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Engineering, Economics and Environment

Determine generators’ output to reliably/economically meet the load

Power flows cannot exceed lines’ transfer capacity

Tradeoff: Impose environmental regulations/incentives
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Perfect competition (MOPEC)

max
xi

πT xi − ci (xi ) profit

s.t. Bixi = bi , xi ≥ 0 technical constr

0 ≤π ⊥
∑
i

xi − d(π) ≥ 0

When there are many agents, assume none can affect π by themselves

Each agent is a price taker

Two agents, d(π) = 24− π, c1 = 3, c2 = 2

KKT(1) + KKT(2) + Market Clearing gives Complementarity
Problem

x1 = 0, x2 = 22, π = 2
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Simple dynamics (discrete time, finite horizon)

∀a ∈ A:

min
xa·∈Xa0

fa1(xa1; ·,·) + fa2(xa2; ·,·)

+ · · ·+ faT (xaT ; ·,·)

Dynamics link over time
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Simple dynamics (discrete time, finite horizon)

∀a ∈ A:

min
xa·∈Xa0

fa1(xa1; x9a1,π1) + fa2(xa2; x9a2,π2)

+ · · ·+ faT (xaT ; x9aT ,πT ) ∀a ∈ A,
0 ∈Hj(πj ; x·j) + NPj

(πj), ∀j ∈ T .

Dynamics link over time

Complementarity links nodes
across agents
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Scenario tree with nodes N = {1, 2, . . . , 9}, and T = 3

f1 + ρ1◦F1

f2+ ρ2◦F2

f5 f6

f3+ ρ3◦F3

f7

f4+ ρ4◦F4

f8 f9

At leaf nodes:

min
xa`∈Xa`

← fa`(xa`; x9a`,π`) ∀a ∈ A,

0 ∈ H`(π`; x·`) + NP`
(π`)

“;” separates variables from parameters in function definition
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Stochastic equilibrium (MOPEC)

f1 + ρ1◦F1

f2+ ρ2◦F2

f5 f6

f3+ ρ3◦F3

f7

f4+ ρ4◦F4

f8 f9

Agents solve problem at root node, linking at all nodes:

min
xa·∈Xa0

fa1(xa1; x9a1,π1)

+ ρa1([faj(xaj ; x9aj ,πj) + ρaj([fa`(xa`; x9a`,π`)]`∈j+)]j∈1+) ∀a ∈ A,
0 ∈Hj(πj ; x·j) + NPj

(πj), ∀j ∈ T .
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Scenario trees linked across agents

Dynamics link over time

Complementarity links nodes of
scenario tree across agents
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Risk Measures

Problem type

Objective function

min
x∈X

θ(x) + ρ(F (x))

or Constraint

min
x∈X

θ(x) s.t. ρ(F (x)) ≤ α

Dual representation (of coherent r.m.) in terms of risk sets

ρ(Z ) = sup
y∈D

Ey [Z ]

If D = {p} then ρ(Z ) = E[Z ]

If Dα,p = {y ∈ [0, p/(1− α)] : 〈1, y〉 = 1}, then ρ(Z ) = CVaRα(Z )

Combinations - increasing risk aversion as λ increases

ρ(Z ) = (1− λ)E[Z ] + λCVaRα(Z )
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The transformation to complementarity

min
x∈X

θ(x) + ρ(F (x))

where ρ(u) = sup
y∈D

{
〈y , u〉 − 1

2
〈y ,My〉

}
optimality condition:

0 ∈ ∂θ(x) +∇F (x)T∂ρ(F (x)) + NX (x)

calculus:

0 ∈ ∂θ(x) +∇F (x)T y + NX (x)

0 ∈−y + ∂ρ(F (x)) ⇐⇒ 0 ∈ −F (x) + My + ND(y)

This is a complementarity problem: opt conds in x coupled with opt
conds in y
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Stochastic Equilibrium as (extended) MOPEC

min
xa·∈Xa0

fa1(xa1; x−a1,π1)+

∑
j∈1+

yaj

faj(xaj ; x−aj ,πj) +
∑
`∈j+

ya`fa`(xa`; x−a`,π`)

 , ∀a ∈ A
(1)

0 ∈Hj(πj ; x·j) + NPj
(πj), ∀j ∈ T (2)

ra1(x ,π) = max
ya1+∈Da1

∑
j∈1+

yaj(faj(xaj ; x−aj ,πj) + raj(x ,π))

ra2(x ,π) = max
ya2+∈Da2

∑
`∈2+

ya`fa`(xa`; x−a`,π`)

ra3(x ,π) = max
ya3+∈Da3

∑
`∈3+

ya`fa`(xa`; x−a`,π`)

ra4(x ,π) = max
ya4+∈Da4

∑
`∈4+

ya`fa`(xa`; x−a`,π`)

(3)
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Simple example (3 agents, 2 stages, 10 scenarios)
A two-stage electricity market example

Low stage 1 inflow:
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Second stage probabilities:

Higher stage 1 inflow:
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0
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Algorithms and problems

PATH: nonsmooth Newton method (defaults) (blue+red+black)

