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Equilibrium

A state x of balance
(often F (x) = 0)

aequi + libra (equal
weight): balance of
competing influences

Mechanics; Newton’s
Third Law: Action
and Reaction

Traffic; Wardrop’s
first principle: no
driver unilaterally
changes routes to
improve his/her
travel time

Market/Economic: Economic forces such as
supply and demand are balanced and in
absence of external influences the
(equilibrium) values will not change

Walras: 0 ≤ s(π)− d(π) ⊥ π ≥ 0
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Convex subdifferentials
SUBGRADIENTS

0

(g, 1)

f(z)

�
x, f(x)

⇥
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• Let f : �n → (−⇣,⇣] be a convex function.
A vector g ⌘ �n is a subgradient of f at a point
x ⌘ dom(f) if

f(z) ≥ f(x) + (z − x)�g,  z ⌘ �n

• Support Hyperplane Interpretation: g is
a subgradient if and only if

f(z)− z�g ≥ f(x)− x�g,  z ⌘ �n

so g is a subgradient at x if and only if the hyper-
plane in ��n+1 that has normal (−g, 1) and passes
through x, f(x)

⇥
supports the epigraph of f .

• The set of all subgradients at x is the subdiffer-
ential of f at x, denoted ◆f(x).

By convention ◆f(x) = Ø for x / dom(f).

◆

• ⌘
2

Assume f is convex, then
f (z) ≥ f (x) +∇f (x)T (z − x)
(linearization is below the
function)

Incorporate constraints by
allowing f to take on +∞ if
constraint is violated
f : Rn 7→ (−∞,+∞]

∂f (x) ={
g : f (z) ≥ f (x) + gT (z − x), ∀z

}
,

the subdifferential of f at x

If f is differentiable and convex, then ∂f (x) = {∇f (x)}
e.g. f (z) = 1

2z
TQz + pT z , then ∂f (x) = {Qx + p}

x∗ solves min f (x) if and only if 0 ∈ ∂f (x∗)
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Indicator functions and normal cones

ψC(z) =

{
0 if z ∈ C
∞ else

ψC is a convex function when C is a
convex set

EXAMPLE: SUBDIFFERENTIAL OF INDICATOR

• Let C be a convex set, and ⌅C be its indicator
function.

• For x ⌘/ C, ◆⌅C(x) = Ø (by convention).

• For x ⌘ C, we have g ⌘ ◆⌅C(x) iff

⌅C(z) ≥ ⌅C(x) + g�(z − x),  z ⌘ C,

or equivalently g�(z − x) ⌥ 0 for all z ⌘ C. Thus
◆⌅C(x) is the normal cone of C at x, denoted
NC(x):

NC(x) = g g�(z x) 0, z C .
⇤

| − ⌥  ⌘
⌅

C

NC(x)

x C

NC(x)

x

5

If x ∈ C, then

g ∈ ∂ψC(x)

⇐⇒ ψC(z) ≥ ψC(x) + gT (z − x), ∀z
⇐⇒ 0 ≥ gT (z − x), ∀z ∈ C

Normal cone to C at x ,

NC(x):= ∂ψC(x) =

{{
g : gT (z − x) ≤ 0, ∀z ∈ C

}
if x ∈ C

∅ if x /∈ C
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Special cases and examples

Normal cone is a cone

x ∈ int(C), then NC(x) = {0}
C = Rn, then NC(x) = {0}, ∀x ∈ CEXAMPLE: POLYHEDRAL CASE

NC(x)

C

a1

a2

x

• For the case of a polyhedral set

C = {x | a�ix ⌥ bi, i = 1, . . . ,m},

we have

NC(x) =

� {0} if x ⌘ int(C),
cone

�
{ai | a�ix = bi}

⇥
if x ⌘/ int(C).

• Proof: Given x, disregard inequalities with
a�ix < bi, and translate C to move x to 0, so it
becomes a cone. The polar cone is NC(x).

6

C =
{
z : aTi z ≤ bi , i = 1, . . . ,m

}

polyhedral

NC(x) ={
m∑

i=1

λiai : 0 ≤ bi − aTi x ⊥ λi ≥ 0

}

⊥ makes product of items around it
0, i.e.

