Hierarchical games

Simulation-based Schemes for Hierarchical Optimization and Games under Uncertainty

Uday V. Shanbhag^+ $\,$

Jointly with Shisheng Cui⁺ and Farzad Yousefian[%]

East Coast Optimization Meeting, George Mason University April 14, 2023

+: Penn State; %: Rutgers University

1 / 48

(日)

Mathematical Programs with Equilibrium Constraints (MPEC) I

$$\begin{array}{ll} \min_{\mathbf{x},\mathbf{y}} & f(\mathbf{x},\mathbf{y}) \\ \text{subject to} & \mathbf{y} \in \text{SOL}(\mathcal{Y},F(\mathbf{x},\bullet)), \\ & \mathbf{x} \in \mathcal{X}, \end{array}$$
 (MPEC)

where $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is a real-valued function, $F : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^m$, $\mathcal{X} \subseteq \mathbb{R}^n$ and $\mathcal{Y} \subseteq \mathbb{R}^m$ denote closed and convex sets, and $SOL(\mathcal{Y}, F(\mathbf{x}, \bullet))$ denotes the solution set of the parametrized variational inequality problem $VI(\mathcal{Y}, F(\mathbf{x}, \bullet))$, given an upper-level decision \mathbf{x} .

Background on VIs

Recall that the variational inequality problem VI(Y, F(x, •)) requires a vector y in the set Y such that

$$(\tilde{\mathbf{y}} - \mathbf{y})^T F(\mathbf{y}) \geq 0, \quad \forall \ \tilde{\mathbf{y}} \in \mathcal{Y}.$$
 $(VI(\mathcal{Y}, F))$

- VIs [Facchinei and Pang, 2003] subsume
 - Smooth convex optimization problems
 - A range of equilibrium problems (including Nash, traffic, and economic equilibrium problems)

Hierarchical games

Example: Convex optimization with quadratic objectives

Suppose $Q \succeq 0$.

$$\min_{\boldsymbol{y}\in\mathcal{Y}} \ \frac{1}{2} \mathbf{y}^{\mathsf{T}} Q \mathbf{y} + \boldsymbol{c}^{\mathsf{T}} \mathbf{y} \tag{1}$$

y is a minimizer if and only if y is a solution of $VI(\mathcal{Y}, F)$ where F(y) = Qy + c, i.e. y solves

$$(\tilde{y} - \mathbf{y})^T (Q\mathbf{y} + c) \geq 0, \quad \forall \tilde{\mathbf{y}} \in \mathcal{Y}.$$

Example: Convex noncooperative games with quadratic objectives

Suppose $Q_{ii} \succeq 0$ for $i = 1, \cdots, N$.

$$\min_{\mathbf{y}_i \in \mathcal{Y}_i} \ \frac{1}{2} \mathbf{y}_i^T Q_{ii} \mathbf{y}_i + \sum_{j \neq i} \mathbf{y}_j^T Q_{ij} \mathbf{y}_j + c_i^T \mathbf{y}_i$$
(2)

イロト 人間 とくほ とくほう

Then $\{\mathbf{y}_1, \cdots, \mathbf{y}_N\}$ is a Nash equilibrium if and only if \mathbf{y} is a solution of $\mathsf{VI}(\mathcal{Y}, F)$ where $F(y) = \mathbf{Q}y + c$ and $\mathcal{Y} \triangleq \prod_{i=1}^N \mathcal{Y}_i$.

Stochastic variational inequality problem I

- Recall that the stochastic variational inequality problem $VI(\mathcal{Y}, F)$ where $F_i(\mathbf{y}) \triangleq \mathbb{E}[G_i(\mathbf{y}, \omega)]$ for $i = 1, \dots, n$.
- Output and a contraction of the second se

Example: Convex stochastic noncooperative games

Suppose the *i*th player solves

$$\min_{\mathbf{y}_i \in \mathcal{Y}_i} \mathbb{E}[f_i(\mathbf{y}, \omega)], \qquad (\mathsf{Player}_i(\mathbf{y}^{-i}))$$

given \mathbf{y}^{-i} for $i = 1, \dots, N$. Then $\{\mathbf{y}_1, \dots, \mathbf{y}_N\}$ is a Nash equilibrium if and only if \mathbf{y} is a solution of $VI(\mathcal{Y}, \mathcal{F})$ where

$$F(y) = \begin{pmatrix} \mathbb{E}[\nabla_{\mathbf{y}_1} f_1(\mathbf{y}, \omega)] \\ \vdots \\ \mathbb{E}[\nabla_{\mathbf{y}_N} f_N(\mathbf{y}, \omega)] \end{pmatrix} \text{ and } \mathcal{Y} \triangleq \prod_{i=1}^N \mathcal{Y}_i.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Stochastic variational inequality problem II

Much research on SVIs: Existence/uniqueness [Ravat and S, 2012,2015], SAA schemes [Shapiro, Xu, etc.], SA schemes [Xu, Lan, S, Yousefian, Jofre & Thompson, etc]

 $SVI(\mathcal{Y}, F)$ requires a vector **y** in the set \mathcal{Y} such that

 $(\tilde{\mathbf{y}} - \mathbf{y})^T F(\mathbf{x}, \mathbf{y}) \geq 0, \quad \forall \; \tilde{\mathbf{y}} \in \mathcal{Y}.$ $(VI(\mathcal{Y}, F))$

MPECs

A hierarchical framework where \mathbf{y} is a solution to a lower-level variational inequality problem and \mathbf{x} is an upper-level decision. Captures...

- A subclass of bilevel optimization problems
- Stackelberg equilibrium problems
- Frictional contact problems
- Market design problems in power systems
- Design in traffic equilibrium problems
- See [Luo, Pang and Ralph, 1996]

Challenges

In the space of x, y, the MPEC is a challenging generalization of nonconvex and nonlinear programs

- Such problems lack and interior and standard regularity conditions fail (LICQ, MFCQ) at at any feasible point.
- Standard convergence theory for NLP does not apply

Algorithms

- Interior schemes [Pang, Ralph, Wright, Nocedal, Leyffer etc., 2000-2010]
- SQP schemes [Anitescu, Ralph, Wright, etc., 2000-2010]
- Implicit schemes [Require $y(\bullet)$ to be single-valued] [Pang, Outrata, etc., 1995–2010]
- Limited extensions to stochastic MPECs [Shapiro, Xu, Ralph, 2010-2015]

