̃, M̃) is feasible for all q̃(ξ).

Consequently, we have an integration-free condition for claiming that
SLCP(q̃, M̃) is feasible. Consequently, the following integration-free
sufficiency condition holds.

[
M̃(ξ) ∈ Psd ∩ SΞc

]
=⇒

[
SLCP(q̃, M̃) is solvable

]
. (54)
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Proposition 47 (Uniqueness of SLCP(q̃, M̃))

Suppose M̃(ξ) and q̃(ξ) represent a random matrix and random vector,
respectively. Suppose M̃(ξ) ∈ Pd

Ξc . Then SLCP(q̃, M̃) admits a unique
solution for all q̃(ξ).
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We now introduce the stochastic counterpart of a copositive matrix. Recall
that M ∈ Rn×n is said to be a copositive matrix, if x⊤M x ≥ 0 for any x ∈ Rn

+.

Definition 48 (Stochastic generalizations of Copositivity)
Consider the random matrix M̃ : Ξ → Rn×n and a cone X ⊆ Rn . Then the following hold.

(a) M̃(ξ) is said to be a random copositive matrix on a cone X if for a.e. ξ ∈ Ξ, we have that

x⊤M̃(ξ) x ≥ 0 for all x ∈ X ;

we denote such a random matrix as M̃(ξ) ∈ CP(X).
(b) M̃(ξ) is said to be a random strictly copositive matrix if M̃(ξ) is a random copositive matrix on X and for any
ξ ∈ Ξc , we have

x⊤M̃(ξ) x > 0 for any x ∈ X , x ̸= 0

where Ξc ≜ { ξ(ω) | ω ∈ Ωc ⊆ Ω and µ [Ωc ] > 0 } . We denote such a random matrix as
M̃(ξ) ∈ CPst

Ξc
(X).

(c) If Ξc = Ξ, then for a.e. ξ ∈ Ξ, x⊤M̃(ξ)x > 0 for any 0 ̸= x ∈ X and we refer to this random matrix as
M̃(ξ) ∈ CPst(X).
(d) If X ≡ Rn

+, then the random matrix classes in (a) – (c) reduce to CP, CPst
Ξc
, and CPst , respectively. □
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Our first result provides a sufficiency condition for existence of a solution of
SLCP(q̃, M̃) by leveraging strict copositivity of the random matrix M̃(ξ).

Theorem 49 (Solvability under strict copositivity)

Let M̃(ξ) represent a given random matrix. If M̃(ξ) ∈ CPst
Ξc respectively.

Then SLCP(q̃, M̃) admits a solution for any random vector q̃(ξ).

One might mistakenly assume that SLCP(q̃, M̃) need not be solvable if
E
[

M̃(ξ)
]

is merely copositive. However, this is not true. There are indeed

instances when E
[

M̃(ξ)
]

is copositive and solvability holds. The following
example provides precisely such an instance.
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Example 50 (Existence under copositivity)
(a) Consider a noncooperative game in which for i ∈ [ N ], the i th player solves (QPi (x

−i )), defined as

minimize
xi ≥ 0

E

 1
2 ξx2

i +
∑
j ̸=i

ξ xi xj + d̃i (ξ) xi

 . (QPi (x
−i ))

(b) Suppose ξ has mean zero. Then the necessary and sufficient equilibrium conditions are given by SLCP(q̃, M̃)

where M̃(ξ) and q̃(ξ) are defined as

M̃(ξ) =


ξ · · · ξ

.

.

.
. . .

.

.

.
ξ · · · ξ

 and q̃(ξ) ≜


d1(ξ)

.

.

.

dN (ξ)

 , respectively.

(c) Consequently, E
[

M̃(ξ)
]
=
(

0
)

N×N . Consequently, SLCP(q̃, M̃) has a solution if E [ q̃(ξ) ] ≥ 0. □
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Theorem 51 (Solvability under copositivity)

Let M̃(ξ) and q̃(ξ) represent a random matrix and a random vector,
respectively. Let M̃(ξ) ∈ CP and the following implication holds for almost
every ξ ∈ Ξ for a deterministic vector v ∈ Rn.[

v ≥ 0, M̃(ξ) v ≥ 0, v⊤M̃(ξ) v = 0
]

=⇒
[

v⊤q̃(ξ) ≥ 0.
]

(55)

Then SLCP(q̃, M̃) admits a solution.
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Existence of stochastic Nash equilibria I

We begin by considering the risk-neutral convex game defined by compact
strategy sets and denoted by EG(Θ̃,Ξ) and defining the player i ’s regularized
risk-neutral best response map R i

θ,E : X i → X i where

R i
θi ,E(x) ≜ argmin

y i ∈ X i

[
E
[
θ̃i(y i , x−i , ξ)

]
+ 1

2 ∥ y i − x i ∥2
]
. (56)

The player-specific best-response map R i
θ,E is well-defined when X i is

nonempty, closed, and convex and E
[
θ̃i(•, x−i , ξ)

]
is convex and therefore

continuous. The best-response map Rθ,X is defined as

Rθ,E(x) ≜

R1
θ1,E(x)

...
RN
θN ,E(x)

 , (57)

where Ri
θi ,E(x) is defined as (56).
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Proposition 52

Consider the game EG(X , Θ̃) where for i ∈ [ 1,N ], X i is a closed and convex
subset of Rni , θi(•, x−i) is a convex function for any x−i ∈ X −i , and

N∑
i=1

ni = n. Then x̄ is a fixed point of Rθ,E , defined as (57), if and only if x̄ is

an SNE of EG(X , Θ̃).

We now provide conditions under which existence of a stochastic Nash
equilibrium exists. The first of these results is a simple application of
Brouwer’s fixed-point theorem that does not necessitate smoothness of θi .
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Theorem 53 (Existence of NE under compactness)

For i ∈ [1,N], let X i ⊆ Rni be a compact and convex set and let

θi :
N∏

i=1

X i → R be such that θi(x i , x−i) ≜ E
[
θ̃i(x i , x−i , ξ)

]
, where for almost

every ξ ∈ Ξ, θ̃i(•, x−i , ξ) is convex on X i for all x−i in X−i . Then an SNE of
the game EG(Θ̃,X ) exists. □

▶ When boundedness of X is weakened, existence claims are less easily
made.

▶ We initiate our discussion with an example of a stochastic linear
complementarity problem. In this particular instance, we observe that
barring a pathological case, deriving an existence claim is not easy.
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Example 54
Consider the following stochastic linear complementarity problem CP(F̃ ,R2

+) where

0 ≤ x ⊥ E
[

F̃ (x, ξ)
]

≥ 0, where F̃ (x, ξ) ≜
(

2 + ξ 0.1
0.1 2 + ξ

)
x −

(
2
4

)
. CP( F̃ ,R2

+ ) is equivalent to

VI( F̃ ,R2
+ ). Consider two cases that pertain to either when the expectation is available in closed-form (a); or not (b).

(a) Expectation E[•] available in closed form. Suppose in this instance, ξ is a random variable that takes values ξ1

of ξ2, given by the following:
ξ

1 = 1.1 or ξ2 = −0.9 with probability 0.5.

Consequently, the stochastic variational inequality problem can be expressed as

0 ≤ x ⊥
(

2.1 0.1
0.1 2.1

)
x −

(
2
4

)
≥ 0.

In fact, this problem is a strongly monotone linear complementarity problem and admits a unique solution given by
x∗ ≈ (1.863, 0.864). More generally, even if one cannot compute a solution, a common approach lies in
examining coercivity properties of the map F ; For instance in this case, VI(F ,R2

+) is solvable since there exists an

x ref ≡ (0, 0) ∈ R+
2 such that (cf. [Facchinei and Pang, 2003, Ch. 2])

lim inf
∥x∥→∞,x∈R+2

F (x)⊤(x − x ref) = ∞.
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Example 55
(b) Expectation E[•] unavailable in closed-form. However, in many practical settings, closed-form expressions of the
expected value map are unavailable. Two possible avenues are available:

(i) If X is compact, under continuity of the expected value map, VI(F , X) can be claimed to be solvable. In this
case, since X is a cone, this avenue cannot be employed.

