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Mathematical Programs with Equilibrium Constraints
(MPEC) I

min
x,y

f (x, y)

subject to y ∈ SOL(Y,F (x, •)),
x ∈ X ,

(MPEC)

where f : Rn × Rm → R is a real-valued function, F : X × Y → Rm,
X ⊆ Rn and Y ⊆ Rm denote closed and convex sets, and SOL(Y,F (x, •))
denotes the solution set of the parametrized variational inequality problem
VI(Y,F (x, •)), given an upper-level decision x.
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Background on VIs

1 Recall that the variational inequality problem VI(Y,F (x, •)) requires a vector
y in the set Y such that

(ỹ − y)TF (y) ≥ 0, ∀ ỹ ∈ Y. (VI(Y,F ))

2 VIs [Facchinei and Pang, 2003] subsume
1 Smooth convex optimization problems
2 A range of equilibrium problems (including Nash, traffic, and economic

equilibrium problems)
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Example: Convex optimization with quadratic objectives

Suppose Q ⪰ 0.

min
y∈Y

1
2y

TQy + cTy (1)

y is a minimizer if and only if y is a solution of VI(Y,F ) where F (y) = Qy + c ,
i.e. y solves

(ỹ − y)T (Qy + c) ≥ 0, ∀ỹ ∈ Y.

Example: Convex noncooperative games with quadratic objectives

Suppose Qii ⪰ 0 for i = 1, · · · ,N.

min
yi∈Yi

1
2y

T
i Qiiyi +

∑
j ̸=i

yTj Qijyj + cTi yi (2)

Then {y1, · · · , yN} is a Nash equilibrium if and only if y is a solution of VI(Y,F )

where F (y) = Qy + c and Y ≜
∏N

i=1 Yi .

4 / 48



Introduction Stochastic MPECs Hierarchical games

Stochastic variational inequality problem I

1 Recall that the stochastic variational inequality problem VI(Y,F ) where
Fi (y) ≜ E[Gi (y, ω)] for i = 1, · · · , n.

2 Capture stochastic convex optimization problems and noncooperative games

Example: Convex stochastic noncooperative games

Suppose the ith player solves

min
yi∈Yi

E[fi (y, ω)], (Playeri (y−i ))

given y−i for i = 1, · · · ,N. Then {y1, · · · , yN} is a Nash equilibrium if and only if
y is a solution of VI(Y,F ) where

F (y) =

E[∇y1 f1(y, ω)]
...

E[∇yN fN(y, ω)]

 and Y ≜
N∏
i=1

Yi .
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Stochastic variational inequality problem II

Much research on SVIs: Existence/uniqueness [Ravat and S, 2012,2015], SAA schemes
[Shapiro, Xu, etc.], SA schemes [Xu, Lan, S, Yousefian, Jofre & Thompson, etc]

SVI(Y,F ) requires a vector y in the set Y such that

(ỹ − y)TF (x, y) ≥ 0, ∀ ỹ ∈ Y. (VI(Y,F )
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MPECs

A hierarchical framework where y is a solution to a lower-level variational
inequality problem and x is an upper-level decision. Captures...

A subclass of bilevel optimization problems

Stackelberg equilibrium problems

Frictional contact problems

Market design problems in power systems

Design in traffic equilibrium problems

See [Luo, Pang and Ralph, 1996]
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Challenges

In the space of x , y , the MPEC is a challenging generalization of nonconvex and
nonlinear programs

Such problems lack and interior and standard regularity conditions fail (LICQ,
MFCQ) at at any feasible point.

Standard convergence theory for NLP does not apply

Algorithms

Interior schemes [Pang, Ralph, Wright, Nocedal, Leyffer etc., 2000–2010]

SQP schemes [Anitescu, Ralph, Wright, etc., 2000–2010]

Implicit schemes [Require y(•) to be single-valued] [Pang, Outrata, etc.,
1995–2010]

Limited extensions to stochastic MPECs [Shapiro, Xu, Ralph, 2010-2015]

Gap: No available non-asymptotic guarantees even for deterministic regimes
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The stochastic MPEC of interest

min
x,y

f (x, y)

subject to y ∈ SOL(Y,E[G (x, •, ω)]),
x ∈ X .