Gap: No available non-asymptotic guarantees even for deterministic regimes

The stochastic MPEC of interest

$$\begin{array}{ll} \min_{\mathbf{x},\mathbf{y}} & f(\mathbf{x},\mathbf{y}) \\ \text{subject to} & \mathbf{y} \in \text{SOL}(\mathcal{Y}, \mathbb{E}[G(\mathbf{x},\bullet,\omega)]), \\ & \mathbf{x} \in \mathcal{X}. \end{array}$$
(SMPEC^{exp})

$$\begin{split} \min_{\substack{\mathbf{x},\mathbf{y}(\omega)}} & \mathbb{E}[f(\mathbf{x},\mathbf{y}(\omega))] \\ \text{subject to} & \mathbf{y}(\omega) \in \text{SOL}(\mathcal{Y}(\mathbf{x},\omega), G(\mathbf{x},\bullet,\omega)), \text{ for a.e. } \omega \quad (\text{SMPEC}^{\text{as}}) \\ & \mathbf{x} \in \mathcal{X}. \end{split}$$

Assumptions I

Assumption (**Properties of** $f, F, \mathcal{X}, \mathcal{Y}$)

(a.i) $f(\bullet, \mathbf{y}(\bullet))$ is L_0 -Lipschitz continuous on $\mathcal{X} + \eta_0 \mathbb{B}$ for some $\eta_0 > 0$. $f(\mathbf{x}, \bullet)$ is Lipschitz with the parameter $\tilde{L}_0 > 0$ for all $\mathbf{x} \in \mathcal{X} + \eta_0 \mathbb{B}$ for some $\eta_0 > 0$. (a.ii) $\mathcal{X} \subseteq \mathbb{R}^n$ and $\mathcal{Y} \subseteq \mathbb{R}^m$ are nonempty, closed, and convex sets. (a.iii) $F(\mathbf{x}, \bullet)$ is a μ_F -strongly monotone and L_F -Lipschitz continuous map on \mathcal{Y} uniformly in $\mathbf{x} \in \mathcal{X}$.

Consider the problem (SMPEC^{as}). (b.i) $\tilde{f}(\bullet, \mathbf{y}(\bullet, \omega), \omega)$ is L_0 -Lipschitz continuous on $\mathcal{X} + \eta_0 \mathbb{B}$ for every $\omega \in \Omega$ and for some $\eta_0 > 0$. $f(\mathbf{x}, \bullet)$ be Lipschitz with the parameter $\tilde{L}_0 > 0$ for all $\mathbf{x} \in \mathcal{X} + \eta_0 \mathbb{B}$ for some $\eta_0 > 0$. (b.ii) $\mathcal{X} \subseteq \mathbb{R}^n$ and $\mathcal{Y} \subseteq \mathbb{R}^m$ are closed and convex sets. (b.iii) $G(\mathbf{x}, \bullet, \omega)$ is a μ_F -strongly monotone and L_F -Lipschitz continuous map on \mathcal{Y} uniformly in $\mathbf{x} \in \mathcal{X}$ for every $\omega \in \Omega$.

Recall that F is said to be μ -strongly monotone if $(F(x) - F(y))^T (x - y) \ge \eta ||x - y||^2$ for any $x, y \in \mathcal{X}$.

<ロト < (引) < 注) < 注) < 注) < 注) < 注) < ご) < (つ) < (の) < (の) < (の) < (の) < (の) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0)

Assumptions II

Proposition (Patrikkson and Wynter, 1999)

Consider the problem (SMPEC^{as}). Suppose Assumption **??** (a.ii, a.iii) hold. Suppose $\tilde{f}(\bullet, \bullet, \omega)$ is continuously differentiable on $\mathcal{C} \times \mathbb{R}^m$ where \mathcal{C} is an open set containing \mathcal{X} , and \mathcal{X} is bounded. Then the function f, defined as $f(\mathbf{x}) \triangleq \mathbb{E}[\tilde{f}(\mathbf{x}, \mathbf{y}(\mathbf{x}, \omega), \omega)]$, is Lipschitz and directionally differentiable on \mathcal{X} .

Algorithmic framework

Consider the problem (SMPEC exp). When the lower-level problem is single-valued, this problem reduces to the following.

$$\min_{\mathbf{x}\in\mathcal{X}} f(\mathbf{x},\mathbf{y}(\mathbf{x})), \tag{3}$$

where $\tilde{\mathbf{y}} \equiv \mathbf{y}(\mathbf{x})$ is the unique solution to the strongly monotone variational inequality problem:

$$(\hat{\mathbf{y}} - \tilde{\mathbf{y}})^{\top} F(\mathbf{x}, \tilde{\mathbf{y}}) \ge 0, \qquad \forall \hat{\mathbf{y}} \in \mathcal{Y}.$$
 (4)

Consider the smoothing of f given by f_{η} , defined as

$$f_{\eta}(\mathbf{x}, \mathbf{y}(\mathbf{x})) \triangleq \mathbb{E}_{u \in \mathbb{B}}[f(\mathbf{x} + \eta u, \mathbf{y}(\mathbf{x} + \eta u))], \qquad (G-Smooth)$$

Background on smoothing

Randomized or convolution-based smoothing goes back to Steklov (1907) and Sobolev.

- Nemirovski and Yudin [1983]
- Norkin [1995]
-
- De Farias and Lakshmanan [2005]
- Fixed smoothing for stochastic convex optimization: Yousefian, Nedić, and S [2010,2012], Duchi [2012]
- Extensions to diminishing smoothing with application to games [Yousefian, Nedić and S, 2016...]
- Fixed smoothing: Zeroth-order deterministic methods [Nesterov and Spokoiny [2017] (This has some interesting relationships to work on FD/SP methods (see work by J. Spall on SPSA).

Algorithm definition I

A naive projected gradient framework

$$\mathbf{x}_{k+1} := \Pi_{\mathcal{X}} \left[\mathbf{x}_k - \gamma_k \nabla_{\mathbf{x}} f(\mathbf{x}_k, \mathbf{y}(\mathbf{x}_k)) \right].$$

Problem. $f(\bullet, y(\bullet))$ is not smooth. In fact, we do not even have access to a subgradient even if $f(\bullet, y(\bullet))$ is convex over \mathcal{X} .

Resolution. Employ convolution-based smoothing.