(bi − aTi x)λi = 0, i = 1, . . . ,m
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Some calculus

fi : Rn 7→ (−∞,∞], i = 1, . . . ,m, proper, convex functions

F = f1 + · · ·+ fm

assume
m⋂

i=1

rint(dom(fi )) 6= ∅ then (as sets)

∂F (x) = ∂f1(x) + · · ·+ ∂fm(x), ∀x

C =
m⋂

i=1

Ci , then ψC = ψC1 + · · ·+ ψCm , so NC = NC1 + · · ·+ NCm

x∗ solves min
x∈C

f (x) ⇐⇒ x∗ solves min
x

(f + ψC)(x)

⇐⇒ 0 ∈ ∂(f + ψC)(x∗) ⇐⇒ 0 ∈ ∇f (x∗) + NC(x∗)
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Variational Inequality (replace ∇f (z) with F (z))

F : Rn → Rn

Ideally: C ⊆ Rn – constraint set; Often: C ⊆ Rn – simple bounds

VI(F , C) : 0 ∈ F (z) + NC(z)

VI generalizes many problem classes

Nonlinear Equations: F (z) = 0 set C ≡ Rn

Convex optimization: F (z) = ∇f (z)

For LP, set F (z) ≡ ∇f (z) = p and C = {z : Az = a,Hz ≤ h}.
Can use VI(F , C) to model an equilibrium
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The positive orthant

Recall: If C =
{
z : aTi z ≤ bi , i = 1, . . . ,m

}
then

NC(x) =

{
m∑

i=1

λiai : 0 ≤ bi − aTi x ⊥ λi ≥ 0

}

C = Rn
+ = {z : −Ii ·z ≤ 0, i = 1, . . . ,m}

0 ∈ F (z) + NC(z) iff −F (z) =
∑m

i=1−ITi · λi = −λ where

0 ≤ 0 + Ii ·x ⊥ λi ≥ 0, i = 1, . . . , n

i.e.
0 ≤ xi ⊥ Fi (x) ≥ 0, i = 1, . . . , n

More succinctly: VI(F ,Rn
+) ≡ NCP(F ):

0 ≤ x ⊥ F (x) ≥ 0

For MCP (rectangular VI), set C ≡ [l , u]n.
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Combining: KKT conditions (as MCP)

Example: convex optimization first-order optimality condition:

x∗ solves min
x∈C

f (x) ⇐⇒ 0 ∈ ∇f (x∗) + NC(x∗)

⇐⇒ 0 = ∇f (x∗) + y , y ∈ NC(x∗)

⇐⇒ 0 = ∇f (x∗) + y , y = ATλ,

0 ≤ b − Ax∗ ⊥ λ ≥ 0

⇐⇒ 0 = ∇f (x∗) + ATλ,

0 ≤ b − Ax∗ ⊥ λ ≥ 0

More generally, if C = {z : g(z) ≤ 0}, g convex, (with CQ)

x∗ solves min
x∈C

f (x) ⇐⇒ 0 ∈ ∇f (x∗) + NC(x∗)

⇐⇒ 0 = ∇f (x∗) +∇g(x∗)λ,

0 ≤ −g(x∗) ⊥ λ ≥ 0
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Other applications of complementarity

Complementarity can model fixed points and disjunctions

Economics: Walrasian equilibrium (supply equals demand), taxes and
tariffs, computable general equilibria, option pricing (electricity
market), airline overbooking

Transportation: Wardropian equilibrium (shortest paths), selfish
routing, dynamic traffic assignment

Applied mathematics: Free boundary problems

Engineering: Optimal control (ELQP)

Mechanics: Structure design, contact problems (with friction)

Geology: Earthquake propagation

Good solvers exist for large-scale instances of Complementarity Problems
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Equilibrium = the first-order optimality conditions (KKTs)

An equilibrium of a single optimization (a single agent) under CQs

minimize
x

f (x), ∇f (x)−∇g(x)Tλ−∇h(x)Tµ = 0,

subject to g(x) ≤ 0, (⇒) 0 ≥ g(x) ⊥ λ ≤ 0,

h(x) = 0, 0 = h(x) ⊥ µ,

Mixed complementarity problem MCP(F , [l , u]) : l ≤ z ≤ u ⊥ F (z)

Geometric first-order optimality conditions for a closed convex set C

minimize
x∈C

f (x), (⇒) 0 ∈ ∇f (x) + NC (x)

i.e. VI(∇f (x),C )

Variational inequality VI(F ,C ) : 〈F (x), y − x〉 ≥ 0,∀y ∈ C
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Generalizing to N agents: NEP

Nash equilibrium problem: x = [xi ]
N
i=1

minimize
xi

fi (xi , x−i ), ∇xi fi (xi , x−i )−∇gi (xi )λi −∇hi (xi )µi = 0,

subject to gi (xi ) ≤ 0, (⇒) 0 ≥ gi (xi ) ⊥ λi ≤ 0,

hi (xi ) = 0, 0 = hi (xi ) ⊥ µi .

x−i := (x1, . . . , xi−1, xi+1, . . . , xN)T .