(SMPECexp)

min
x,y(ω)

E[f (x, y(ω))]

subject to y(ω) ∈ SOL(Y(x, ω),G (x, •, ω)), for a.e. ω

x ∈ X .

(SMPECas)
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Assumptions I

Assumption (Properties of f ,F ,X ,Y)

(a.i) f (•, y(•)) is L0-Lipschitz continuous on X + η0B for some η0 > 0. f (x, •) is Lipschitz with the

parameter L̃0 > 0 for all x ∈ X + η0B for some η0 > 0.
(a.ii) X ⊆ Rn and Y ⊆ Rm are nonempty, closed, and convex sets.
(a.iii) F (x, •) is a µF -strongly monotone and LF -Lipschitz continuous map on Y uniformly in x ∈ X .

Consider the problem (SMPECas).

(b.i) f̃ (•, y(•, ω), ω) is L0-Lipschitz continuous on X + η0B for every ω ∈ Ω and for some η0 > 0. f (x, •) be

Lipschitz with the parameter L̃0 > 0 for all x ∈ X + η0B for some η0 > 0.
(b.ii) X ⊆ Rn and Y ⊆ Rm are closed and convex sets.
(b.iii) G(x, •, ω) is a µF -strongly monotone and LF -Lipschitz continuous map on Y uniformly in x ∈ X for
every ω ∈ Ω.

Recall that F is said to be µ-strongly monotone if (F (x) − F (y))T (x − y) ≥ η∥x − y∥2 for any x, y ∈ X .
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Assumptions II

Proposition (Patrikkson and Wynter, 1999)

Consider the problem (SMPECas). Suppose Assumption ?? (a.ii, a.iii) hold.
Suppose f̃ (•, •, ω) is continuously differentiable on C ×Rm where C is an open set
containing X , and X is bounded. Then the function f , defined as
f (x) ≜ E[f̃ (x, y(x, ω), ω)], is Lipschitz and directionally differentiable on X .
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Algorithmic framework

Consider the problem (SMPECexp). When the lower-level problem is single-valued,
this problem reduces to the following.

min
x∈X

f (x, y(x)), (3)

where ỹ ≡ y(x) is the unique solution to the strongly monotone variational
inequality problem:

(ŷ − ỹ)⊤F (x, ỹ) ≥ 0, ∀ŷ ∈ Y. (4)

Consider the smoothing of f given by fη, defined as

fη(x, y(x)) ≜ Eu∈B[f (x+ ηu, y(x+ ηu))], (G-Smooth)
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Background on smoothing

Randomized or convolution-based smoothing goes back to Steklov (1907) and
Sobolev.

Nemirovski and Yudin [1983]

Norkin [1995]

.....

De Farias and Lakshmanan [2005]

Fixed smoothing for stochastic convex optimization: Yousefian, Nedić, and S
[2010,2012], Duchi [2012]

Extensions to diminishing smoothing with application to games [Yousefian,
Nedić and S, 2016...]

Fixed smoothing: Zeroth-order deterministic methods [Nesterov and
Spokoiny [2017] (This has some interesting relationships to work on FD/SP
methods (see work by J. Spall on SPSA).
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Algorithm definition I

A naive projected gradient framework

xk+1 := ΠX [xk − γk∇xf (xk , y(xk))] . (5)

Problem. f (•, y(•)) is not smooth. In fact, we do not even have access to a
subgradient even if f (•, y(•)) is convex over X .

Resolution. Employ convolution-based smoothing.
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Lemma (Properties of spherical smoothing)

Suppose h : Rn → R is a continuous function and η > 0 is a given scalar. Let hη be defined as

hη (x) ≜ Eu∈B [h(x + ηu)].