Lemma (Properties of spherical smoothing)

Suppose $h: \mathbb{R}^n \to \mathbb{R}$ is a continuous function and $\eta > 0$ is a given scalar. Let h_η be defined as

 $h_{\eta}(\mathbf{x}) \triangleq \mathbb{E}_{u \in \mathbb{B}}[h(\mathbf{x} + \eta u)].$

(i) The smoothed function h_η is \mathcal{C}^1 over \mathcal{X} and for any $\mathbf{x} \in \mathcal{X}$, where

$$\nabla_{\mathbf{x}} h_{\eta}(\mathbf{x}) = \left(\frac{n}{\eta}\right) \mathbb{E}_{\mathbf{v} \in \eta \mathbb{S}} \left[\frac{\nu((h(\mathbf{x}+\nu) - h(\mathbf{x})))}{\|\mathbf{v}\|}\right].$$
(6)

(ii) Suppose h is L₀-Lipschitz, i.e. $h \in C^{0,0}(\mathcal{X}_{\eta})$. For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$,

$$|h_{\eta}(\mathbf{x}) - h_{\eta}(\mathbf{y})| \le L_0 ||\mathbf{x} - \mathbf{y}||, \quad (h_{\eta} \text{ is } L_0\text{-Lipschitz})$$

(7)

$$|h_{\eta}(\mathbf{x}) - h(\mathbf{x})| \le L_0 \eta$$
, (Bound on diff. between h and h_{η}) (8)

$$\|\nabla_{\mathbf{x}}h_{\eta}(\mathbf{x}) - \nabla_{\mathbf{x}}h_{\eta}(\mathbf{y})\| \leq \frac{L_{0}n}{\eta}\|\mathbf{x} - \mathbf{y}\|. \quad (\nabla_{\mathbf{x}}h_{\eta} \text{ is } \frac{L_{0}}{\eta}\text{-smooth})$$
(9)

(iii) If h is convex and $h \in C^{0,0}(\mathcal{X}_{\eta})$, then h_{η} is convex and $h(\mathbf{x}) \leq h_{\eta}(\mathbf{x}) \leq h(\mathbf{x}) + \eta L_0$ for any $\mathbf{x} \in \mathcal{X}$. Further $\nabla_{\mathbf{x}} h_{\eta}(\mathbf{x}) \in \partial_{\epsilon} h(\mathbf{x})$ where $\epsilon \triangleq \eta L_0$. (v) Suppose $h \in C^{0,0}(\mathcal{X}_{\eta})$ with parameter L_0 . For any $\mathbf{v} \in \eta \mathbb{S}$, $g_{\eta}(\mathbf{x}, \mathbf{v}) \triangleq \left(\frac{n}{\eta}\right) \frac{(h(\mathbf{x}+\mathbf{v})-h(\mathbf{x}))\mathbf{v}}{\|\mathbf{v}\|}$. Then, $\forall \mathbf{x} \in \mathcal{X}$, $\mathbb{E}_{\mathbf{v} \in \eta} \mathbb{S}[\|g_{\eta}(\mathbf{x}, \mathbf{v})\|^2] \leq L_0^2 n^2$.

Comments

- Spherical smoothing studied by Nemirovski and Yudin (1983);
- Part (i) of our Lemma inspired by Flaxman et al. (2005) who considered Gaussian smoothing.
- Other parts either follow in a fashion similar to Gaussian smoothing (Nesterov and Spokoiny, 2017) or are directly proven.

Smoothing of implicit function f I

Consider the smoothing of f given by f_{η} , defined as

$$f_{\eta}(\mathbf{x}, \mathbf{y}(\mathbf{x})) \triangleq \mathbb{E}_{u \in \mathbb{B}}[f(\mathbf{x} + \eta u, \mathbf{y}(\mathbf{x} + \eta u))], \qquad (G-Smooth)$$

where u is uniformly distributed in the unit ball \mathbb{B} .

A gradient-based framework

$$\mathbf{x}_{k+1} := \Pi_{\mathcal{X}} \left[\mathbf{x}_k - \gamma_k \mathbf{g}_{\eta} (\mathbf{x}_k, \mathbf{y}(\mathbf{x}_k)) \right], \tag{10}$$

where

$$g_{\eta}(\mathbf{x}, \mathbf{y}(\mathbf{x})) \triangleq \left(rac{n}{\eta}
ight) \mathbb{E}_{\mathbf{v} \in \eta \mathbb{S}} \left[rac{v((f(\mathbf{x}+v, \mathbf{y}(\mathbf{x}+v))-f(\mathbf{x}, \mathbf{y}(\mathbf{x}))))}{\|v\|}
ight].$$

Asymptotic guarantees

Lack of asymptotics. Unforunately, a fixed η leads to approximate solutions.

Introduce iterative smoothing with $\eta_k \downarrow 0$ at suitable rate.

A iteratively smoothed gradient-based framework

$$\mathbf{x}_{k+1} := \Pi_{\mathcal{X}} \left[\mathbf{x}_k - \gamma_k g_{\boldsymbol{\eta}_k}(\mathbf{x}_k, \mathbf{y}(\mathbf{x}_k)) \right].$$
(11)

Exact gradients unavailable

Lack of access to $g_{\eta}(\mathbf{x}, \mathbf{y}(\mathbf{x}))$. Utilize an unbiased estimate given by $g_{\eta}(\mathbf{x}, \mathbf{y}(\mathbf{x}), \nu)$, defined as

$$g_{\eta}(\mathbf{x}, \mathbf{y}(\mathbf{x}), \mathbf{v}) \triangleq \left(\frac{n}{\eta}\right) \left[\frac{\left(f(\mathbf{x} + \mathbf{v}, \mathbf{y}(\mathbf{x} + \mathbf{v})) - f(\mathbf{x}, \mathbf{y}(\mathbf{x}))\right)\mathbf{v}}{\|\mathbf{v}\|}\right].$$
 (12)

Introduce iterative smoothing + sampling.

A iteratively smoothed sampled gradient framework

$$\mathbf{x}_{k+1} := \Pi_{\mathcal{X}} \left[\mathbf{x}_k - \gamma_k g_{\eta_k}(\mathbf{x}_k, \mathbf{y}(\mathbf{x}_k), \mathbf{v}_k) \right].$$
(13)

Exact evaluation of $\mathbf{y}(\mathbf{x})$ unavailable

Problem. Unfortunately y(x) is unavailable in closed-form.

Introduce iterative smoothing + sampling + inexact solutions of y(x).