(ii) If there exists a single x ∈ X that solves VI(X , F (•, ξ)) for almost every ξ ∈ Ξ, VI(X , F ) is solvable. This
appears to be possible only for pathological examples; in this case, there does not exist a single x that solves
the scenario-based VI(X , F̃ (•, ξ)) for every ξ ∈ ξ. Specifically, F (•, ξ) is a strongly monotone map on R2

+

for ξ = ξ1, ξ2. Consequently, VI(F (•, ξ1),R2
+) and VI(F (•, ξ2),R2

+) each have unique solutions given by

x(ξ1) ≈ (1.27, 0.60) and x(ξ2) = (3.5, 1.5), respectively and since x(ξ1) ̸= x(ξ2), avenue (ii) cannot
be traversed.

We intend to use the following coercivity result to derive an existence claim
for the stochastic Nash equilibrium problem. Such coercivity results appear to
have been first provided by Moré (1974); our statement originates from
[Facchinei and Pang, 2003].
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Theorem 56 (Existence of solution to VI(X ,F ))

Consider the variational inequality problem VI(F ,X ) where F : X → Rn is a
single-valued and continuous map and X ⊆ Rn is a closed and convex set.
Suppose one of the following holds.
(a) Suppose there exists an x ref ∈ X such that

lim inf
x ∈ X , ∥x∥→∞

F (x)⊤(x − x ref) > 0. (58)

(b) Suppose F is a monotone map on X and there exists an x ref ∈ X such
that

lim inf
x ∈ X , ∥x∥→∞

F (x ref)⊤(x − x ref) > 0. (59)

Then VI(F ,X ) admits a solution. □
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Theorem 57 (Solvability of SVI(F̃ ,X ))

Consider the stochastic variational inequality problem SVI(F̃ ,X ) where
F̃ : X × ξ → Rn is a single-valued and continuous map, Fi(x) ≜ E[Fi(x , ξ)] for
i ∈ [1,N] and X ⊆ Rn is a closed and convex set. Suppose there exists an
x ref ∈ X such that

lim inf
x ∈ X , ∥x∥→∞

F̃ (x , ξ)⊤(x − x ref) > 0, almost surely (60)

and there exists a nonnegative integrable function u : Ξ → R such that

F̃ (x , ξ)⊤(x − x ref) ≥ −u(ξ), almost surely for any x . (61)

Then SVI(F̃ ,X ) admits a solution. □
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Theorem 58 (Solvability of SVI(F̃ ,X ) under monotonicity)

Consider the stochastic variational inequality problem SVI(F̃ ,X ) where
F̃ : X × ξ → Rn is a single-valued and continuous map, Fi(x) ≜ E[Fi(x , ξ)] for
i ∈ [1,N] and X ⊆ Rn is a closed and convex set. Suppose F is a monotone
map on the set X and there exists an x ref ∈ X such that

lim inf
x ∈ X , ∥x∥→∞

F̃ (x ref, ξ)⊤(x − x ref) > 0, almost surely (62)

and there exists a nonnegative integrable function u : Ξ → R such that

F̃ (x ref, ξ)⊤(x − x ref) ≥ −u(ξ), (63)

holds almost surely for any x. Then SVI(F̃ ,X ) admits a solution. □

▶ When contending with NEPs, X displays a Cartesian structure, i.e.
X =

∏N
i=1 Xi .

▶ This allows for weaker claims of existence.
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Theorem 59 (Existence of Stochastic NE)

For i ∈ [ 1,N ], let X i ⊆ Rni be a closed and convex set contained in the open

set O i and let θi :
N∏

i=1

O i → R be such that θi(x i , x−i) ≜ E
[
θ̃i(x i , x−i , ξ)

]
,

where for every ξ ∈ ξ, θ̃i(•, x−i , ω) is convex and C1 on X i for all x−i in X −i .
Suppose F̃ (•, ξ) is defined as F̃ (x , ξ) ≜

(
∇x i θ̃i(x , ξ)

)N

i=1
. Suppose there

exists an x ref ∈ X and an index υ ∈ [1,N] such that

lim inf
xυ ∈ Xυ, ∥xυ∥→∞

∇xυ θ̃υ(x , ξ)⊤(xυ − x ref,υ) > 0 (64)

and there exists a nonnegative integrable function u : ξ → R such that

∇xυ θ̃υ(x , ξ)⊤(xυ − x ref,υ) ≥ −u(ξ), almost surely for any x . (65)

Then the game EG(Θ̃,X ) admits a Nash equilibrium. □
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Recall that {x̄1, . . . , x̄N} is a Nash equilibrium of EG(Θ̃,X ) if and only if
x̄ ≜ {x̄1, . . . , x̄N} is a solution of the variational inequality problem VI(Φ,X ),
where

Φ(x) ≜
N∏

i=1

∂x iE
[
θ̃i(x i , x−i , ξ)

]
(66)

and ∂x i θ̃i(x i , x−i , ξ) denotes the subdifferential of the i th player’s (convex)
objective at x = (x i , x−i). We initiate our discussion by providing some
properties for Φ.
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Proposition 60

Suppose Φ is defined as (66). Then the following hold.

(i) Φ can be expressed as

Φ(x) = E
[
Φ̃(x , ξ)

]
, where Φ(x , ξ) =

N∏
i=1

∂x i θ̃i(x i , x−i , ξ).

(ii) Φ is an upper semicontinuous map with closed, convex, and compact
images.

(iii) Φ̃(x , ξ) has nonempty and closed images for every x and every ξ ∈ Ξ.

(iv) Φ̃(•, ξ) is upper semicontinuous for every ξ ∈ Ξ and Φ̃(x , ξ) is integrably
bounded for any x ∈ X. □
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Theorem 61 (Kien (2008))

Suppose X is a closed and convex set in Rn and let Φ : X ⇒ Rn be a lower
semicontinuous multifunction with nonempty closed and convex images.
Consider the following statements.

(a) Suppose there exists an x ref ∈ X such that L<(X ,Φ) is bounded (possibly
empty) where

L<(Φ,X ) ≜

{
x ∈ X

∣∣∣∣∣ inf
y∈Φ(x)

(x − x ref)T y < 0

}
. (67)

(b) The variational inequality VI(Φ,X ) admits a solution.

Then (a) implies (b). Furthermore, if Φ is a pseudomonotone mapping over
X, then (a) is equivalent to (b). □

Using this condition, we proceed to develop distribution-free sufficiency
conditions for the existence of solutions to SVI(Φ̃,X ) when Φ̃ and Φ, the
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expectation of Φ̃, satisfy suitable properties. We begin by providing a
representation result whereby any element of the set E

[
Φ̃(x , ξ)

]
is shown to

be a convex combination of a set of extremal selections of Φ̃(x , ξ).

Lemma 62
Suppose the probablity measure is nonatomic. Let Φ̃ be a measurable
integrably bounded set-valued map from Rn × ξ to subsets of Rn with closed
nonempty images. Then any w ∈ E

[
Φ̃(x , ξ)

]
can be expressed as

w =

∫
Ω

g(x , ξ) dP(ω),

where g(x , ξ) ≜
n∑

k=0

λk (x)g̃k (x , ξ),
n∑

k=0

λk (x) = 1, and for k ∈ [ 0, n ],

λk (x) ≥ 0 and g̃k (x , ξ) is an extremal selection of Φ̃(x , ξ). □
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Proposition 63

Consider SVI(Φ̃,X ). Suppose P is a nonatomic measure and Φ is an upper
semicontinuous multifunction with nonempty, closed, and convex values. In
addition, suppose the following hold.

(a) Suppose there exists an x ref ∈ X such that

lim inf
x∈X ,∥x∥→∞

(
inf

w∈Φ̃(x,ξ)
w⊤(x − x ref)

)
> 0 almost surely.

(b) For the above x ref, suppose there exists a nonnegative integrable random
variable u such that for any x ∈ X, g(x , ξ)⊤(x − x ref) ≥ −u(ξ) holds for any
integrable selection g(x , ξ) of Φ̃(x , ξ) in an almost sure sense.