(i) The smoothed function hη is C1 over X and for any x ∈ X , where

∇xhη (x) =
(

n
η

)
Ev∈ηS

[
v((h(x+v)−h(x))

∥v∥

]
. (6)

(ii) Suppose h is L0-Lipschitz, i.e. h ∈ C0,0(Xη ). For any x, y ∈ X ,

|hη (x) − hη (y)| ≤ L0∥x − y∥, (hη is L0-Lipschitz) (7)

|hη (x) − h(x)| ≤ L0η, (Bound on diff. between h and hη ) (8)

∥∇xhη (x) − ∇xhη (y)∥ ≤ L0n
η

∥x − y∥. (∇xhη is
L0
η

-smooth) (9)

(iii) If h is convex and h ∈ C0,0(Xη ), then hη is convex and h(x) ≤ hη (x) ≤ h(x) + ηL0 for any x ∈ X . Further ∇x hη (x) ∈ ∂ϵh(x) where

ϵ ≜ ηL0.

(v) Suppose h ∈ C0,0(Xη ) with parameter L0. For any v ∈ ηS, gη (x, v) ≜
(

n
η

)
(h(x+v)−h(x))v

∥v∥ . Then, ∀x ∈ X ,

Ev∈ηS [∥gη (x, v)∥2] ≤ L20n
2.

15 / 48



Introduction Stochastic MPECs Hierarchical games

Comments

Spherical smoothing studied by Nemirovski and Yudin (1983);

Part (i) of our Lemma inspired by Flaxman et al. (2005) who considered
Gaussian smoothing.

Other parts either follow in a fashion similar to Gaussian smoothing
(Nesterov and Spokoiny, 2017) or are directly proven.
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Smoothing of implicit function f I

Consider the smoothing of f given by fη, defined as

fη(x, y(x)) ≜ Eu∈B[f (x+ ηu, y(x+ ηu))], (G-Smooth)

where u is uniformly distributed in the unit ball B.

A gradient-based framework

xk+1 := ΠX [xk − γkgη(xk , y(xk))] , (10)

where
gη(x, y(x)) ≜

(
n
η

)
Ev∈ηS

[
v((f (x+v ,y(x+v))−f (x,y(x)))

∥v∥

]
.
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Asymptotic guarantees

Lack of asymptotics. Unforunately, a fixed η leads to approximate solutions.

Introduce iterative smoothing with ηk ↓ 0 at suitable rate.

A iteratively smoothed gradient-based framework

xk+1 := ΠX [xk − γkgηk
(xk , y(xk))] . (11)
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Exact gradients unavailable

Lack of access to gη(x, y(x)). Utilize an unbiased estimate given by
gη(x, y(x), v), defined as

gη(x, y(x), v) ≜

(
n

η

)[
(f (x+ v , y(x+ v))− f (x, y(x))) v

∥v∥

]
. (12)

Introduce iterative smoothing + sampling.

A iteratively smoothed sampled gradient framework

xk+1 := ΠX [xk − γkgηk
(xk , y(xk), vk)] . (13)
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Exact evaluation of y(x) unavailable

Problem. Unfortunately y(x) is unavailable in closed-form.

Introduce iterative smoothing + sampling + inexact solutions of y(x).

An inexact iteratively smoothed sampled gradient framework

xk+1 := ΠX [xk − γk (∇xfηk
(xk , yϵk (xk), vk))] . (14)

where E
[
∥yϵk (xk)− y(xk)∥2 | xk

]
≤ ϵk and yϵk (xk) ≜ y(xk) + ϵ̃k .

Challenge. Unfortunately, ϵ̃k is not necessarily conditionally zero mean
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Computing approximate values of y(x)

1 If F (x, y(x)) ≜
(
E[Gi (x, y(x), ω)]

)n
i=1

, y(x) is a solution to the parametrized
stochastic variational inequality problem VI(Y,F (x, •)).