Equilibrium: satisfy the KKT conditions of all agents simultaneously.

Interactions occur only in objective functions.

Example of an interaction: fi (xi , x−i ) = ci (xi )− xip
(∑N

j=1 xj

)
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NEP + interacting feasible regions: GNEP

Generalized Nash equilibrium problem: x = [xi ]
N
i=1

minimize
xi

fi (xi , x−i ), ∇xi fi (x)−∇xigi (x)λi −∇xihi (x)µi = 0,

subject to gi (xi , x−i ) ≤ 0, (⇒) 0 ≥ gi (x) ⊥ λi ≤ 0,

hi (xi , x−i ) = 0, 0 = hi (x) ⊥ µi .

Interactions occur in both objective functions and constraints.

Interacting feasible regions:
Ki (x−i ) = {xi ∈ Rni | gi (xi , x−i ) ≤ 0, hi (xi , x−i ) = 0}.

I Ki : Rn−ni ⇒ Rni a set-valued mapping
I e.g., shared resources among agents:

∑N
i=1 xi ≤ b, or strategic

interactions
I Quasi-variational inequality
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(G)NEP + VI agent: MOPEC

Multiple optimization problems with equilibrium constraints:
x = [xi ]

N
i=1, π

minimize
xi

fi (xi , x−i , π), ∇xi fi (x , π)−∇xi gi (x , π)λi −∇xi hi (x , π)µi = 0,

subject to gi (xi , x−i , π) ≤ 0, 0 ≥ gi (x , π) ⊥ λi ≤ 0,

hi (xi , x−i , π) = 0, 0 = hi (x , π) ⊥ µi ,

π ∈ SOL(F ,K), π ∈ K(x), 〈F (π, x), y − π〉 ≥ 0, ∀y ∈ K(x).

No hierarchy between agents, c.f., MPECs and EPECs

An example of a VI agent: market clearing conditions

0 ≤ supply− demand ⊥ price ≥ 0
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Perfect competition (perfcomp)

max
xi

πT xi − ci (xi ) profit

s.t. Bixi = bi , xi ≥ 0 technical constr

0 ≤π ⊥
∑

i

xi − d(π) ≥ 0

When there are many agents, assume none can affect π by themselves

Each agent is a price taker

Two agents, d(π) = 24− π, c1 = 3, c2 = 2

KKT(1) + KKT(2) + Market Clearing gives Complementarity
Problem

x1 = 0, x2 = 22, π = 2
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Duopoly: two agents (cournot)

max
xi

p(
∑

j

xj)
T xi − ci (xi ) profit

s.t. Bixi = bi , xi ≥ 0 technical constr

Cournot: assume each can affect π by choice of xi

Inverse demand p(q): π = p(q) ⇐⇒ q = d(π)

Two agents, same data

KKT(1) + KKT(2) gives Complementarity Problem

x1 = 20/3, x2 = 23/3, π = 29/3

Exercise of market power (some price takers, some Cournot)
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How can you do this?

Above models, and further examples are available for download at:
http://www.cs.wisc.edu/~ferris/empmodels

Implemented in GAMS (see more examples in EMP library)

To run, can use GAMS Community License

Users can request a free community license from
community@gams.com. The community license lets you generate and
solve linear models (LP, MIP, and RMIP) that do not exceed 5000
variables and 5000 constraints. For all other model types the model
cannot be larger than 2500 variables and 2500 constraints.

gams perfcomp

gams cournot (or cournot1 for different syntax)

gams harkredemp

gams riskEx

Ferris Risk-Averse Stoch Equil Supported by DOE 17 / 44

http://www.cs.wisc.edu/~ferris/empmodels
community@gams.com


General Equilibrium models (two3emp)

(C ) : max
xk∈Xk

Uk(xk) s.t. pT xk ≤ ik(y , p)

(P) : max
yj∈Yj

pTgj(yj)

(M) : max
p≥0

pT


∑

k

xk −
∑

k

ωk −
∑

j

gj(yj)


 s.t.