Then SVI(Φ̃,X ) is solvable. □
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Applications I

This avenue has been utilized to provide existence guarantees for a range of
equilibrium problems. A subset of references is provided next.

1. Imperfectly competitive electricity markets: [O. Daxhelet and Y. Smeers, 2001], [Hobbs,

2001], [Metzler, Hobbs, and Pang, 2002], [Hobbs and Pang, 2007], [Kannan, S., and Kim, 2013], [Gabriel,

Conejo, Hobbs, and Ruiz, 2014]

2. Traffic equilibrium problems: [Ashtiani and Magnanti, 1981], [Friesz, Tobin, Smith, and Harker,

1983], [Patriksson, 1994]

3. Frictional contact problems: [Brogliato, 1999], [Stewart and Trinkle, 1997], [Stewart, 2000]

4. Option pricing [Brennan and Schwartz, 1977], [Jaillet, Lamberton, and Lapeyre, 1990], [Huang and

Pang, 1998], [Pang and Huang, 2002]

5. Significant other work in obstacle problems, gas markets, etc.

Most models are natively deterministic
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Stochastic complementarity problems (CP) I

Consider an N-player coupled-constraint game in which the i th player solves
the following convex problem (Playeri(x−i)).

minimize
x i ≥ 0

E
[
θ̃i(x i , x−i , ξ)

]
subject to E

[
ci(x i , x−i , ξ)

]
≤ 0. (λi)

(Playeri(x−i))

Under a suitable regularity condition, x∗ ≜ {x1,∗, · · · , xN,∗} is a generalized
Nash equilibrium if and only if (x∗, λ∗) is a solution to the following stochastic
complementarity problem.

0 ≤ x i ⊥ E
[
∇x i θ̃i(x i , x−i , ξ) +∇x i ci(x i , x−i , ξ)⊤λi

]
≥ 0, i ∈ [N ]

0 ≤ λi ⊥ E
[

ci(x i , x−i , ξ)
]
≤ 0, i ∈ [N ] (68)
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Stochastic complementarity problems (CP) II

▶ This problem can be cast more generally as the following stochastic
complementarity problem.

K ∋ z ⊥ E
[

H̃(z, ω)
]
∈ K ∗, (69)

where K is a cone, K ∗ denotes the dual cone, and H̃(•, ω) : K → K ∗ for
every ω.

▶ This avenue is useful for analyzing a range of equilibrium problems, as
well as analysing stochastic Nash games with stochastic constraints.
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Stochastic complementarity problems (CP) III

Definition 64 (CP(K ,q,M))

▶ Given a cone K in Rn, an n × n matrix M and a vector q ∈ Rn,
CP(K , q,M) requires an x ∈ K ,Mx + q ∈ K ∗ such that xT (Mx + q) = 0.
** K∗ ≜ {y : yT d ≥ 0, ∀d ∈ K}

▶ The recession cone associated with a set K (not necessairly a cone) is
defined as

K∞ ≜ {d : for some x ∈ K , {x + τd : τ ≥ 0} ∈ K}.

▶ The CP kernel of the pair (K ,M) denoted by K(K ,M) is given by

K(K ,M) = SOL(K∞, 0,M)

▶ (K ,M) is said to be an R0 pair if K(K ,M) = {0}.
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Stochastic complementarity problems (CP) IV

From [Facchinei and Pang, 2003, Th. 2.5.6], when K is a closed and convex
cone, (K ,M) is an R0 pair if and only if the solutions of the CP(K , q,M) are
uniformly bounded for all q belonging to a bounded set.

Definition 65
Let K be a cone in Rn and M be an n × n matrix. Then M is said to be

(a) copositive on K if xT Mx ≥ 0, ∀ x ∈ K ;

(b) strictly copositive on K if xT Mx > 0, ∀ x ∈ K\{0}.
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Stochastic complementarity problems (CP) V

Proposition 66 (Solvability of SCP(K ,H))

Consider a stochastic complementarity problem SCP(K ,H) where K is a
closed convex cone in Rn. Suppose the following hold:

(a) For almost every ω ∈ Ω, there exists a strictly copositive matrix
Mω ∈ Rn×n on K such that (K ,Mω) is an R0 pair and the union⋃

τ>0

SOL(K ,H(.;ω) + τMω)

is bounded in an almost-sure sense;

(b) The following property holds almost surely:

lim inf
∥x∥→∞,x∈K

xT H(x ;ω) ≥ −β, β > 0. (70)

Then the stochastic complementarity problem SCP(K ,H) admits a solution.
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Applications I

Existence of solutions has been shown in varied settings via such avenues.

1. Stochastic Nash games with stochastic (expectation-valued) constraints
(Ravat and S., 2011)

2. CVaR-based Risk-averse Nash-Cournot games (Ravat and S., 2011).

3. Imperfectly competitive power markets with random price functions and
costs (Ravat and S., 2017)
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Summary I

Almost-sure sufficiency statements for existence in stochastic regimes
▶ Integrable quadratic games
▶ Non-integrable quadratic games
▶ Stochastic Nash equilibria
▶ Stochastic generalized Nash equilibria

Crucial question

Well-behaved X + Coercivity almost surely ?
=⇒ SVI(X , F̃ ) is solvable

Advantages:
▶ Averts the need for integration
▶ Analytically tractable
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Literature I

◆ Gradient-Response Schemes regimes
▶ Deterministic Gradient-based schemes.

▶ Strongly monotone maps [Alpcan and Başar (2003, 2007); Pavel (2006), Pan and Pavel
(2009)]

▶ Monotone maps via iterative regularization [Yin, UVS and Mehta (2011); Kannan and
UVS (2012)]

▶ Distributed scheme (gradient response+consensus) for networked
aggregative Nash games [Koshal, Nedić, and UVS]

▶ Not “fully rational”.
▶ Stochastic gradient-based schemes:

▶ Monotone expectation-valued maps [Koshal, Nedić and Shanbhag (2013)]
▶ Non-Lipschitzian regimes via random smoothing [Yousefian, Nedić and Shanbhag

(2016)]
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Literature II

◆ Best-response schemes
▶ Deterministic Best-response schemes:

▶ Synchronous best-response schemes [Facchinei and Pang (2009); Scutari, Facchinei,
Palomar, Song, and Pang (2013)]

▶ Customized schemes in signal processing [Scutari, Palomar and Barbarossa (2008,
2009); Scutari and Palomar (2010)]

▶ Stochastic Best-response schemes:
▶ Inexact asynchronous BR schemes [Lei, UVS, Pang, and Sen].
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Problem Statement I

Noncooperative game

min
xi∈Xi

θi(xi , x−i) ≜ E
[
θ̃i(xi , x−i , ξ)

]
▶ N = {1, · · · , n} is a group of n players, indexed by i ;
▶ Xi is the strategy set of player i , x = (x1, · · · , xN) is a strategy profile;
▶ player i has an objective θi(x i , x−i).
▶ ξ : Ω → Rm defined on the probability space (Ω,F ,P).

▶ Nash equilibrium (NE) is a strategy profile x∗ = {x∗
i }

N
i=1 such that no

player can improve by unilateral deviation.
▶ Convexity of subproblems: Xi is a closed, compact, convex set; For any

x−i ∈
∏

j ̸=i X j , θi(xi , x−i) is C1 and convex in xi ∈ Xi .
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Problem Statement II

▶ Existence of stochastic oracle returning a sample ∇xi θ̃i(xi , y ; ξ) such that
the following holds a.s. for i ∈ [N].

E
[
∇xi fi(x i , x−i)−∇xi θ̃i(x i , x−i ; ξ) | x

]
= 0 (Unbiasedness)

E
[
∥∇xi θi(x i , x−i)−∇xi θ̃i(xi , x−i ; ξ)∥2 | x

]
≤ ν2

i . (Bounded 2nd moments)

▶ Suppose F is η-strongly monotone and L-Lipschitz on a closed and
convex set X where

F (x) ≜

 ∇x1θ1(x1, x−i)
...