(ỹ − y(x))TF (x, y(x)) ≥ 0, ∀ỹ ∈ Y (VI(Y,F (x, •)))

2 Generate random realizations of the stochastic mapping G (x̂k , yt , ωℓ,t) for
ℓ = 1, . . . ,Mt

yt+1 := ΠY

[
yt − α

∑Mt
ℓ=1 G(x̂k ,yt ,ωℓ,t)

Mt

]
(15)

3 Under some conditions, we may recover linear rates of convergence, i.e. after
tk steps of (??), we obtain that

E[∥yϵ(xk)− y(xk)∥2] ≤ Cqtk ≜ ϵk . (16)
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An inexact zeroth-order framework

Given an x0 ∈ X , for k = 0, 1, 2, · · ·

xk+1 := ΠX [xk − γkgηk
(xk , yϵk (xk), vk)] , (17)

where {yϵk (xk)} represents an increasingly accurate approximation of
{y(xk)}.
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Properties of inexact zeroth-order gradient

Lemma (Properties of the inexact zeroth-order gradient)

Suppose F (x, •) is a µF -strongly monotone and Lipschitz continuous map on Y
uniformly on X . In addition, f (x, •) is L̃0-Lipschitz for all x ∈ X + η0B.

Suppose E[∥yϵ(x)− y(x)∥2 | x] ≤ ϵ almost surely for any x ∈ X .

(a) E[∥gη,ϵ(x, v)∥2 | x] ≤ 3n2
(

2L̃2
0ϵ

η2 + L20

)
, a.s. .

(b) E
[
∥gη,ϵ(x, v)− gη(x, v)∥2 | x

]
≤ 4L̃2

0n
2ϵ

η2 , a.s. .
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Setting: f (•, y(•)) is convex on X

Definition (Parameters)

1 γk := γ0√
k+1

and ηk := η0√
k+1

, respectively for all k ≥ 0.

2 Suppose α ≤ µF

2L2
F
, Mt := ⌈M0ρ

−t⌉ for t ≥ 0 for ρ ∈ (0, 1) and M0 ≥
2ν2

y

L2
F
.

3 Let tk := ⌈τ ln(k + 1)⌉ where τ ≥ −2
ln(max{1−µFα,ρ}) .

Theorem (Rate statements and complexity results)

Consider the sequence {x̄k} generated by applying inexact zeroth-order scheme.

(a) For all K , we have E [f (x̄K , y(x̄K ))]− f ∗ ≤ O
(

1√
K

)
.

(b) Suppose γ0 = O( 1
nL0

) and r = 0. Let ϵ > 0 be an arbitrary scalar and Kϵ be
such that E [f (x̄Kϵ , y(x̄Kϵ))]− f ∗ ≤ ϵ. Then the sample complexity of

(b-1) upper-level evals. of y(•) is O
(
n2L20ϵ

−2
)
.

(b-2) lower-level evals. is O
(
n2τ̄L2τ̄0 ϵ−2τ̄

)
, where τ̄ ≥ 1− τ ln(ρ).
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An inexact accelerated zeroth-order scheme

In this part, we consider the following (SMPEC).

min
x∈X

E[f̃ (x, y(x, ω))] (SMPECas)

This problem is equivent to this possibly semi-infinite MPEC.

min
x∈X

E[f̃ (x, y(ω))] (SMPECas)

subject to y(ω) solves VI(Y,G (x, •, ω)) for every ω ∈ Ω. (18)

Given an x0 ∈ X , for k = 0, 1, 2, · · ·

zk+1 := ΠX [xk − γkgηk ,Nk
(xk , vk)]

xk+1 = zk+1 + βk (zk+1 − zk) ,
(19)

where gηk ,Nk
(xk , vk) represents a mini-batch zeroth-order gradient estimator.

λk+1 :=
1+

√
1+4λ2

k
2

, βk =
(λk−1)
λk+1
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Inexact accelerated zeroth-order method

Proposition (Rate and complexity statement)

Suppose ηk = 1
k , γk = 1

2k , and Nk = ⌊ka⌋ for a = 1 + δ.

(a) For any k , E[f (zk)− f (x∗)] ≤ O
(
1
k

)
.