∑

l

pl = 1

or 0 ≤
∑

k

xk −
∑

k

ωk −
∑

j

gj(yj) ⊥ p ≥ 0

(I ) : ik(y , p) = pTωk +
∑

j

αkjp
Tgj(yj)

This is an example of a MOPEC
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Spatial Price Equilibrium (harkredemp)

1

6

4 5

2 3

1

2 3

1

2 3

1

2 3

4 5

6

n ∈ {1, 2, 3, 4, 5, 6}
L ∈ {1, 2, 3}

Supply quantity: SL
Production cost: Ψ(SL) = ..

Demand: DL

Unit demand price: θ(DL) = ..
Transport: Tij

Unit transport cost: cij(Tij) = ..

One large system of equations and inequalities to describe this (GAMS).
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Nonlinear Program Model (Monopolist)

One producer controlling all regions

Full knowledge of demand system

Full knowledge of transportation system

max
(D,S ,T )∈F

∑

l∈L
θl(Dl)Dl −

∑

l∈L
Ψl(Sl)−

∑

i ,j

cij(Tij)Tij

s.t. Sl +
∑

i ,l

Til = Dl +
∑

l ,j

Tlj , ∀l ∈ L

EMP = NLP

Ferris Risk-Averse Stoch Equil Supported by DOE 20 / 44



2 agents: NLP + VI Model (Monopolist)

One producer controlling all regions

Full knowledge of demand system

Price-taker in transportation system

pij

max
(D,S ,T )∈F

∑

l∈L
θl(Dl)Dl −

∑

l∈L
Ψl(Sl)−

∑

i ,j

���
�XXXXcij(Tij)Tij (1)

s.t. Sl +
∑

i ,l

Til = Dl +
∑

l ,j

Tlj , ∀l ∈ L

pij = cij(Tij) (2)

empinfo: equilibrium
vi pDef p

EMP = MOPEC =⇒ MCP
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EMP: MOPEC
Model has the format:

Agent o: min
x

f (x , y)

s.t. g(x , y) ≤ 0 (⊥ λ ≥ 0)

Agent v: H(x , y , λ) = 0 (⊥ y free)

Difficult to implement correctly (multiple optimization models)
Can do automatically - simply annotate equations
empinfo: equilibrium
min f x defg
vi H y
dualvar λ defg
EMP tool automatically creates an MCP

∇x f (x , y) + λT∇g(x , y) = 0

0 ≤ −g(x , y) ⊥ λ ≥ 0

H(x , y , λ) = 0
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World Bank Project (Uruguay Round)

24 regions, 22 commodities
I Nonlinear complementarity

problem
I Size: 2200 x 2200

Short term gains $53 billion p.a.
I Much smaller than previous

literature

Long term gains $188 billion p.a.
I Number of less developed

countries loose in short term

Unpopular conclusions - forced
concessions by World Bank

Region/commodity structure not
apparent to solver

Application: Uruguay Round
• World Bank Project with 

Harrison and Rutherford
• 24 regions, 22 commodities

– 2200 x 2200 (nonlinear)
• Short term gains $53 billion p.a.

– Much smaller than previous 
literature

• Long term gains $188 billion p.a.
– Number of less developed 

countries loose in short term
• Unpopular conclusions – forced 

concessions by World Bank
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Classic SPE Model (NLP + VI agents)

One producer controlling all regions

Price-taker in demand system

Price-taker in transportation system

πl pij

max
(D,S ,T )∈F

∑

l∈L
���

�XXXXθl(Dl)Dl −
∑

l∈L
Ψl(Sl)−

∑

i ,j

��
��XXXXcij(Tij)Tij (1)

s.t. Sl +
∑

i ,l

Til = Dl +
∑

l ,j

Tlj , ∀l ∈ L

pij = cij(Tij) (2)

πl = θl(Dl) (3)

empinfo: equilibrium
vi pDef p
vi thetaDef pi

EMP = MOPEC =⇒ MCP
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The Philpott batch problem

Solar panels:

Diesel generator:

Battery:

Pump storage:
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The setup: agents a =(solar, wind, diesel, consumer)
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Dynamics and uncertainties (risk neutral)

T stages (use 6 here)

Scenario tree is data

Nodes n ∈ N , n+ successors

Stagewise probabilities µ(m) to move
to next stage m ∈ n+

Uncertainties (wind flow, cloud cover,
rainfall, demand) ωa(n)

Actions ua for each agent (dispatch,
curtail, generate, shed), with costs Ca

State and shared variables (storage,
prices)

Recursive (nested) definition of
expected cost-to-go: θ(n) =∑
m∈n+

µ(m)
(∑

a∈A Ca(ua(m)) + θ(m)
)

t ∈ 0, 1, 2, 3, 4, 5, 6
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SO Model: the gold standard

SO: min
(θ,u,x)∈F(ω)

∑

a∈A
Ca(ua(0)) + θ(0)

s.t. θ(n) ≥
∑

m∈n+
µ(m)

(∑

a∈A
Ca(ua(m)) + θ(m)

)

∑

a∈A
ga(ua(n)) ≥ 0

ga converts actions into energy.