∇xN θN(xN , x−N)

 and X ≜
N∏

i=1

Xi .
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Gradient-Response Schemes under Strong Monotonicity of F I

Stochastic Gradient-Response Scheme

I. Initialization. For i ∈ [N ], choose x i,0 ∈ X i , positive steplength
sequence {γi,ν}, and batch-size sequence {M i,ν}. Let ν := 0.
II. General iteration. Suppose wν =

(
wi,ν

)N
i=1

, where

wi,ν =
M i,ν∑
j=1

(∇xi θ̃i (x
ν , ξν,j )−∇xi θi (x

ν ))
M i,ν for i ∈ [N ].

Then x i,ν+1 is updated as follows for i ∈ [N ].

x i,ν+1 = ΠX i

[
x i,ν − γi,ν (∇x i θi(xν) + wi,ν)

]
, ∀ i ∈ [N ]. (SGR)

III. Termination test. If ν > K , terminate; else ν := ν + 1 and return to (I).
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Gradient-Response Schemes under Strong Monotonicity of F II

Suppose Fν denotes the history at iteration ν, defined as

Fν ≜

{
x0,

{{
∇x i θ̃i(x0, ξ0,j)

}M i,0

j=1

}N

i=1
, · · · ,

{{
∇x i θ̃i(xν−1, ξν−1,j)

}M i,ν−1

j=1

}N

i=1

}
.

Assumption 2

The steplength sequences {γi,ν}∞ν=0 satisfy one of the following for i ∈ [N ].

(a) γi,ν = γi for every ν ≥ 0.

(b)
∞∑
ν=0

γi,ν = ∞ and
∞∑
ν=0

γ2
i,ν < ∞.

(c) For any ν, the following holds. γ1,ν ≤ · · · ≤ γN,ν ≤
(
1 + η

2L

)
γ1,ν . □
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Gradient-Response Schemes under Strong Monotonicity of F III

Proposition 67 (Almost-sure convergence)

Suppose Mν,i ≥ Mν ≥ 1 for all ν and i ∈ [N ] and the steplength
sequences satisfy Ass. 2 (b), (c). Then the following relation holds almost
surely for all ν ≥ 0:

E
[
∥xν+1 − x∗∥2 | Fν

]
≤

(
1 − 2γ1,νη + 2γ2

N,νL2 + 2(γN,ν − γ1,ν)L
)
∥xν − x∗∥2

+
γ2
νc2

Mν
. (71)

Furthermore, {xν} converges almost surely to x∗, the unique NE. □
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Gradient-Response Schemes under Strong Monotonicity of F IV

Theorem 68 (Rate Statements)

(i) Suppose the steplength sequences satisfy Ass. 2 (b) and (c). Suppose for
ν ≥ 0 and for i ∈ [N ], M i,ν = 1 and γ1,0 = 1/2η. Then for ν ≥ 2,

E
[
∥xν − x∗∥2

]
≤ O

( 1
ν

)
. (Optimal rate) (72)

(ii) Suppose the steplength sequences satisfy Ass. 2 (a) and (c). Suppose for
ν ≥ 0 and for i ∈ [N ], Mν = M0

i ⌈ρ−(ν+1)⌉, γi,0 = γi , where

γ1 ≤ γ2 ≤ · · · ≤ γN ≤ βγ1,

β =
(
1 + η

2L

)
, L̃2 = 2β2L2, and γ1 ≤ min

{
1/η, 2η/L̃2

}
. Then for q̃ ∈ (ρ, 1),

E
[
∥xν − x∗∥2

]
≤

{
C(ρ, q) (max{ρ, q})ν , q ̸= ρ

D̃q̃ν . q = ρ
(Optimal det. rate) (73)
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Gradient-Response Schemes under Strong Monotonicity of F V

◆ Comments.
▶ When γi,ν are diminishing sequences and sample-size Mi,ν = 1, the rate

and complexity statements are optimal; matching statements for
stochastic approximation for strongly convex stochastic optimization.

▶ When γi,ν are constant and sample-size Mi,ν increases at a geometric
rate, the rate statements match optimal deterministic (geometric) rates
while the sample-complexity continues to be optimal.

[ Iteration complexity = O(1/ϵ) ]︸ ︷︷ ︸
Mi,ν=1

[ Iteration complexity = O(ln(1/ϵ)) ]︸ ︷︷ ︸
Mi,ν grows geometrically
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Gap functions I

▶ Recall that x is an NE if and only if x is a solution of VI(X ,F ).
▶ However, when F is merely monotone, SOL(X ,F ) is not necessarily a

singleton
▶ In this context, gap functions have been widely used [Larsson, 1994].
▶ Suppose G is a function defined as

G(x) ≜ sup
y∈X

(x − y)⊤F (y), ∀x ∈ X .

▶ G has two properties: G(x) is nonnegative for any x ∈ X and G(x) = 0 if
and only if x solves VI(X ,F ).
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Regularized Gradient Response Schemes under monotonicity of F I

Regularized Gradient-Response Scheme

I. Initialization. For i ∈ [N ], choose x i,0 ∈ X i , positive steplength
sequence {γi,ν}, regularization sequence {ηi,ν}, and batch-size sequence
{M i,ν}. Let ν := 0.
II. General iteration. Suppose wν =

(
wi,ν

)N
i=1

, where

wi,ν =
M i,ν∑
j=1

(∇xi θ̃i (x
ν , ξν,j )−∇xi θi (x

ν ))
M i,ν for i ∈ [N ].

Then x i,ν+1 is updated as follows for i ∈ [N ].

x i,ν+1 = ΠX i

[
x i,ν − γi,ν

(
∇x i θi(xν) + wi,ν + ηi,νx i,ν

) ]
, ∀ i ∈ [N ]. (R-GR)

III. Termination test. If ν > K , terminate; else ν := ν + 1 and return to (I).
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Regularized Gradient Response Schemes under monotonicity of F II

Assumption 3

For each i ∈ N , let the sequences {γi,ν} and {ηi,ν} be deterministic and
monotonically decreasing to zero. Furthermore, the following hold.

(a) lim
ν→∞

γ2
max,ν

γmin,νηmin,ν
= 0 and lim

ν→∞

γmax,ν−γmin,ν

γmin,νηmin,ν
= 0;

(b)
∑∞
ν=0 γmin,νηmin,ν = ∞; (c) For each i ∈ N ,

∑∞
ν=0 γ

2
i,ν <∞.

(d)
∑∞
ν=0

(
1 + 1

γmin,νηmin,ν

)
(ηmax,ν−1−ηmin,ν)

2

η2
min,ν

<∞.

Remark 1
γi,ν = (ν + λi)

−a, ηi,ν = (ν + δi)
−b with (1/2, 1) ∋ a > b > 0 and a + b < 1.
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Regularized Gradient Response Schemes under monotonicity of F III

Theorem 69 (Almost Sure Convergence)

Let the iterate {x i,ν} be generated by (R-GR) for i ∈ N . Then the following
statement holds almost surely.
If lim sup

ν→∞

ηmax,ν

ηmin,ν
= 1, then {xk} converges to the least-norm Nash equilibrium,

i.e, limν→∞ xν = x∗ with x∗ = argminx∈X∗ ∥x∥.

Theorem 70 (Rate and Complexity)

For each i ∈ N , we set αi,k = (k + λi)
−a and ηi,k = (k + δi)

−b for some
λi > 0, δi > 0 with a ∈ (1/2, 1), a > b and a + b < 1. Then

E[G(x̂K )] = O
(
K−1/2+δ), ∀K ≥ 1. (74)

In addition, let x̂K represent an ϵ-equilibrium, i.e. E
[

G(x̂K )
]
≤ ϵ. Then the

sample complexity (# of sampled gradients) or iteration complexity (# of
projected grad steps) required to compute an ϵ-equilibrium is O

((
N/ϵ

)2+δ
)
.
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Problem Statement I

Aggregative Game

min
xi∈Xi

fi(xi , x̄) ≜ E [ψi(xi , x̄ ; ξ)]

▶ N = {1, · · · , n} is a group of n players, indexed by i ;
▶ Xi is the strategy set of player i , x = (x1, · · · , xN) is a strategy profile;
▶ player i has an objective fi(xi , x̄), where x̄ ≜

∑n
i=1 xi is the aggregate;

▶ ξ : Ω → Rm defined on the probability space (Ω,F ,P).