GS (Primal-dual): iteratively blue+red then black

GS-PTH (Primal-dual + PATH)

GS-CC-PTH (Primal-dual + convex-comb(black) + PATH)

Homotopy(λ) + Primal-dual + convex-comb(black) + PATH

Multistage economic dispatch, capacity expansion, hydroelectric
system

3 types of demand formulation (I,II and III)

Two scenario trees (4 stages, 40 nodes) and (4 stages, 156 nodes)

32 data instances for each formulation

Several modulus of convexity and risk aversion parameters

ρ(Z ) = (1− λ)E[Z ] + λCVaRα(Z )
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Hydroelectric example, large tree, type I

quad λ PATH(%) GS(%) GS-PTH(%) GS-CC-PTH(%)

0 0.1 12.5 96.9 100.0 100.0
0 0.3 0.0 90.6 100.0 100.0
0 0.5 0.0 96.9 100.0 100.0
0 0.7 0.0 96.9 100.0 100.0
0 0.9 0.0 50.0 78.1 100.0
1e-2 0.1 62.5 100.0 100.0 100.0
1e-2 0.3 9.4 100.0 100.0 100.0
1e-2 0.5 0.0 100.0 100.0 100.0
1e-2 0.7 0.0 100.0 100.0 100.0
1e-2 0.9 0.0 100.0 100.0 100.0
1e-1 0.1 100.0 100.0 100.0 100.0
1e-1 0.3 31.2 96.9 100.0 100.0
1e-1 0.5 9.4 100.0 100.0 100.0
1e-1 0.7 0.0 100.0 100.0 100.0
1e-1 0.9 0.0 100.0 100.0 100.0
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Hydroelectric example, large tree, type II

quad λ PATH(%) GS(%) GS-PTH(%) GS-CC-PTH(%)

0 0.1 21.9 96.9 100.0 100.0
0 0.3 0.0 93.8 100.0 100.0
0 0.5 0.0 96.9 100.0 100.0
0 0.7 0.0 96.9 100.0 100.0
0 0.9 0.0 75.0 87.5 100.0
1e-2 0.1 65.6 100.0 100.0 100.0
1e-2 0.3 6.2 100.0 100.0 100.0
1e-2 0.5 6.2 100.0 100.0 100.0
1e-2 0.7 0.0 100.0 100.0 100.0
1e-2 0.9 0.0 100.0 100.0 100.0
1e-1 0.1 100.0 100.0 100.0 100.0
1e-1 0.3 65.6 96.9 100.0 100.0
1e-1 0.5 37.5 93.8 100.0 100.0
1e-1 0.7 9.4 93.8 100.0 100.0
1e-1 0.9 0.0 93.8 100.0 100.0
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Dispatch example, large tree, type I

quad λ PATH GS GS-PTH GS-CC-PTH Homotopy

0 0.1 0.0 0.0 59.4 100.0 100.0
0 0.3 0.0 0.0 12.5 96.9 100.0
0 0.5 0.0 0.0 9.4 71.9 87.5
0 0.7 0.0 0.0 3.1 18.8 53.125
0 0.9 0.0 0.0 0.0 9.4 21.875
1e-2 0.1 28.1 15.6 100.0 100.0 100.0
1e-2 0.3 0.0 0.0 90.6 100.0 100.0
1e-2 0.5 0.0 0.0 40.6 100.0 100.0
1e-2 0.7 0.0 0.0 21.9 84.4 93.8
1e-2 0.9 0.0 0.0 6.2 53.1 68.75
1e-1 0.1 0.0 59.4 100.0 100.0 100.0
1e-1 0.3 0.0 43.8 100.0 100.0 100.0
1e-1 0.5 0.0 18.8 96.9 100.0 100.0
1e-1 0.7 0.0 12.5 100.0 100.0 100.0
1e-1 0.9 0.0 15.6 93.8 100.0 100.0
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Dispatch example, large tree, type II

quad λ PATH GS GS-PTH GS-CC-PTH Homotopy

0 0.1 62.5 0.0 96.9 100.0 100.0
0 0.3 0.0 0.0 43.8 100.0 100.0
0 0.5 0.0 0.0 9.4 71.9 87.5
0 0.7 0.0 0.0 0.0 31.2 50.0
0 0.9 0.0 0.0 0.0 9.4 12.5
1e-2 0.1 96.9 15.6 100.0 100.0 100.0
1e-2 0.3 9.4 0.0 96.9 100.0 100.0
1e-2 0.5 0.0 0.0 71.9 100.0 100.0
1e-2 0.7 0.0 0.0 40.6 96.9 100.0
1e-2 0.9 0.0 0.0 9.4 65.6 81.25
1e-1 0.1 96.9 53.1 100.0 100.0 100.0
1e-1 0.3 40.6 46.9 100.0 100.0 100.0
1e-1 0.5 3.1 21.9 100.0 100.0 100.0
1e-1 0.7 0.0 18.8 100.0 100.0 100.0
1e-1 0.9 0.0 15.6 93.8 100.0 100.0