(b) Suppose K ϵ is such that E[f (zk)− f (x∗)] ≤ ϵ. Then
∑Kϵ

k=1 Nk ≤ O(1/ϵ2+δ).
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Setting: f (•, y(•)) is not necessarily convex

Problem of interest where y(x) is a solution to a stochastic VI.

min
x∈X

f (x, y(x))

subject to x ∈ X .
(20)

Challenge: Nonsmoothness, nonconvexity, and stochasticity.

Smoothing. Consider the smoothed implicit problem.

min
x∈X

fη(x, y(x))

subject to x ∈ X .
(21)
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Stationarity for nonsmooth nonconvex problems

We begin by defining the directional derivative, a key object necessary in
addressing nonsmooth and possibly nonconvex optimization problems.

Definition (Clarke (1998))

The directional derivative of h at x in a direction v is defined as

h◦(x, v) ≜ lim sup
y→x,t↓0

(
h(y + tv)− h(y)

t

)
. (22)

The Clarke generalized gradient at x can then be defined as

∂h(x) ≜ {ξ ∈ Rn | h◦(x, v) ≥ ⟨ξ, v⟩, ∀v ∈ Rn} . (23)

1 If h is differentiable, ∂xh(x) = ∇xh(x).

2 If h is convex, this object reduces to the standard subdifferential.
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ϵ-Clarke generalized gradient

Proposition (Properties of Clarke generalized gradients (Clarke, 1998))

Suppose h is Lipschitz continuous on Rn. Then the following hold.

(i) ∂h(x) is a nonempty, convex, and compact set and ∥g∥ ≤ L for any
g ∈ ∂h(x).

(ii) h is differentiable almost everywhere.

(iii) ∂h(x) is an upper semicontinuous map defined as

∂h(x) = conv

{
g | g = lim

k→∞
∇xh(xk), Ch ̸∋ xk → x

}
.

We may also define the ϵ-generalized gradient (Goldstein (1977)) as

∂ϵh(x) ≜ conv {ξ : ξ ∈ ∂h(y), ∥x− y∥ ≤ ϵ} . (24)
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Stationarity of smoothed problem vs ϵ−Clarke stationarity

Proposition

Suppose h is locally Lipschitz and X ⊆ Rn is closed, convex, and bounded.

(i) (Unconstrained, Goldstein 1977) For any η > 0 and any x ∈ Rn,
∇hη(x) ∈ ∂2ηh(x). If 0 ̸∈ ∂h(x), ∃η such that ∇xhη̃(x) ̸= 0 for η̃ ∈ (0, η].

(ii) (Constrained) For any η > 0 and any x ∈ X ,

[0 ∈ ∇xhη(x) +NX (x)] =⇒ [0 ∈ ∂2ηh(x) +NX (x)] . (25)

In short: Stationarity of η−smoothed problem =⇒ 2η-Clarke stationarity.
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Stationarity and relation to original problem

Definition (The residual mappings)

Given β > 0 and η > 0, for any x ∈ Rn. Let the residual mappings Gη,β(x) and

G̃η,β(x) be defined as follows where ẽ ∈ Rn is an arbitrary given vector.

Gη,β(x) ≜ β
(
x− ΠX

[
x− 1

β∇x fη(x, y(x))
])

, (26)

G̃η,β(x) ≜ β
(
x− ΠX

[
x− 1

β (∇x fη(x, y(x)) + ẽ)
])

, (27)

Lemma

For any η, β > 0,

[Gη,β(x) = 0] ⇐⇒ [0 ∈ ∇xfη(x, y(x)) +NX (x)] =⇒ [0 ∈ ∂2ηfη(x, y(x)) +NX (x)] .
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Rate and complexity statements

Theorem (Rate statements and complexity results)

For any γ < η
nL0

, ℓ ≜ ⌈λK⌉, and all K > 2
1−λ , E

[
∥Gη,1/γ(xR)∥2

]
≤ O

(
1
K

)
.