▶ Nash equilibrium (NE) is a strategy profile x∗ = {x∗
i }n

i=1 such that no
player can improve by unilateral deviation.

▶ Convexity of subproblems: Xi is a closed, compact, convex set; For any
y ∈ Rd , fi(xi , y) is C1 and convex in xi ∈ Xi .

▶ Existence of a stochastic oracle returning a sampled gradient
∇xiψi(xi , y ; ξ), ∇xi fi (xi , y) = E[∇xi ψi (xi , y ; ξ)] and
E[∥∇xi fi (xi , y)−∇xi ψi (xi , y ; ξ)∥2] ≤ ν2

i .

▶ Existence of a stochastic oracle that returns a sampled gradient ∇xiψi (xi , y ; ξ)
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Previous Work

▶ Consensus and Distributed Optimization.
[Olfati-Saber and Murray, 2004] [Ren, Beard and Atkins, 2005] [Nedić and Ozdaglar, 2009],

[Nedić, Ozdaglar and Parrilo, 2010], [Nedić and Olshevsky, 2015]
▶ Distributed schemes for Nash games

▶ Gradient response+consensus for aggregative games [Koshal et al., 2016]
▶ Aggregative games with coupling constraints [Paccagnan et al., 2017] [Belgioioso et

al., 2017], a semi-dencentralized algorithm, requiring a central node for the
update of the common multiplier.

▶ Generalized Nash equilibrium problems:
▶ Distributed primal-dual algorithms [Zhu and Frazzoli, 2017; Yi and Pavel, 2017].
▶ Distributed stochastic gradient scheme with constant stepsize [Yu et al., 2017],

mean-squared convergence to a neighborhood of the GNE.
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Our Work

▶ The players cannot observe all rival strategies, while they can interact
through a communication graph (connected) G = (N , E ,A):

▶ E is a collection of undirected edges;
▶ Neighbor set Ni =

{
j : (i, j) ∈ E

}
;

▶ The adjacency matrix A = [aij ]
n
i,j=1, where

aij > 0 if j ∈ Ni and aij = 0 otherwise such
that A is doubly stochasticity.

▶ We aim to design a fully distributed algorithm to compute an NE only
through local communications and computation.

▶ Can we achieve the best known deterministic rates?
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Distributed PGR under strong monotonicity of F

xi,k : its equilibrium strategy, vi,k : the average of the aggregate.

Distributed Variance-reduced PGR
Initialize: Set k = 0, and vi,0 = xi,0 ∈ Xi for any i ∈ N .
Iterate until convergence

Consensus (average among neighbors). v̂i,k := vi,k and repeat τk times

v̂i,k :=
∑
j∈Ni

aij v̂j,k ∀i ∈ N or compact form V̂k = Aτk Vk .

Strategy Update (walk along the negative gradient of the payoff).

xi,k+1 := ΠXi

[
xi,k − α

Sk

Sk∑
p=1

∇xiψi
(
xi,k , nv̂i,k ; ξ

p
k

) ]
(Strategy update)

vi,k+1 := vi,k + xi,k+1 − xi,k . (Update belief of aggregate)
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Analysis Sketch

F is ηϕ-strongly monotone and Lϕ-Lipschitz.

▶ Consensus error: based on
∣∣∣[Ak]

ij −
1
n

∣∣∣ ≤ θβk for a constant θ > 0 and

β ∈ (0, 1), by defining yk ≜
∑n

i=1 vi,k/n and DX ≜
∑n

j=1 max
xj∈Xj

∥xj∥,

∥yk − v̂i,k∥ ≤ θDXβ
∑k

p=0 τp + 2θDX

k∑
s=1

β
∑k

p=s τp ∀k ≥ 0.

▶ Suppose ϕ(x) ≜
(
∇xi fi(xi ,

∑n
i=1 xi)

)n
i=1 is ηϕ-strongly monotone and

Lϕ-Lipschitz continuous. Recursion on the conditional MSE.

E[∥xk+1 − x∗∥2|Fk ] ≤
(

1 − 2αηϕ + 2α2L2
ϕ

)
︸ ︷︷ ︸

contraction property

∥xk − x∗∥2 + α2
n∑

i=1

ν2
i /Sk︸ ︷︷ ︸

noise

+ 4αnDX

n∑
i=1

Li∥v̂i,k − yk∥+ 2α2n2
n∑

i=1

L2
i ∥v̂i,k − yk∥2

︸ ︷︷ ︸
consensus error

.
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Convergence Results–Geometric

Theorem 71 (Linear rate of convergence)

Set τk = k + 1, Sk =
⌈
ρ−(k+1)

⌉
for some ρ ∈ (0, 1). Suppose α ∈

(
0, ηϕ/L2

ϕ

)
,

define ϱϕ ≜ 1 − 2αηϕ + 2α2L2
ϕ and γ ≜ max{ρ, β}. Then

E[∥xk − x∗∥2] = O(max{ϱϕ, γ}k ).

Theorem 72 (Complexity Bounds)

Set τk = k + 1, α =
ηϕ

2L2
ϕ

and Sk =
⌈
ρ−(k+1)

⌉
with ρ ≜ max

{
1 − η2

ϕ

2L2
ϕ

, β

}
. For

obtaining ϵ−NE such that E[∥xK − x∗∥2] ≤ ϵ, the iteration complexity
K = O(ln(1/ϵ)) (optimal, deterministic), communication complexity∑K

k=0 τk = O(ln2(1/ϵ)), and the oracle complexity is
∑K

k=0 Sk = O (1/ϵ)
(optimal, SGD).

less projections and communications than SGD O (1/ϵ)
best known comm. comp. in dis. opt. is K ln(K )[Jakovetic, Xavier, and Moura, 14]
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Convergence Results–Polynomial

▶ We might not increase the samples too fast when the oracle is costly.
▶ Explore the performance with slower increasing sample-size?

Theorem 73 (Polynomial rate of convergence )

Set τk = ⌈(k + 1)u⌉ and Sk = ⌈(k + 1)v⌉ for some u ∈ (0, 1) and v > 0. Let
α ∈

(
0, ηϕ/L2

ϕ

)
and define ϱϕ ≜ 1 − 2αηϕ + 2α2L2

ϕ. Then we obtain a
polynomial rate of convergence E[∥xk+1 − x∗∥2] = O

(
(k + 1)−v),

Theorem 74 (Complexity Bounds)

Set τk = ⌈(k + 1)u⌉ and Sk = ⌈(k + 1)v⌉ for some u ∈ (0, 1) and v > 0. Then
the iteration, communication, and oracle complexity to obtain an ϵ−NE are
bounded by O((1/ϵ)1/v ), O((1/ϵ)(u+1)/v ), and O

(
(1/ϵ)1+1/v

)
, respectively.
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Regularized Distributed GR for monotone F I

Distributed Nash Equilibrium Computation via Iterative Tik. Reg.

Initialize: Let xi,0 ∈ Xi and vi,0 = hi(xi,0) for each i ∈ N . Let ν be a positive
integer. Let {γi,ν} and {ηi,ν} be the positive sequences of steplengths and
regularization parameters used by player i .
Iterate until ν > K
Consensus. Player i ∈ N receives the neighbors’ estimates vj,ν , j ∈ Ni,ν

and computes an intermediate estimate by

v̂i,ν =
∑

j∈Ni,ν

wij,νvj,ν . (75)

Strategy Update. Player i ∈ N updates strategy and agg. belief as follows.

xi,ν+1 = ΠXi

[
xi,ν − γi,ν (∇x i θi(xi,ν ,Nv̂i,ν) + ζi,ν + ηi,νxi,ν)

]
, (76)

vi,ν+1 = v̂i,ν + hi(xi,ν+1)− hi(xi,ν). (77)
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Consequently, the hisory Fν ≜ {x0, ζi,l , i ∈ N , l = 0, 1, · · · , ν − 1}. Then by
Algorithm 112 it is seen that x i,ν , v̂i,k,ν , i ∈ N are adapted to Fν .
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We impose the following conditions on the time-varying communication graph
Gν = {N , Eν}.