An inexact iteratively smoothed sampled gradient framework

$$\mathbf{x}_{k+1} := \Pi_{\mathcal{X}} \left[\mathbf{x}_k - \gamma_k \left(\nabla_{\mathbf{x}} f_{\boldsymbol{\eta}_k}(\mathbf{x}_k, \mathbf{y}_{\boldsymbol{\epsilon}_k}(\mathbf{x}_k), \mathbf{v}_k) \right) \right].$$
(14)

where $\mathbb{E}\left[\|\mathbf{y}_{\epsilon_k}(\mathbf{x}_k) - \mathbf{y}(\mathbf{x}_k)\|^2 \mid \mathbf{x}_k\right] \leq \epsilon_k$ and $\mathbf{y}_{\epsilon_k}(\mathbf{x}_k) \triangleq \mathbf{y}(\mathbf{x}_k) + \tilde{\epsilon}_k$.

Challenge. Unfortunately, $\tilde{\epsilon}_k$ is not necessarily conditionally zero mean

Computing approximate values of $\mathbf{y}(\mathbf{x})$

If F(x, y(x)) ≜ (𝔼[G_i(x, y(x), ω)])ⁿ_{i=1}, y(x) is a solution to the parametrized stochastic variational inequality problem VI(𝔅, F(x, •)).

$$(\tilde{\mathbf{y}} - \mathbf{y}(\mathbf{x}))^T F(\mathbf{x}, \mathbf{y}(\mathbf{x})) \geq 0, \quad \forall \tilde{y} \in \mathcal{Y} \quad (\forall I(\mathcal{Y}, F(\mathbf{x}, ullet)))$$

② Generate random realizations of the stochastic mapping $G(\hat{\mathbf{x}}_k, \mathbf{y}_t, \omega_{\ell,t})$ for $\ell = 1, \dots, M_t$

$$\mathbf{y}_{t+1} := \Pi_{\mathcal{Y}} \left[\mathbf{y}_t - \alpha \frac{\sum_{\ell=1}^{M_t} G(\hat{\mathbf{x}}_k, \mathbf{y}_t, \omega_{\ell, t})}{M_t} \right]$$
(15)

Under some conditions, we may recover linear rates of convergence, i.e. after t_k steps of (??), we obtain that

$$\mathbb{E}[\|\mathbf{y}_{\epsilon}(\mathbf{x}_{k}) - \mathbf{y}(\mathbf{x}_{k})\|^{2}] \le Cq^{t_{k}} \triangleq \epsilon_{k}.$$
(16)

<ロト < 部ト < 言ト < 言ト 言 のへで 21/48

An inexact zeroth-order framework

Given an
$$\mathbf{x}_0 \in \mathcal{X}$$
, for $k = 0, 1, 2, \cdots$

$$\mathbf{x}_{k+1} := \Pi_{\mathcal{X}} \left[\mathbf{x}_k - \gamma_k g_{\eta_k}(\mathbf{x}_k, \mathbf{y}_{\epsilon_k}(\mathbf{x}_k), \mathbf{v}_k) \right], \tag{17}$$

where $\{\mathbf{y}_{\epsilon_k}(\mathbf{x}_k)\}\$ represents an increasingly accurate approximation of $\{y(x_k)\}$.

Hierarchical games

23 / 48

(日)

Properties of inexact zeroth-order gradient

Lemma (Properties of the inexact zeroth-order gradient)

Suppose $F(\mathbf{x}, \bullet)$ is a μ_F -strongly monotone and Lipschitz continuous map on \mathcal{Y} uniformly on \mathcal{X} . In addition, $f(\mathbf{x}, \bullet)$ is \tilde{L}_0 -Lipschitz for all $\mathbf{x} \in \mathcal{X} + \eta_0 \mathbb{B}$. Suppose $\mathbb{E}[\|\mathbf{y}_{\epsilon}(\mathbf{x}) - \mathbf{y}(\mathbf{x})\|^2 | \mathbf{x}] \leq \epsilon$ almost surely for any $\mathbf{x} \in \mathcal{X}$. (a) $\mathbb{E}[\|g_{\eta,\epsilon}(\mathbf{x}, v)\|^2 | \mathbf{x}] \leq 3n^2 \left(\frac{2\tilde{L}_0^2 \epsilon}{\eta^2} + L_0^2\right)$, a.s. . (b) $\mathbb{E}\left[\|g_{\eta,\epsilon}(\mathbf{x}, v) - g_{\eta}(\mathbf{x}, v)\|^2 | \mathbf{x}\right] \leq \frac{4\tilde{L}_0^2 n^2 \epsilon}{\eta^2}$, a.s. .

Setting: $f(\bullet, \mathbf{y}(\bullet))$ is convex on \mathcal{X}

Definition (Parameters)

•
$$\gamma_k := \frac{\gamma_0}{\sqrt{k+1}}$$
 and $\eta_k := \frac{\eta_0}{\sqrt{k+1}}$, respectively for all $k \ge 0$.
• Suppose $\alpha \le \frac{\mu_F}{2L_F^2}$, $M_t := \lceil M_0 \rho^{-t} \rceil$ for $t \ge 0$ for $\rho \in (0,1)$ and $M_0 \ge \frac{2\nu_y^2}{L_F^2}$.
• Let $t_k := \lceil \tau \ln(k+1) \rceil$ where $\tau \ge \frac{-2}{\ln(\max\{1-\mu_F\alpha,\rho\})}$.

Theorem (Rate statements and complexity results)

Consider the sequence $\{\bar{\mathbf{x}}_k\}$ generated by applying inexact zeroth-order scheme. (a) For all K, we have $\mathbb{E}[f(\bar{\mathbf{x}}_K, \mathbf{y}(\bar{\mathbf{x}}_K))] - f^* \leq \mathcal{O}\left(\frac{1}{\sqrt{K}}\right)$.

(b) Suppose $\gamma_0 = \mathcal{O}(\frac{1}{nL_0})$ and r = 0. Let $\epsilon > 0$ be an arbitrary scalar and K_{ϵ} be such that $\mathbb{E}\left[f(\bar{\mathbf{x}}_{K_{\epsilon}}, \mathbf{y}(\bar{\mathbf{x}}_{K_{\epsilon}}))\right] - f^* \leq \epsilon$. Then the sample complexity of (b-1) upper-level evals. of $\mathbf{y}(\bullet)$ is $\mathcal{O}\left(n^2 L_0^2 \epsilon^{-2}\right)$. (b-2) lower-level evals. is $\mathcal{O}\left(n^{2\bar{\tau}} L_0^{2\bar{\tau}} \epsilon^{-2\bar{\tau}}\right)$, where $\bar{\tau} \geq 1 - \tau \ln(\rho)$.