Suppose γ = η
2nL0

and η = 1
L0
. Let ϵ > 0 be an arbitrary scalar and Kϵ be such

that E
[
∥Gη,1/γ(xR)∥2

]
≤ ϵ. Then the sample complexity

1 of upper-level projs. is O
(
n4L40ϵ

−2
)
.

2 of lower-level projs is O
(
n6L60ϵ

−3
)
.
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Numerics: A stochastic Stackelberg-Nash-Cournot game

For a given x ≥ 0, let (q1(x , ω), . . . , qN(x , ω)) be a set of quantities for every
ω ∈ Ω and each qi (x , ω) solve the following, assuming that qj(x , ω), j ̸= i are
fixed:

max
qi≥0

qip
(
qi + x +

∑N
j=1,j ̸=iqj(x , ω), ω

)
− fi (qi ). (Stack-followeri )

Accordingly, let Q(x , ω) ≜
∑N

i=1 qi (x , ω). Then (x∗, q(x∗)) is said to be a
Stackelberg-Nash-Cournot equilibrium solution if x∗ solves

max
0≤x≤xu

E[xp(x + Q(x , ω), ω)]− f (x), (Stack-leader)

where p(x , ω) = a(ω)− bx and let fi (q) =
1
2cq

2 for i = 1, · · · ,N, and
f (x) = 1

2dx
2.
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Figure: Trajectories for (ZSOL), (ac-ZSOL) and Nesterov on the convex SMPECas
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Table: Errors and CPU time comparison of the three schemes with different parameters

(ZSOL) (acc-ZSOL) (SAA)
E[f ∗ − f (x̄)] CPU E[f ∗ − f (x̄)] CPU E[f ∗ − f (x)] CPU

N = 10
b = 1

c = 0.05 1.3e-3 0.8 5.2e-5 5.1 2.5e-4 16.8
c = 0.1 5.8e-4 0.9 2.2e-5 5.4 3.5e-4 20.4

b = 0.5
c = 0.05 1.0e-3 0.8 4.8e-5 5.5 1.9e-4 19.1
c = 0.1 1.1e-3 0.8 5.8e-5 5.3 4.2e-4 18.5

N = 15
b = 1

c = 0.05 7.8e-4 1.0 2.9e-5 5.3 1.4e-4 58.3
c = 0.1 5.5e-4 1.0 2.1e-5 5.5 2.3e-4 54.3

b = 0.5
c = 0.05 9.9e-4 1.0 2.5e-5 5.0 1.5e-4 49.9
c = 0.1 8.2e-4 1.0 2.0e-5 5.1 8.4e-4 49.2

N = 20
b = 1

c = 0.05 4.3e-4 1.3 2.5e-5 5.3 1.3e-4 152.7
c = 0.1 3.9e-4 1.3 1.1e-5 5.1 3.1e-4 123.1

b = 0.5
c = 0.05 6.8e-4 1.2 2.0e-5 5.2 2.8e-4 129.7
c = 0.1 4.0e-4 1.3 3.1e-5 5.1 7.2e-4 101.3

The error and CPU time are the average results of 20 runs
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minimize
x

−x21 − 3x2 − 4y1 + y2
2

subject to x21 + 2x2 ≤ 4

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 2

minimize
y

E[2x21 + y2
1 + y2

2 − ξ(ω)y2]

subject to x21 − 2x1 + x22 − 2y1 + y2 ≥ −3

x2 + 3y1 − y2 ≥ 4

y1 ≥ 0, y2 ≥ 0,
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Figure: Trajectories for (VR-ZSOL) on the non-convex SMPECexp
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Table: Errors comparison of the three schemes with different parameters

ZSOL NLPEC BARON
E[f (x̄)] local optimum global optimum

(a, b) = (1, 0)
(c, d) = (1, 1) -7.50 -7.20 -7.50
(c, d) = (2, 2) -9.23 -9.04 -9.23
(c, d) = (3, 3) -9.25 -9.10 -9.25