Assumption 4

(a) Wν is doubly stochastic for any ν ≥ 0;
(b) There exists a constant 0 < ς < 1 such that for all ν ≥ 0,

ωij,ν ≥ ς, ∀(i , j) ∈ N × Ni,ν .

(c) There exists a positive integer P such that the graph given by the union{
N ,

⋃P
l=1 Eν+l

}
is strongly connected for any ν ≥ 0.

For any ν ≥ 0, let Φ be defined as Φ(k , k + 1) = IN , where IN ∈ RN×N

denotes the identity matrix. We introduce the transition matrix
Φ(k , s) = Wk Wk−1 · · ·Ws from s ≥ 0 to k ≥ s.

Lemma 75
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Let Assumption 4 hold. Then there exist constants θ =
(
1 − ς

4N2

)−2
> 0 and

β =
(
1 − ς

4N2

)1/P ∈ (0, 1) such that for any k ≥ s ≥ 0 :∣∣∣[Φ(k , s)]ij − 1
N

∣∣∣ ≤ θβk−s, ∀i , j ∈ N . (78)

Proposition 76 (Consensus bound)

Let the constants θ and β be given in Lemma 75. Then for each player i ∈ N
and all ν ≥ 0,

∥σ(xν)− Nv̂i,ν∥ ≤ θMHNβν (79)

+ θN
ν∑

s=1

βν−sαmax,s−1

N∑
j=1

Lhj(C + ηmax,s−1Mj + ∥ζj,s−1∥).
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Theorem 77 (Almost Sure Convergence of Dist. R-GR)

The following statements holds almost surely. If lim sup
ν→∞

ηmax,ν

ηmin,ν
= 1, then {xν}

converges to the least-norm Nash equilibrium, i.e,

lim
ν→∞

xν = x∗ with x∗ = argmin
x∈X∗

∥x∥.

Theorem 78 (Convergence rate of Algorithm 112)

For each i ∈ N , let αi,ν = (ν + λi)
−a and ηi,ν = (ν + δi)

−b for some
λi > 0, δi > 0 with a ∈ (1/2, 1), a > b and a + b < 1. Then

E[G(x̂K )] = O
(
NK−b)+O

(
N5β−1(1 − β)−2K a−1), ∀K ≥ 1. (80)
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Corollary 79 (Rate and complexity of Dist. R-GR)

For each i ∈ N , we set γi,ν = (ν + λi)
−(1/2+τ) and ηi,k = (ν + δi)

−(1/2−2τ)for
some λi > 0, δi > 0 with 0 < τ < 1/4. Then for any K ≥ 1,

E[G(x̂K )] = O
(
NK−(0.5−2τ))+O

(
N5β−1(1 − β)−2K−(0.5−τ)). (81)

In addition, let x̂K represent an ϵ-equilibrium, i.e. E
[

G(x̂K )
]
≤ ϵ. Then the

sample complexity (number of sampled gradients) or equivalently iteration
complexity (number of proximal evaluations) required to compute an
ϵ-equilibrium is no smaller than

max

{
O

((
N/ϵ

) 1
0.5−2τ

)
,O

((
N5/(ϵβ(1 − β)2)

) 1
0.5−τ

)}
.

We can further obtain a simplified sample (or iteration) complexity
O

(( 1
ϵ

)2+ε̃
)

for some ε̃ > 0 when the impact of N and the network
connectivity parameter β are neglected.
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Basic Assumptions

◆ Convexity of subproblems
▶ Xi is a closed, compact, convex set.
▶ fi(xi , x−i) is convex and C2 in xi over an open set containing Xi for any

given x−i ∈
∏

j ̸=i Xj .

◆ Existence of a stochastic first-order oracle (SFO):
For any i ∈ N and x , ξ, (SFO) returns a sampled gradient ∇xiψi(xi , x−i ; ξ) s.t.
▶ Unbiased: ∇xi fi(xi , x−i) = E[∇xiψi(xi , x−i ; ξ(ω))];

▶ Bounded second moments: There exists Mi > 0 such that

E[∥∇xiψi(xi , x−i ; ξ(ω))∥2] ≤ M2
i .
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◆ Proximal best-response map

x̂(y) ≜ argmin
x∈X

[
N∑

i=1

E[ψi(xi , y−i ;ω)] +
µ

2
∥x − y∥2

]
, µ > 0

The objective function is separable in xi , player i ’s subproblem is

x̂i(y) ≜ argmin
xi∈Xi

[
E[ψi(xi , y−i ;ω)] +

µ

2
∥xi − yi∥2

]
.

◆ Fixed Point: x∗ = x̂(x∗); From [Facchinei and Pang, 2009]
,
▶ x∗ is an NE iff x∗ is a fixed point of the proximal map x̂(•)
▶ xk+1 = x̂(xk ) converges linearly to x∗ when x̂(•) is contractive

119 / 146



Games and Equilibria under Uncertainty: Existence and Computation

Inexact Best-response Schemes

Sufficient conditions for contractive PBR map:[Facch. & Pang, 2009]

▶ Define the N × N real matrix Γ = [γij ]
N
i,j=1 :

Γ ≜



µ
µ+ζ1,min

ζ12,max

µ+ζ1,min
. . .

ζ1N,max

µ+ζ1,min
ζ21,max

µ+ζ2,min

µ
µ+ζ2,min

. . .
ζ2N,max

µ+ζ2,min

...
. . .

ζN1,max

µ+ζN,min

ζN2,max

µ+ζN,min
. . . µ

µ+ζN,min


with
ζi,min ≜ infx∈X λmin

(
∇2

xi
fi(x)

)
, and ζij,max ≜ supx∈X ∥∇2

xi xj
fi(x)∥ ∀j ̸= i

measuring the coupling of players’ subproblem.
▶ If the spectral radius ρ(Γ) < 1, then there exist a scalar a ∈ (0, 1) and

monotonic norm | ∥ • ∥ | such that∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
 ∥x̂1(y ′)− x̂1(y)∥

...
∥x̂N(y ′)− x̂N(y)∥


∥∥∥∥∥∥∥

∣∣∣∣∣∣∣ ≤ a

∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
 ∥y ′

1 − y1∥
...

∥y ′
N − yN∥


∥∥∥∥∥∥∥

∣∣∣∣∣∣∣ .
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Motivation

Challenges

◆ Closed-form expression of proximal best-response map is unavailable in
finite time since the objective is expectation-valued

◆ We consider several inexact proximal best-response schemes
▶ best-response solutions are approximated via stochastic approximation

(SA)
▶ and the inexactness can be driven to zero by an increasing number of

projected gradient steps.
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Motivation

Algorithm Design I

Algorithm Synchronous inexact proximal best-response scheme

Set k = 0, xi,0 ∈ Xi ; Let {αi,k}k≥1 be a given sequence.

(1) For i = 1, . . . ,N, let xi,k+1 ∈ Xi be defined as follows:

xi,k+1 = x̂i(xk ) + εi,k+1

with {εi,k+1} satisfying E
[
∥εi,k+1∥2

∣∣Fk
]
≤ α2

i,k a.s., where
Fk = σ{x0, · · · , xk}.

(2) k := k + 1; If k < K , return to (1); else STOP.

x̂i(xk ) ≜ argmin
xi∈Xi

[
E[ψi(xi , x−i,k ;ω)] +

µ

2
∥xi − xi,k∥2

]
.

◆ Stochastic approximation (SA) to obtain an inexact best-response.