An inexact accelerated zeroth-order scheme

In this part, we consider the following (SMPEC).

$$\min_{\boldsymbol{\epsilon}\in\mathcal{X}} \mathbb{E}[\tilde{f}(\mathbf{x},\mathbf{y}(\mathbf{x},\omega))]$$
(SMPEC^{as})

This problem is equivent to this possibly semi-infinite MPEC.

$$\min_{\mathbf{x}\in\mathcal{X}} \mathbb{E}[\tilde{f}(\mathbf{x}, \mathbf{y}(\omega))]$$
(SMPEC^{as})

subject to $\mathbf{y}(\omega)$ solves $\mathsf{VI}(\mathcal{Y}, G(\mathbf{x}, \bullet, \omega))$ for every $\omega \in \Omega$. (18)

Given an $\mathbf{x}_0 \in \mathcal{X}$, for $k = 0, 1, 2, \cdots$

$$\mathbf{z}_{k+1} \coloneqq \Pi_{\mathcal{X}} \left[\mathbf{x}_k - \gamma_k g_{\eta_k, N_k}(\mathbf{x}_k, v_k) \right] \\ \mathbf{x}_{k+1} = \mathbf{z}_{k+1} + \beta_k \left(\mathbf{z}_{k+1} - \mathbf{z}_k \right),$$
(19)

where $g_{\eta_k,N_k}(\mathbf{x}_k, v_k)$ represents a mini-batch zeroth-order gradient estimator.

Inexact accelerated zeroth-order method

Proposition (Rate and complexity statement)

Suppose
$$\eta_k = \frac{1}{k}, \gamma_k = \frac{1}{2k}$$
, and $N_k = \lfloor k^a \rfloor$ for $a = 1 + \delta$.

(a) For any
$$k$$
, $\mathbb{E}[f(\mathbf{z}_k) - f(\mathbf{x}^*)] \leq \mathcal{O}\left(\frac{1}{k}\right)$.

(b) Suppose K^{ϵ} is such that $\mathbb{E}[f(\mathbf{z}_k) - f(\mathbf{x}^*)] \leq \epsilon$. Then $\sum_{k=1}^{K_{\epsilon}} N_k \leq \mathcal{O}(1/\epsilon^{2+\delta})$.

Setting: $f(\bullet, \mathbf{y}(\bullet))$ is not necessarily convex

Problem of interest where $\mathbf{y}(\mathbf{x})$ is a solution to a stochastic VI.

$$\min_{\mathbf{x}\in\mathcal{X}} f(\mathbf{x}, \mathbf{y}(\mathbf{x}))$$
subject to $\mathbf{x} \in \mathcal{X}$.
(20)

Challenge: Nonsmoothness, nonconvexity, and stochasticity.

Smoothing. Consider the smoothed implicit problem.

 $\min_{\mathbf{x}\in\mathcal{X}} f_{\eta}(\mathbf{x}, \mathbf{y}(\mathbf{x}))$ subject to $\mathbf{x} \in \mathcal{X}$. (21)

(日) (個) (E) (E) (E)

27 / 48

Stationarity for nonsmooth nonconvex problems

We begin by defining the directional derivative, a key object necessary in addressing nonsmooth and possibly nonconvex optimization problems.

Definition (Clarke (1998))

The directional derivative of h at \mathbf{x} in a direction v is defined as

$$h^{\circ}(\mathbf{x}, \mathbf{v}) \triangleq \limsup_{\mathbf{y} \to \mathbf{x}, t \downarrow 0} \left(\frac{h(\mathbf{y} + t\mathbf{v}) - h(\mathbf{y})}{t} \right).$$
 (22)

The Clarke generalized gradient at \mathbf{x} can then be defined as

$$\partial h(\mathbf{x}) \triangleq \{\xi \in \mathbb{R}^n \mid h^{\circ}(\mathbf{x}, \mathbf{v}) \ge \langle \xi, \mathbf{v} \rangle, \quad \forall \mathbf{v} \in \mathbb{R}^n\}.$$
(23)

- If h is differentiable, $\partial_{\mathbf{x}}h(\mathbf{x}) = \nabla_{\mathbf{x}}h(\mathbf{x})$.
- **2** If *h* is convex, this object reduces to the standard subdifferential.

ϵ -Clarke generalized gradient

Proposition (Properties of Clarke generalized gradients (Clarke, 1998))

Suppose *h* is Lipschitz continuous on \mathbb{R}^n . Then the following hold.

- (i) $\partial h(\mathbf{x})$ is a nonempty, convex, and compact set and $||g|| \leq L$ for any $g \in \partial h(\mathbf{x})$.
- (ii) h is differentiable almost everywhere.

(iii) $\partial h(\mathbf{x})$ is an upper semicontinuous map defined as

$$\partial h(\mathbf{x}) = \operatorname{conv}\left\{g \mid g = \lim_{k \to \infty} \nabla_{\mathbf{x}} h(\mathbf{x}_k), \mathcal{C}_h \not\ni \mathbf{x}_k \to \mathbf{x}\right\}.$$

We may also define the ϵ -generalized gradient (Goldstein (1977)) as

$$\partial_{\epsilon} h(\mathbf{x}) \triangleq \operatorname{conv} \left\{ \xi : \xi \in \partial h(\mathbf{y}), \|\mathbf{x} - \mathbf{y}\| \le \epsilon \right\}.$$
(24)

Stationarity of smoothed problem vs ϵ -Clarke stationarity

Proposition

Suppose h is locally Lipschitz and $\mathcal{X} \subseteq \mathbb{R}^n$ is closed, convex, and bounded.

(i) (Unconstrained, Goldstein 1977) For any $\eta > 0$ and any $\mathbf{x} \in \mathbb{R}^n$, $\nabla h_{\eta}(\mathbf{x}) \in \partial_{2\eta} h(\mathbf{x})$. If $0 \notin \partial h(\mathbf{x})$, $\exists \eta$ such that $\nabla_{\mathbf{x}} h_{\tilde{\eta}}(\mathbf{x}) \neq 0$ for $\tilde{\eta} \in (0, \eta]$.

(ii) (Constrained) For any $\eta > 0$ and any $\mathbf{x} \in \mathcal{X}$,

$$[0 \in \nabla_{\mathbf{x}} h_{\eta}(\mathbf{x}) + \mathcal{N}_{\mathcal{X}}(\mathbf{x})] \implies [0 \in \partial_{2\eta} h(\mathbf{x}) + \mathcal{N}_{\mathcal{X}}(\mathbf{x})].$$
(25)

In short: Stationarity of η -smoothed problem $\implies 2\eta$ -Clarke stationarity.