Solution (risk neutral, system
optimal):

consumer cost 1,308,201;
probability of shortage 19.5%

No transfer of energy across
stages.

Prices π on energy
constraint:
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Add storage (smoother) to uncertain supply
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Add storage

Storage allows
energy to be moved
across stages
(batteries, pump,
compressed air, etc)

Solution using only
battery consumer
cost 1,228,357;
probability of
shortage 11.5%

Solution using
battery and diesel
consumer cost
207,476; probability
of shortage 1.1%

min
(θ,u,x)∈F

∑

a∈A
Ca(ua(0)) + θ(0)

s.t. xa(n) = xa(n−)− ua(n) + ωa(n)

θ(n) ≥
∑

m∈n+
µ(m)

(∑

a∈A
Ca(ua(m)) + θ(m)

)

∑

a∈A
ga(ua(n)) ≥ 0

Prices π
on energy
constraint:
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Investment planning: storage/generator capacity
Increasing battery capacity

Shortage probability
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Increasing diesel generator capacity

Shortage probability
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Risk averse equilibrium (more details in public lecture)

Replace each agents problem by:

RA(a, π,Da): min
(θ,u,x)∈F

Za(0) + θa(0)

s.t. xa(n) = xa(n−)− ua(n) + ωa(n)

θa(n) ≥
∑

m∈n+
pka (m)(Za(m) + θa(m)), k ∈ K (n)

Za(n) = Ca(ua(n))− π(n)ga(ua(n))

pka (m) are extreme points of the agents risk set Da at m

Constraint: θa dominates supµ∈Da
〈µ, ·〉 the dual definition of risk

measure

No longer system optimization, solve using complementarity solver

Need techniques to treat stochastic optimization problems within
equilibrium
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Computational results
Nash equilibrium as a MOPEC

{(θa(n)), ua(n), n ∈ N , x} ∈ arg min RA(a, π,Da)

and
0 ≤

∑

a∈A
ga(ua(n)) ⊥ π(n) ≥ 0

One optimization per agent, coupled together with solution of
complementarity (equilibrium) constraint.

Increasing risk aversion (effect of competition, limited investment)
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What we can do?

Used in models such as PIES, MERGE, VEMOD, MARKAL, TIMES,
KAPSARC, ISEEM, MESSAGE, TEA, TIGER, Gemstone

Models of Tobin, Nordhaus, Romer

Frequently used in Computable General Equilibrium (CGE) analyses
(GTAP data available), traffic, structural analysis

Policy analyses such as Uruguay round, NAFTA, USMCA, Brexit

Equilibrium ≡ complementarity ( ≈ coupling)

PATH solver for large scale mixed complementarity problems

0 ≤ F (x) ⊥ x ≥ 0

Nonsmooth Newton method, efficient linear algebra, available in
modeling systems: GAMS, MPSGE, AMPL, AIMMS, Julia, Pyomo
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The EMP framework

Automates all the steps: no need to derive MCP by hand.

Annotate equations and variables in an empinfo file.

The framework automatically transforms the problem into another
computationally more tractable form.

minimize
xi

fi (xi , x−i , π),

subject to gi (xi , x−i , π) ≤ 0,

hi (xi , x−i , π) = 0,

for i = 1, . . . ,N,

π ∈ SOL(F ,K ).

equilibrium

min f(’1’) x(’1’) g(’1’) h(’1’)

· · ·
min f(’N’) x(’N’) g(’N’) h(’N’)

vi F pi K
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An example of using the EMP framework

An oligopolistic market equilibrium problem formulated as a NEP:

q∗i ∈ argmaxqi≥0 qip




5∑

j=1,j 6=i

q∗j + qi


− ci (qi ), for i = 1, . . . , 5.

variables obj(i); positive variables q(i);

equations defobj(i);

defobj(i).. obj(i) =E= ...;

model m / defobj /;

file info / ’%emp.info%’ /;

put info ’equilibrium’ /;

loop(i, put ’max’, obj(i), q(i), defobj(i) /;);

putclose;

solve m using emp;
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MIP formulations for Complementarity