122 / 146



Games and Equilibria under Uncertainty: Existence and Computation

Inexact Best-response Schemes

Motivation

Algorithm Design II

zi,t+1 := ΠXi

[
zi,t − γt

(
∇xiψi(zi,t , x−i,k ; ξ

t
i,k ) + µ(zi,t − xi,k )

)]
, (SAi,k )

where zi,1 = xi,k , γi,t = 1/µ(t + 1). Set xi,k+1 = zi,ji,k .
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Convergence Analysis

Lemma 80 (Error Bounds of SA [Nemirovski et al., 2009])
Define ξi,k = (ξ1

i,k , · · · , ξ
ji,k
i,k ), and Fk = σ{x0, ξi,l , i ∈ N , 0 ≤ l ≤ k − 1}.

Assume that for any i ∈ N , the random variables {ξt
i,k}1≤t≤ji,k are iid and the

random vector ξi,k is independent of Fk . Then for any t ≥ 1 we have

E
[
∥zi,t − x̂i(xk )∥2∣∣Fk

]
≤ Qi

(t + 1)
, a.s.

where Qi ≜
2M2

i
µ2 + 2D2

Xi
, and DXi = sup{d(xi , x ′

i ) : xi , x ′
i ∈ Xi}.

E
[
∥εi,k+1∥2∣∣Fk

]
= E

[
∥xi,k+1 − x̂i(yk )∥2∣∣Fk

]
≤ Qi

ji,k
=: α2

i,k
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Convergence Analysis

Almost Sure Convergence

Let the sequence {xk}k≥0 be generated by the synchronous algorithm.
Assume that ∥Γ∥ < 1, and αi,k ≥ 0 with

∑∞
k=1 αi,k <∞ for any i ∈ N . Then

for any i ∈ N ,
lim

k→∞
xi,k = x∗

i a.s.

Convergence in Mean and of the Variance

Let the sequence {xk}∞k=1 be generated by the synchronous algorithm.
Assume that ∥Γ∥ < 1, and that 0 ≤ αi,k → 0 as k → ∞ for any i ∈ N . Then
for any i ∈ N ,
(a) (convergence in mean) lim

k→∞
E[∥xi,k − x∗

i ∥] = 0.

(b) (convergence of the variance of xk ) lim
k→∞

Var(xk ) = 0.

125 / 146



Games and Equilibria under Uncertainty: Existence and Computation

Inexact Best-response Schemes

Convergence Analysis

Geometric Convergence

Consider the synchronous scheme where E[∥xi,0 − x∗
i ∥] ≤ C ∀i ∈ N .

Assume that a = ∥Γ∥ < 1, and that αi,k = ηk ∀i ∈ V with η ∈ (0, 1). Define

uk = E


∥∥∥∥∥∥∥
∥x1,k − x∗

1 ∥
...

∥xN,k − x∗
N∥


∥∥∥∥∥∥∥
 .

Then, the following holds for k ≥ 0
(a) If η = a, q > a and D ≜ 1/ ln((q/a)e), then
uk ≤ (u0 +

√
Nk)ak ≤

√
N(C + D)qk .

(b) If η ∈ (a, 1), then uk ≤
(√

NC +
√

Nη
η−a

)
qk with q = η.

(c) If 0 < η < a, then uk ≤
(√

NC +
√

Na
a−η

)
qk with q = a.
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Overall Iteration Complexity

Overall iteration complexity

Consider the synchronous scheme and let inexact solutions be computed via
SA, where E[∥xi,0 − x∗

i ∥2] ≤ C2. Assume that a = ∥Γ∥ < 1 and
αi,k = ηk ∀i ∈ V with η ∈ (0, 1). Then the number of projected gradient

steps1 for i to achieve an ϵ−NE is no greater than O
(√

N
ϵ

)2
+

(
ln
(√

N
ϵ

))
.

The bound grows slowly in # of players N, a desirable feature when
faced by a large collection of players.
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Numerics

Comparison with Stochastic GR: Competitive portfolio Investment C.

OCinneide, B. Scherer, and X. Xu (2006)

Figure: Empirical Iteration Complexity Figure: Empirical Commun. Complex.

▶ The iteration complexity is of the same order as stochastic gradient
response (SGR); but the constant of SG is superior to that of the
synchronous BR scheme.

▶ Significant decrease in communication overhead compared to SGR;
communication overhead crucial in rendering a scheme impractical.
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Asynchronicity and delay

Asynchronous Scheme: Algorithm Design Bertsekas and Tsitsiklis (1989)

◆ Motivation:
In a large-scale network, players might not be able to make simultaneous
updates nor have access to their rivals’ latest information.

◆ Description:
▶ Ti ⊂ T = {0, 1, 2, · · · }: the set of times player i updates xi

▶ y i
k ≜ (x1,k−d i

1(k)
, · · · , xn,k−d i

N (k)) is available to player i if k ∈ Ti , where

d i
j (k) denotes the communication delay

◆ Assumptions
▶ Almost Cyclic Rule: There exists an integer B1 > 0 such that each player

updates its decision at least once during any time interval of length B1

▶ Partial Asynchronism: There exists an integer B2 ≥ 0 such that

0 ≤ d i
j (k) ≤ B2 ∀i , j = 1, · · · ,N, k ≥ 0
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Asynchronicity and delay

Algorithm Asynchronous inexact proximal BR scheme

Let k := 0, xi,0 ∈ Xi for i = 1, . . . ,N.

(1) For i = 1, . . . ,N, if k ∈ Ti , then set y i
k ≜ (x1,k−d i

1(k)
, · · · , xn,k−d i

N (k)).

(2) For i = 1, . . . ,N, if k ∈ Ti , then updates xi,k+1 ∈ Xi as follows:

xi,k+1 = x̂i(yk ) + εi,k+1

with εi,k+1 satisfying E
[
∥εi,k+1∥2

∣∣Fk
]
≤ α2

i,k a.s., where
Fk = σ{x0, · · · , xk}.
Otherwise, if k /∈ Ti , then xi,k+1 := xi,k .

(3) k := k + 1; If k < K , return to (1); else STOP.
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Asynchronicity and delay: Convergence Analysis

Define n0 = ⌈B2
B1
⌉, let βi,k denote the number of elements in Ti that are not

larger than k .

Lemma 7.1 (Linear Rate of Convergence)

Let the asynchronous inexact proximal best-response scheme be applied to
the N-player stochastic Nash game, where αi,k+1 = ηβi,k for some η ∈ (0, 1),

and E[∥xi,0 − x∗
i ∥] ≤ C ∀i ∈ N . Assume a = ∥Γ∥∞ < 1. If q > c ≜ ρ

1
B1 and

D > 1/ ln((q/c)e),

max
i∈N

E[∥x̂i,k − x∗
i ∥] ≤ ρ

− B1−1
B1 (C + D)qk ∀k ≥ 0,
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Asynchronicity and delay: Convergence Analysis

Iteration Complexity (Impact of delay and asynchronicity)

Consider the asynchronous algorithm and let the inexact proximal solutions
be computed via SA, where αi,k+1 = ηβi,k for η ∈ (0, 1). Suppose
a = ∥Γ∥∞ < 1. Then the number of projected gradient steps2 for i to compute

an ϵ−NE is no greater than O
(
(1/ϵ)2B1(1+⌈ B2

B1
⌉)+δ

)
.

update delay complexity bound

B1 B2 O
(
(1/ϵ)

2B1(1+⌈ B2
B1

⌉)+δ
)

1 B2 O
(
(1/ϵ)2(1+B2)+δ

)
1 0 O

(
(1/ϵ)2+δ)
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Asynchronicity and delay: Simulation Results

Set B1 = 1, the communication delays k − τ i
j (k) are independently

generated from a uniform distribution on the set {0, 1, · · · ,B2}.

Figure: Linear Convergence Figure: Empirical Iteration Complexity
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Randomized BR: Algorithm Design

Randomized Best-Response Scheme I

Literature review
▶ The randomized block-coordinate descent method [Y. Nestrerov (2012)]

partitions the coordinates into several blocks and randomly choses a
single block to update while the other blocks keep invariant at each
iteration.