Stationarity and relation to original problem

Definition (The residual mappings)

Given $\beta > 0$ and $\eta > 0$, for any $\mathbf{x} \in \mathbb{R}^n$. Let the residual mappings $G_{\eta,\beta}(\mathbf{x})$ and $\tilde{G}_{\eta,\beta}(\mathbf{x})$ be defined as follows where $\tilde{e} \in \mathbb{R}^n$ is an arbitrary given vector.

$$G_{\eta,\beta}(\mathbf{x}) \triangleq \beta \left(\mathbf{x} - \Pi_{\mathcal{X}} \left[\mathbf{x} - \frac{1}{\beta} \nabla_{\mathbf{x}} f_{\eta}(\mathbf{x}, \mathbf{y}(\mathbf{x})) \right] \right),$$
(26)

$$\tilde{\mathcal{G}}_{\eta,\beta}(\mathbf{x}) \triangleq \beta \left(\mathbf{x} - \Pi_{\mathcal{X}} \left[\mathbf{x} - \frac{1}{\beta} (\nabla_{\mathbf{x}} f_{\eta}(\mathbf{x}, \mathbf{y}(\mathbf{x})) + \tilde{\boldsymbol{e}}) \right] \right),$$
(27)

Lemma

For any $\eta, \beta > 0$,

 $[\mathcal{G}_{\eta,\beta}(\mathbf{x}) = 0] \iff [0 \in \nabla_{\mathbf{x}} f_{\eta}(\mathbf{x}, \mathbf{y}(\mathbf{x})) + \mathcal{N}_{\mathcal{X}}(\mathbf{x})] \implies [0 \in \partial_{2\eta} f_{\eta}(\mathbf{x}, \mathbf{y}(\mathbf{x})) + \mathcal{N}_{\mathcal{X}}(\mathbf{x})]$

Rate and complexity statements

Theorem (Rate statements and complexity results)

For any $\gamma < \frac{\eta}{nL_0}$, $\ell \triangleq \lceil \lambda K \rceil$, and all $K > \frac{2}{1-\lambda}$, $\mathbb{E}\left[\| \mathcal{G}_{\eta,1/\gamma}(\mathbf{x}_R) \|^2 \right] \leq \mathcal{O}\left(\frac{1}{K}\right)$.

Suppose $\gamma = \frac{\eta}{2nL_0}$ and $\eta = \frac{1}{L_0}$. Let $\epsilon > 0$ be an arbitrary scalar and K_{ϵ} be such that $\mathbb{E}\left[\|G_{\eta,1/\gamma}(\mathbf{x}_R)\|^2\right] \leq \epsilon$. Then the sample complexity

- of upper-level projs. is $\mathcal{O}\left(n^4 L_0^4 \epsilon^{-2}\right)$.
- **2** of lower-level projs is $\mathcal{O}\left(n^{6}L_{0}^{6}\epsilon^{-3}\right)$.

Numerics: A stochastic Stackelberg-Nash-Cournot game

For a given $x \ge 0$, let $(q_1(x, \omega), \ldots, q_N(x, \omega))$ be a set of quantities for every $\omega \in \Omega$ and each $q_i(x, \omega)$ solve the following, assuming that $q_j(x, \omega)$, $j \ne i$ are fixed:

$$\max_{q_i \ge 0} \quad q_i p\left(q_i + x + \sum_{j=1, j \neq i}^N q_j(x, \omega), \omega\right) - f_i(q_i).$$
 (Stack-follower_i)

Accordingly, let $Q(x,\omega) \triangleq \sum_{i=1}^{N} q_i(x,\omega)$. Then $(x^*, q(x^*))$ is said to be a Stackelberg-Nash-Cournot equilibrium solution if x^* solves

$$\max_{0 \le x \le x^{u}} \mathbb{E}[xp(x + Q(x, \omega), \omega)] - f(x),$$
 (Stack-leader)

where $p(x, \omega) = a(\omega) - bx$ and let $f_i(q) = \frac{1}{2}cq^2$ for $i = 1, \dots, N$, and $f(x) = \frac{1}{2}dx^2$.

Stochastic MPECs

Hierarchical games

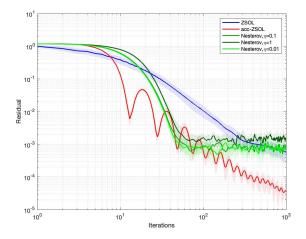


Figure: Trajectories for (ZSOL), (ac-ZSOL) and Nesterov on the convex SMPECas

Table: Errors and CPU time comparison of the three schemes with different parameters

			(ZSOL)		(acc-ZSOL)		(SAA)	
					(/			
			$\mathbb{E}[f^* - f(\bar{x})]$	CPU	$\mathbb{E}[f^* - f(\bar{x})]$	CPU	$\mathbb{E}[f^* - f(x)]$	CPU
<i>N</i> = 10	b = 1	c = 0.05	1.3e-3	0.8	5.2e-5	5.1	2.5e-4	16.8
		c = 0.1	5.8e-4	0.9	2.2e-5	5.4	3.5e-4	20.4
	<i>b</i> = 0.5	c = 0.05	1.0e-3	0.8	4.8e-5	5.5	1.9e-4	19.1
		c = 0.1	1.1e-3	0.8	5.8e-5	5.3	4.2e-4	18.5
N = 15	b = 1	c = 0.05	7.8e-4	1.0	2.9e-5	5.3	1.4e-4	58.3
		c = 0.1	5.5e-4	1.0	2.1e-5	5.5	2.3e-4	54.3
	<i>b</i> = 0.5	c = 0.05	9.9e-4	1.0	2.5e-5	5.0	1.5e-4	49.9
		c = 0.1	8.2e-4	1.0	2.0e-5	5.1	8.4e-4	49.2
N = 20	b = 1	<i>c</i> = 0.05	4.3e-4	1.3	2.5e-5	5.3	1.3e-4	152.7
		c = 0.1	3.9e-4	1.3	1.1e-5	5.1	3.1e-4	123.1
	<i>b</i> = 0.5	c = 0.05	6.8e-4	1.2	2.0e-5	5.2	2.8e-4	129.7
		c = 0.1	4.0e-4	1.3	3.1e-5	5.1	7.2e-4	101.3