(a, b) = (5, 0)
(c, d) = (1, 1) -11.50 -7.20 -11.50
(c, d) = (2, 2) -13.23 -9.04 -13.23
(c, d) = (3, 3) -13.25 -9.10 -13.25

(a, b) = (10, 0)
(c, d) = (1, 1) -16.48 -7.20 -16.50
(c, d) = (2, 2) -18.20 -9.04 -18.23
(c, d) = (3, 3) -18.23 -9.10 -18.25

The error of (ZSOL) in the table is the average results of 20 runs
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Definition of game

We consider an N-player noncooperative game where the ith player’s prob-
lem is defined as the following hierarchical optimization problem.

min
xi∈X i

fi (x
i , x−i ) ≜ E[g̃i (xi , x−i , ω)] + E[h̃i (xi , yi (x, ω), ω)] (Playeri (x−i ))

Player problems are stochastic and nonconvex in full space
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Smoothed games I

Definition (An η-smoothed noncooperative game Gη)

Consider a game G ∈ Gcbl
pot in which the ith player solves (Playeri (x−i )). Suppose

Gη denotes a related game in which for i = 1, · · · ,N, the ith player’s smoothed
problem is defined as .

min
xi∈X i

fi,η(x
i , x−i ), (Playeri,η(x−i ))

where fi,η(xi , x−i ) ≜ E[fi (xi + ui , x−i )] where Bi ⊆ Rni is a sphere centered at the
origin.
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Smoothed games II

Bi (x) ≜ argmin
vi∈Xi

[
fi (v

i , x−i ) + c
2∥v

i − xi∥2
]
. (PBRi (x))

Similarly, we may define the η-smoothed proximal best-response of player i as
follows.

Bi,η(x) ≜ argmin
vi∈Xi

[
fi,η(v

i , x−i ) + c
2∥v

i − xi∥2
]
. (SPBRi,η(x))
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Smoothed games III

Proposition (Fixed-point of (SPBRη) is NE of Gη)

Consider an N-player noncooperative game G where the ith player solves
(Playeri (x−i )), given rival decisions x−i . For i = 1, · · · ,N, suppose fi (•, x−i ) is
convex on Xi for any x−i ∈ X−i . Suppose xη ≜ {x1,η, · · · , xN,η} is a fixed point
of the η-smoothed best-response map. Then the following hold.

(a) xη is a fixed point of (SPBRη(•)), i.e. xi,η is a minimizer of SPBRi,η(x−i,η)
for i = 1, · · · ,N if and only if xη is a Nash equilibrium of Gη.

(b) If xη is a fixed point of SPBRη(•), then xη is an ηβ̄-Nash equilibrium of G

where β̄ ≜ max
i∈{1,··· ,N}

βi .
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Research gaps I

No available schemes for computing equilibria for relatively general settings

Approximations where subproblems are solved as NLPs and joint necessary
conditions are resolved [Leyffer and Munson [2005]]; SAA schemes [De
Miguel and Xu [2009]; again SAA problems are MPECs for which stationary
points are available.

Are there asymptotics for an efficient algorithm for computing an
ϵ-equilibrium?
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An asynchronous inexact proximal best-response scheme

Asynchronous relaxed smoothed proximal best-response (ARSPBR)
scheme

(0) Let k = 0, zi,0 = xi,0 ∈ Xi for i = 1, · · · ,N, and pi ∈ (0, 1) for

i = 1, · · · ,N with
∑N

i=1 pi = 1. Given η > 0 and relax. seq. {γk}.
(1) Select a player ik = i ∈ {1, · · · ,N} with probability pi > 0.

(2) Update zk+1 and xk+1 as follows.

zi,k+1 :=

{
(1− γk)xi,k + γk

(
Bi,η(xk)

)
; i = ik

xi,k ; i ̸= ik

xi,k+1 :=

{
zi,k+1 + ϵi,k+1; i = ik

zi,k+1; i ̸= ik .