▶ Generalized to the fixed point problem by [P. L. Combettes and J. C Pesquet (2015)],
in which a subset of block variables is randomly updated

Randomized Best-response: For any i ∈ N , let χi,k = 1 (or 0) if player i
updates at iteration k (or not).
◆ Assumption: For any i ∈ N , P(χi,k = 1) = pi > 0 and χi,k is independent
of Fk .
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Randomized BR: Algorithm Design

Randomized Best-Response Scheme II

Algorithm Randomized inexact proximal best-response scheme

Let k := 0, xi,0 ∈ Xi for i = 1, . . . ,N.

(1) If χi,k = 1, then xi,k+1 ∈ Xi is defined as follows:

xi,k+1 = x̂i(xk ) + εi,k+1

with εi,k+1 satisfying E
[
∥εi,k+1∥2

∣∣Fk
]
≤ α2

i,k a.s., where
Fk = σ{x0, · · · , xk}.
Otherwise, xi,k+1 = xi,k when χi,k = 0.

(2) k := k + 1; If k < K , return to (1); else STOP.
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Convergence Analysis

Almost Sure Convergence

Let the sequence {xk}k≥0 be generated by the randomized algorithm.
Assume that a = ∥Γ∥ < 1 and for any i ∈ N , 0 ≤ αi,k < 1 and∑∞

k=0 αi,k <∞ a.s. Then for any i ∈ N , limk→∞ xi,k = x∗
i a.s.

Geometric Convergence

Let the sequence {xk}k≥0 be generated by the randomized algorithm.3 Then
the following holds for k ≥ 0,

E [∥xk − x∗∥] ≤
√

N(C̃ + D̃)q̃k .
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Convergence Analysis

Overall Iteration Complexity

Let the randomized algorithm be applied with inexact solutions computed via
SA, where αi,k = ηβi,k+1 for some η ∈ (0, 1). Suppose a = ∥Γ∥ < 1. Then
expected number of projected gradient steps4 for i to compute an ϵ−NE is no

greater than O
(√

Npmax
ϵ̃

) ln(1/η̃2
0 )

ln(1/q̃)
+

⌈
ln(1/ϵ̃)
ln(1/q̃)

⌉
.
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Summary

Summary of findings

Update scheme Asymptotic convergence Rate of convergence Iteration complexity

Synchronous Algorithm
(using ∥.∥2 norm)

a.s. convergence
convergence in mean geometric

ϵ-NE2:
O
(
(
√

N/ϵ)2+δ
)

η ∈ (a, 1): O(N/ϵ2)

Randomized Algorithm
(using ∥.∥2 norm)

a.s. convergence
convergence in mean geometric

ϵ-NE2:

O
(
(
√

N/ϵ)2 ln(η̃
−1
0 )/ ln(η̃−1)+δ

)

Asynchronous Algorithm
(using ∥.∥∞ norm) convergence in mean geometric

ϵ-NE∞:

O
(
(1/ϵ)

2B1

(
1+⌈ B2

B1
⌉
)
+δ)

O
(
(1/ϵ)

2
(

1+⌈ B2
N ⌉

)
+δ)

Table: Summary of Contributions

◆ Key findings: the iteration complexity is O(1/ϵ2(1+c)+δ)
▶ c = 0 for the synchronous scheme
▶ c > 0 represents the positive cost of randomization in the randomized

scheme
▶ c > 0 represents the positive cost of asynchronicity and delay
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Summary

Our Work

▶ The players cannot observe rival strategies, while interacting through a
communication graph (connected) G = (N , E ,A):

▶ E is a collection of undirected edges;
▶ Neighbor set Ni =

{
j : (i, j) ∈ E

}
;

▶ The adjacency matrix A = [aij ]
n
i,j=1, where

aij > 0 if j ∈ Ni and aij = 0 otherwise such
that A is doubly stochastic.

▶ We aim to design a fully distributed algorithm to compute an NE only
through local communications and computation.

▶ Can we achieve the best known deterministic rates?
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Summary

Distributed PBR

Distributed Variable Sample-size Proximal Best-response Scheme

Initialize: Set k = 0, and vi,0 = xi,0 ∈ Xi for any i ∈ N .
Iterate until convergence

Consensus. v̂i,k := vi,k ∀i ∈ N and repeat τk times

v̂i,k :=
∑
j∈Ni

aij v̂j,k ∀i ∈ N .

Strategy Update (sample average objective), for any i ∈ N

xi,k+1 = argmin
xi∈Xi

[
1

Sk

Sk∑
p=1

ψi(xi , nv̂i,k ; ξ
p
k ) +

µ

2
∥xi − xi,k∥2

]
,

vi,k+1 := vi,k + xi,k+1 − xi,k .
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Summary

Main Results

▶ Assumption: proximal BR map is contractive with parameter a ∈ (0, 1).

Ti(y) ≜ argminxi∈Xi

[
fi(xi , ȳ) +

µ

2
∥xi − yi∥2

]
µ > 0.

▶ Geometric Convergence. Set τk = k + 1 and Sk =
⌈
η−2k⌉ with

η ∈ (0, 1). Then E[∥xk − x∗∥2] = O
(
max{a, γ}2k) , where

γ ≜ max{η, β}. The iteration, oracle, and communication complexity to
compute an ϵ-NE are O(ln(1/ϵ)), O (1/ϵ), and O

(
ln2(1/ϵ)

)
, respectively.

▶ Often computing a sampled gradient is costly and geometric growth is
impractical.

Polynomial growth in sample-size represents a “dial”.

▶ Polynomial Rate of Convergence. Set τk = ⌈(k + 1)u⌉ and
Sk = ⌈(k + 1)v⌉ for u ∈ (0, 1) and v > 0. Then
E[∥xk+1 − x∗∥2] = O

(
(k + 1)−v), the iteration, communication, and

oracle complexity to obtain an ϵ−NE are O((1/ϵ)1/v ), O((1/ϵ)(u+1)/v ),

and O
(
(1/ϵ)1+1/v

)
, respectively.
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Numerical Validation: Distributed VS-PGR and VS-PBR

Run both algorithms over a Erdős–Rényi graph with α = 0.04, τk = k + 1 and
Sk =

⌈
0.98−(k+1)

⌉
, and µ = 30.
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Summary

Summary of Contributions

min
xi∈Rdi

Fi(xi , x−i) ≜ E [ψi(x ; ξ)] + ri(xi).

Algorithm Sk Rate E[∥xk − x∗∥2] Iter. Comp. Oracle Comp. Ass.

VS-PGR ⌈ρ−(k+1)⌉ Linear: O(ρk ) O(ln(1/ϵ)) O(1/ϵ) SM
⌈(k + 1)v⌉ O(qk ) + O(k−v ) O((1/ϵ)1/v ) O(1/ϵ)(1+1/v) SM

VS-PBR ⌈ρ−(k+1)⌉ O(ρk ) O(ln(1/ϵ)) O(1/ϵ) CPM
⌈(k + 1)v⌉ O(ak ) + O(k−v ) O(1/ϵ1/v ) O(1/ϵ1+1/v ) CPM

SM: Strongly monotone, CPM: Contract. prox. BR Map
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Algorithm Sk Comm. τk Rate E[∥xk − x∗∥2 ] Iter. Comp. Oracle Comp. Comm. Comp

d-VS-PGR ⌈ρ−(k+1)⌉ k + 1 Linear: O(ρk ) O(ln(1/ϵ)) O(1/ϵ) O(ln2(1/ϵ))

⌈(k + 1)v ⌉ ⌈(k + 1)u⌉ O((k + 1)−v ) O((1/ϵ)1/v ) O((1/ϵ)1+1/v ) O((1/ϵ)
1+u

v )

d-VS-PBR ⌈ρ−(k+1)⌉ k + 1 Linear: O(ρk ) O(ln(1/ϵ)) O(1/ϵ) O(ln2(1/ϵ))

⌈(k + 1)v ⌉ ⌈(k + 1)u⌉ O((k + 1)−v ) O((1/ϵ)1/v ) O((1/ϵ)1+1/v ) O((1/ϵ)
1+u

v )

(d-VS-PGR) and (d-VS-PBR) schemes for Aggregative games (v > 0, u ∈ (0, 1))
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