The error and CPU time are the average results of 20 runs

Introduction

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

36 / 48

$$\begin{array}{ll} \underset{x}{\minininize} & -x_{1}^{2} - 3x_{2} - 4y_{1} + y_{2}^{2} \\ \text{subject to} & x_{1}^{2} + 2x_{2} \leq 4 \\ & 0 \leq x_{1} \leq 1 \\ & 0 \leq x_{2} \leq 2 \\ & \underset{y}{\minininize} & \mathbb{E}[2x_{1}^{2} + y_{1}^{2} + y_{2}^{2} - \xi(\omega)y_{2}] \\ & \text{subject to} & x_{1}^{2} - 2x_{1} + x_{2}^{2} - 2y_{1} + y_{2} \geq -3 \\ & x_{2} + 3y_{1} - y_{2} \geq 4 \\ & y_{1} \geq 0, y_{2} \geq 0. \end{array}$$

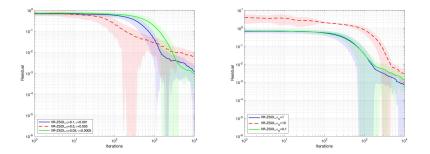


Figure: Trajectories for (VR-ZSOL) on the non-convex SMPEC $^{\rm exp}$

Table: Errors comparison of the three schemes with different parameters

		ZSOL	NLPEC	BARON
		$\mathbb{E}[f(\bar{x})]$	local optimum	global optimum
	(c, d) = (1, 1)	-7.50	-7.20	-7.50
(a, b) = (1, 0)	(c, d) = (2, 2)	-9.23	-9.04	-9.23
	(c, d) = (3, 3)	, ,	-9.10	-9.25
	(c, d) = (1, 1)	-11.50	-7.20	-11.50
(a, b) = (5, 0)	(c, d) = (2, 2)	-13.23	-9.04	-13.23
	(c,d)=(3,3)	-13.25	-9.10	-13.25
	(c, d) = (1, 1)	-16.48	-7.20	-16.50
(a, b) = (10, 0)	(c, d) = (2, 2)	-18.20	-9.04	-18.23
	(c,d)=(3,3)	-18.23	-9.10	-18.25

The error of (ZSOL) in the table is the average results of 20 runs

Definition of game

We consider an N-player noncooperative game where the *i*th player's problem is defined as the following hierarchical optimization problem.

 $\min_{\mathbf{x}^{i}\in\mathcal{X}^{i}} f_{i}(\mathbf{x}^{i},\mathbf{x}^{-i}) \triangleq \mathbb{E}[\tilde{g}_{i}(\mathbf{x}^{i},\mathbf{x}^{-i},\omega)] + \mathbb{E}[\tilde{h}_{i}(\mathbf{x}^{i},\mathbf{y}^{i}(\mathbf{x},\omega),\omega)] \quad (\mathsf{Player}_{i}(\mathbf{x}^{-i}))$

• Player problems are stochastic and nonconvex in full space

Smoothed games I

Definition (An η -smoothed noncooperative game \mathcal{G}_{η})

Consider a game $\mathcal{G} \in \mathcal{G}_{pot}^{cbl}$ in which the *i*th player solves (Player_i(\mathbf{x}^{-i})). Suppose \mathcal{G}_{η} denotes a related game in which for $i = 1, \dots, N$, the *i*th player's smoothed problem is defined as .

$$\min_{\mathbf{x}^{i} \in \mathcal{X}^{i}} f_{i,\eta}(\mathbf{x}^{i}, \mathbf{x}^{-i}), \qquad (\mathsf{Player}_{i,\eta}(\mathbf{x}^{-i}))$$

where $f_{i,\eta}(\mathbf{x}^{i}, \mathbf{x}^{-i}) \triangleq \mathbb{E}[f_{i}(\mathbf{x}^{i} + u_{i}, \mathbf{x}^{-i})]$ where $\mathbb{B}_{i} \subseteq \mathbb{R}^{n_{i}}$ is a sphere centered at the origin.

41/48

Smoothed games II

$$B_i(\mathbf{x}) \triangleq \underset{\mathbf{v}^i \in \mathcal{X}_i}{\operatorname{argmin}} \left[f_i(\mathbf{v}^i, \mathbf{x}^{-i}) + \frac{c}{2} \|\mathbf{v}^i - \mathbf{x}^i\|^2 \right].$$
(PBR_i(**x**))

Similarly, we may define the $\eta\text{-smoothed}$ proximal best-response of player i as follows.

$$B_{i,\eta}(\mathbf{x}) \triangleq \underset{\mathbf{v}^{i} \in \mathcal{X}_{i}}{\operatorname{argmin}} \left[f_{i,\eta}(\mathbf{v}^{i}, \mathbf{x}^{-i}) + \frac{c}{2} \|\mathbf{v}^{i} - \mathbf{x}^{i}\|^{2} \right].$$
(SPBR_{*i*,η}(**x**))

Smoothed games III

Proposition (Fixed-point of (SPBR_{η}) is NE of \mathcal{G}_{η})

Consider an *N*-player noncooperative game \mathcal{G} where the *i*th player solves (Player_i(\mathbf{x}^{-i})), given rival decisions \mathbf{x}^{-i} . For $i = 1, \dots, N$, suppose $f_i(\bullet, \mathbf{x}^{-i})$ is convex on \mathcal{X}_i for any $\mathbf{x}^{-i} \in \mathcal{X}_{-i}$. Suppose $\mathbf{x}^{\eta} \triangleq {\mathbf{x}^{1,\eta}, \dots, \mathbf{x}^{N,\eta}}$ is a fixed point of the η -smoothed best-response map. Then the following hold.

(a) \mathbf{x}^{η} is a fixed point of $(\text{SPBR}_{\eta}(\bullet))$, i.e. $\mathbf{x}^{i,\eta}$ is a minimizer of $\text{SPBR}_{i,\eta}(\mathbf{x}^{-i,\eta})$ for $i = 1, \dots, N$ if and only if \mathbf{x}^{η} is a Nash equilibrium of \mathscr{G}_{η} .

(b) If \mathbf{x}^{η} is a fixed point of SPBR_{η}(•), then \mathbf{x}^{η} is an $\eta\bar{\beta}$ -Nash equilibrium of \mathscr{G} where $\bar{\beta} \triangleq \max_{i \in \{1, \dots, N\}} \beta_i$.

Research gaps I

- No available schemes for computing equilibria for relatively general settings
- Approximations where subproblems are solved as NLPs and joint necessary conditions are resolved [Leyffer and Munson [2005]]; SAA schemes [De Miguel and Xu [2009]; again SAA problems are MPECs for which stationary points are available.

Are there asymptotics for an efficient algorithm for computing an ϵ -equilibrium?