Set yi = Fi (x), then (disjunction)

0 ≤ yi , yixi = 0, xi ≥ 0 x

y

If we know upper bounds on xi and yi we can introduce binary variable zi
and model as:

0 ≤ xi ≤ Mzi , 0 ≤ yi ≤ M(1− zi )

or (without bounds)
(xi , yi ) ∈ SOS1

(or use indicator variables to turn on “fixing” constraints).
Works if bounds are good and problem size is not too large. Issues with
bounds on multipliers not being evident. c.f. Optimal topology problems.
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Normal map for polyhedral C

Normal Map 

projection: πC (x)

x − πC (x) ∈ NC (πC (x))

If −F (πC (x)) = x − πC (x) then
z = πC (x) solves

0 ∈ F (z) + NC (z)

if and only if we can find x , a zero
of the normal map:

0 = F (πC (x)) + x − πC (x)
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Nonsmooth alternatives and approximations (NLPEC)
Alternative: generate generalized derivatives of nonsmooth reformulations

PATH uses (PC 1) normal map

Min-map min(Fi (x), xi ) = 0

Fischer-Burmeister Φ(x) = 0

φ(a, b) = 0 ⇐⇒ 0 ≤ a ⊥ b ≥ 0

Φi (x) ≡
√
x2i + Fi (x)2 − xi − Fi (x)

Smoothing (drive parameter µ to 0)

0 = φµ(Fi (x), xi ), i = 1, 2, . . . , n

φµ(a, b) :=
√
a2 + b2 + µ− a− b
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Relaxation Fi (x)xi ≤ µ
Penalization +λ

∑n
i=1 Fi (x)xi
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Extension: Hierarchical models

Bilevel programs:

min
x∗,y∗

f (x∗, y∗)

s.t. g(x∗, y∗) ≤ 0,
y∗ solves min

y
v(x∗, y) s.t. h(x∗, y) ≤ 0

model bilev /deff,defg,defv,defh/;
empinfo: bilevel min v y defv defh

EMP tool automatically creates the MPCC

min
x∗,y∗,λ

f (x∗, y∗)

s.t. g(x∗, y∗) ≤ 0,
0 ≤ ∇v(x∗, y∗) + λT∇h(x∗, y∗) ⊥ y∗ ≥ 0
0 ≤ −h(x∗, y∗) ⊥ λ ≥ 0
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EMP: MPCC: complementarity constraints

min
x ,y

f (x , y)

s.t. g(x , y) ≤ 0,
0 ≤ y ⊥ h(x , y) ≥ 0

g , h model “engineering” expertise: finite elements, etc

⊥ models complementarity, disjunctions

Complementarity “⊥” constraints available in AIMMS, AMPL and
GAMS

NLPEC: use the convert tool to automatically reformulate as a
parameteric sequence of NLP’s

Solution by repeated use of standard NLP software
I Problems solvable, local solutions, hard
I Southern Spars Company (NZ): improved from 5-0 to 5-2 in America’s

Cup!
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MPCC approaches

Implicit: minx f (x , y(x))

Auxiliary variables: s = h(x , y)

NCP functions: Φ(y , s) = 0

Smoothing: Φµ(y , s) = 0

Penalization: min f (x , y) + µyT s

Relaxation: yT s ≤ µ
Different problem classes require different solution techniques
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Parametric algorithm: NLPEC

Reftype mult

Aggregate none

Constraint inequality

Initmu = 0.01

Numsolves = 5

Updatefac = 0.1

Finalmu = 0

A solution procedure whereby µ is
successively reduced can be
implemented as a simple option file
to NLPEC

min
x∈Rn,y∈Rm,s∈Rm

f (x , y)

s.t. g(x , y) ≤ 0

s = h(x , y)

y ≥ 0, s ≥ 0

yi si ≤ µ, i = 1, . . . ,m.

Note that a series of approximate
problems are produced,
parameterized by µ > 0; each of
these approximate problems have
stronger theoretical properties than
the problem with µ = 0
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Conclusions

Equilibrium naturally modeled via complementarity

Solvers exist for medium to large scale problems

Frameworks (EMP) exist to streamline model transformations

empinfo: dualvar, bilevel, equilibrium, vi

Very large scale models (many agents with many instruments acting
strategically) with risk are hard

Structure exploiting methods can be effective when used carefully

New algorithms enable solution of more detailed, authentic problems
and address underlying policy questions
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