(ARSPBR)

(3) Stop if k > K , Stop; else return to Step 1, k := k + 1.
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Almost sure convergence guarantees available.

Proposition (Almost-sure convergence for asynchronous relaxed
inexact best-response scheme)
Consider a game G ∈ Gchl . For any i ∈ {1, · · · , N}, suppose fi (•, x

−i ) is a convex function for any x−i ∈ X−i and Xi ⊆ Rni is a closed

and convex set. Consider the smoothed counterpart of G , denoted by Gη where Gη ∈ Gchl
pot ; for any i ∈ {1, · · · , N}, suppose fi,η (•, x−i )

denotes the η-smoothing of fi (•, x
−i ). Suppose Pη denotes the potential function of Gη where Pη (x) ≥ P̃ for any x ∈ X + ηB, where P̃ denotes a

lower bound on Pη . Suppose Bi and Bi,η denote the proximal best-response and smoothed proximal-response for i ∈ {1, · · · , N}. Then the

following hold for any i ∈ {1, · · · , N}. Consider a sequence {xk} generated by (ASRPBR) scheme. Then the following hold.

(a) For k ≥ 0, the following holds almost surely.

E[Pη (xk+1) − P̃η | Fk ] ≤ (Pη (xk ) − P̃η ) − γk

(
c − Lγk

2

)
∥Bi,η (xk ) − xi,k∥2

+
N∑
i=1

MiE[∥ϵ
i,k+1∥ | Fk ]. (28)

(b) Suppose one of the following hold. (i) {γk} is a decreasing non-summable but square-summable sequence where γk < 2c
L

for every k; (ii)

γk = γ = 1 and c > L
2
. Furthermore, suppose

∑∞
k=0

∑N
i=1 MiE[∥ϵ

i,k+1∥ | Fk ] < ∞. Then

lim
k→∞

N∑
i=1

∥xi,k − Bi,η (xk )∥2 = 0 almost surely. (29)

(c) Suppose (??) holds. Then {xk} converges to the set of Nash equilibria of Gη in an a.s. sense.
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Numerics

Figure: Trajectories for (ARSPBR) with different relaxation and smoothing parameters
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Table: Errors and CPU time of (ARSPBR) with (γk = 1) and (γk = k−0.51)

N
γk = 1 γk = k−0.51

res(xk ) CPU res(xk ) CPU
13 6.1e-4 7.6 4.0e-5 7.6
23 6.2e-4 9.3 1.3e-4 9.2
33 6.4e-4 11.4 4.8e-4 11.4
43 6.0e-4 15.4 6.3e-4 15.3

ζt
γk = 1 γk = k−0.51

res(xk ) CPU res(xk ) CPU
1e-2 6.1e-4 7.6 4.0e-5 7.6
5e-3 6.8e-4 7.4 4.8e-5 7.3
2e-3 7.2e-4 7.5 5.2e-5 7.4
1e-3 7.6e-4 7.7 5.6e-5 7.6

a
γk = 1 γk = k−0.51

res(xk ) CPU res(xk ) CPU
[33, 37] 6.1e-4 7.6 4.0e-5 7.6
[30, 40] 6.8e-4 7.7 4.3e-5 7.4
[25, 45] 7.2e-4 7.5 5.0e-5 7.6
[20, 50] 8.0e-4 7.7 5.1e-5 7.8

The error and CPU time in the table is the average results of 20 runs
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Concluding remarks

Many questions/directions remain.

Suppose lower-level problem loses strong monotonicity or even monotonicity.

Schemes should apply for computing ϵ-Clarke stationary points of nonsmooth
nonconvex stochastic optimization.

Can we extend these zeroth-order schemes to other types of hierarchical
simulation optimization problems?

S. Cui*, UVS, and F. Yousefian, Complexity guarantees for an implicit smoothing-enabled method for

stochastic MPECs, Mathematical Programming, 1–73, (2022).

S. Cui* and UVS, On the computation of equilibria in monotone and potential stochastic hierarchical

games, Mathematical Programming, 1–59, (2022).
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