An asynchronous inexact proximal best-response scheme

Asynchronous relaxed smoothed proximal best-response (ARSPBR) scheme

$$\mathbf{z}^{i,k+1} := \begin{cases} (1 - \gamma_k) \mathbf{x}^{i,k} + \gamma_k (B_{i,\eta}(\mathbf{x}^k)); & i = i_k \\ \mathbf{x}^{i,k}; & i \neq i_k \end{cases}$$
(ARSPBR)
$$\mathbf{x}^{i,k+1} := \begin{cases} \mathbf{z}^{i,k+1} + \epsilon^{i,k+1}; & i = i_k \\ \mathbf{z}^{i,k+1}; & i \neq i_k. \end{cases}$$

(3) Stop if k > K, Stop; else return to Step 1, k := k + 1.

Almost sure convergence guarantees available.

Proposition (Almost-sure convergence for asynchronous relaxed inexact best-response scheme)

Consider a game $\mathscr{G} \in \mathscr{G}^{\operatorname{chl}}$. For any $i \in \{1, \dots, N\}$, suppose $f_i(\bullet, \mathbf{x}^{-i})$ is a convex function for any $\mathbf{x}^{-i} \in \mathcal{X}_{-i}$ and $\mathcal{X}_i \subseteq \mathbb{R}^{n_i}$ is a closed and convex set. Consider the smoothed counterpart of \mathscr{G} , denoted by \mathscr{G}_η where $\mathscr{G}_\eta \in \mathscr{G}_{\operatorname{pot}}^{\operatorname{chl}}$; for any $i \in \{1, \dots, N\}$, suppose $f_{i,\eta}(\bullet, \mathbf{x}^{-i})$ denotes the η -smoothing of $f_i(\bullet, \mathbf{x}^{-i})$. Suppose P_η denotes the potential function of \mathscr{G}_η where $\mathcal{P}_\eta(\mathbf{x}) \geq \tilde{P}$ for any $\mathbf{x} \in \mathcal{X} + \eta \mathbb{B}$, where \tilde{P} denotes a lower bound on \mathcal{P}_η . Suppose B_i and $B_{i,\eta}$ denote the proximal best-response and smoothed proximal-response for $i \in \{1, \dots, N\}$. Then the following hold for any $i \in \{1, \dots, N\}$. Consider a sequence $\{\mathbf{x}^k\}$ generated by (ASRPBR) scheme. Then the following hold. (a) For k > 0, the following holds almost surely.

$$\mathbb{E}[P_{\eta}(\mathbf{x}^{k+1}) - \tilde{P}_{\eta} \mid \mathcal{F}_{k}] \leq (P_{\eta}(\mathbf{x}^{k}) - \tilde{P}_{\eta}) - \gamma_{k} \left(c - \frac{L\gamma_{k}}{2}\right) \|B_{i,\eta}(\mathbf{x}^{k}) - \mathbf{x}^{i,k}\|^{2} + \sum_{i=1}^{N} M_{i} \mathbb{E}[\|\epsilon^{i,k+1}\| \mid \mathcal{F}_{k}].$$

$$(28)$$

(b) Suppose one of the following hold. (i) $\{\gamma_k\}$ is a decreasing non-summable but square-summable sequence where $\gamma_k < \frac{2c}{L}$ for every k; (ii) $\gamma_k = \gamma = 1$ and $c > \frac{L}{2}$. Furthermore, suppose $\sum_{i=1}^{\infty} \sum_{i=1}^{M} M_i \mathbb{E}[||e^{i,k+1}|| + \mathcal{F}_k] < \infty$. Then

$$\lim_{k \to \infty} \sum_{i=1}^{N} \|\mathbf{x}^{i,k} - B_{i,\eta}(\mathbf{x}^{k})\|^2 = 0 \text{ almost surely.}$$
(29)

イロン 不得 とくほと くほと

(c) Suppose (??) holds. Then $\{x^k\}$ converges to the set of Nash equilibria of \mathscr{G}_n in an a.s. sense.

Stochastic MPECs

Hierarchical games 0000000●00

Numerics

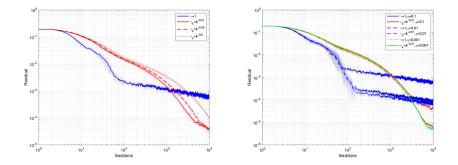


Figure: Trajectories for (ARSPBR) with different relaxation and smoothing parameters

Table: Errors and CPU time of (**ARSPBR**) with ($\gamma_k = 1$) and ($\gamma_k = k^{-0.51}$)

N	$\gamma_k = 1$		$\gamma_k = k^{-0.51}$		·	~	$\gamma_k = 1$		$\gamma_k = k^{-0.51}$	
	$res(\mathbf{x}^k)$	CPU	$res(x^k)$	CPU	St St	St	res(x ^k)	CPU	$res(x^k)$	CPU
13	6.1e-4	7.6	4.0e-5	7.6	1e-2	2	6.1e-4	7.6	4.0e-5	7.6
23	6.2e-4	9.3	1.3e-4	9.2	5e-3	3	6.8e-4	7.4	4.8e-5	7.3
33	6.4e-4	11.4	4.8e-4	11.4	2e-3	3	7.2e-4	7.5	5.2e-5	7.4
43	6.0e-4	15.4	6.3e-4	15.3	1e-3	3	7.6e-4	7.7	5.6e-5	7.6

	а	$\gamma_k =$	1	$\gamma_k = k^{-0.51}$		
		$res(\mathbf{x}^k)$	CPU	$res(\mathbf{x}^k)$	CPU	
	[33, 37]	6.1e-4	7.6	4.0e-5	7.6	
	[30, 40]	6.8e-4	7.7	4.3e-5	7.4	
	[25, 45]	7.2e-4	7.5	5.0e-5	7.6	
	[20, 50]	8.0e-4	7.7	5.1e-5	7.8	

The error and CPU time in the table is the average results of 20 runs

Concluding remarks

Many questions/directions remain.

- Suppose lower-level problem loses strong monotonicity or even monotonicity.
- Schemes should apply for computing ϵ -Clarke stationary points of nonsmooth nonconvex stochastic optimization.
- Can we extend these zeroth-order schemes to other types of hierarchical simulation optimization problems?
- S. Cui*, UVS, and F. Yousefian, Complexity guarantees for an implicit smoothing-enabled method for stochastic MPECs, Mathematical Programming, 1–73, (2022).
- S. Cui* and UVS, On the computation of equilibria in monotone and potential stochastic hierarchical games, Mathematical Programming, 1–59, (2022).