Ferris et al. Energy and environment Supported by DOE 17 / 34



Uncertainty is experienced at different time scales

Demand growth, technology
change, capital costs are
long-term uncertainties
(years)

Seasonal inflows to
hydroelectric reservoirs are
medium-term uncertainties
(weeks)

Levels of wind and solar
generation are short-term
uncertainties (half hours)

Very short term effects from
random variation in
renewables and plant failures
(seconds)

years weeks half-hours seconds

Infrastructure
investment

Optimal
releases

Demand
satisfaction

Spinning
reserves

Tradeoff: Uncertainty, cost and
operability, regulations,
security/robustness/resilience

Needs modelling at finer time
scales
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Simplified two-stage stochastic optimization model

Capacity decisions are z at cost K (z)

Operating decisions are: generation y at cost C (y), loadshedding q at
cost Vq.

Random demand is d(ω).

Minimize capital cost plus expected operating cost:

P: min
z,y ,q∈X

K (z) + Eω[C (y(ω)) + Vq(ω)]

s.t. y(ω) ≤ z ,
y(ω) ≥ d(ω)− q(ω),
zN ≤ (1− θ)zN (2017)
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Costs as we impose tighter emission restrictions

Markets based on marginal (operating) prices
Tradeoff: Building more (renewable) capacity costs more, but makes
operations cheaper - how to recover the fixed cost investment
Operational costs dominated (at 100% renewable) by load shedding
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Introduction Stochastic optimization models Some results Conclusions

More realistic model

Plant k has current capacity Uk , expansion xk at capital cost Kk
per MW, maintenance cost Lk per MW, and operating cost Ck .
Minimize fixed and expected variable costs. Here t = 0, 1, 2, 3, is a
season and w(t) is reservoir storage at end of season t.

P: minψ = ∑k (Kkxk + Lkzk ) +∑t Eω[Z (t,ω)]
s.t. Z (t,ω) = ∑b T (b) (∑k Ckyk (t,ω, b) + Vq(t,ω, b)) ,

xk ≤ uk ,
zk ≤ xk + Uk ,

yk (t,ω, b) ≤ µk (t,ω, b)zk ,
∑b T (b)yk (t,ω, b) ≤ νk (t,ω)∑b T (b)zk + w(t − 1)− w(t),

q(t,ω, b) ≤ d(t,ω, b),
d(t,ω, b) ≤ ∑k yk (t,ω, b) + q(t,ω, b),

w(t) ≤ W ,
y , q,w ≥ 0.
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Environmental constraints
Some capacity zk , k ∈ N , is “non renewable”. Some generation yk(ω),
k ∈ E emits βkyk(ω) tonnes of CO2. For a choice of θ ∈ [0, 1] constraint
is either:

Eω[
∑
k∈E

βkyk(ω)] ≤ (1− θ)Eω[
∑
k∈E

βkyk(ω, 2017)],

(reduce CO2 emissions compared with 2017)∑
k∈N

zk ≤ (1− θ)
∑
k∈N

zk(2017),

(reduce non-renewable capacity compared with 2017)

Eω[
∑
k∈N

yk(ω)] ≤ (1− θ)Eω[
∑
k∈N

yk(ω, 2017)],

(reduce non-renewable generation compared with 2017)

Could impose constraints almost surely instead of in expectation or with
risk measure (small impact) or use chance constraints
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Since (renewable) geothermal and CCS emit some CO2 100% renewable
yields modest reductions in CO2 emissions.
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Average emissions for increasing carbon price ($ / tonne)
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Technology choices as θ increases (% CO2 redn)

Rich portfolio of renewable technologies used

More capacity needed as more uncertain generation
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Large pumped storage investment: Lake Onslow

Technology Without With
SI HAY NI SI HAY NI

ONSLOW 0.0 0.0 0.0 1000.0 0.0 0.0
SLOWBATT 500.0 500.0 500.0 0.0 500.0 500.0
WIND 0.0 2049.9 5000.0 0.0 1407.4 5000.0

Worried about the effects of dry winters and excess wind capacity

Pumped storage costs amortized over long period

Economical if emissions constraint is strict enough (i.e. no more than
5% of 2017 levels)

Remove large battery in SI, reduce wind capacity at HAY
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Wisconsin: wind and solar penetration

WEREWOLF model outputs: Renewable increases (wind and solar) for
0%, 40%, 80% carbon reduction policy scenarios in Wisconsin
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Impact of Electric Vehicles on Generator Investments

Carbon Goals: 60% reduction
on in-state carbon emissions

Nuclear (low-carbon) used

Coal steam generators shut
down, supplanted by renewables

Additional 180,000 MWh
demand for EVs

Storage investment needed

Additional demand or carbon
goals give more dramatic effects
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Cost of actually reaching zero CO2 emissions (without geothermal or CCS)
increases as we approach the limit.
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Introduction Stochastic optimization models Some results Conclusions

New Zealand greenhouse gas emissions

Total GHG emissions in 2016 were 80 M t CO2 equivalent.

Ferris et al. Energy and environment Supported by DOE 30 / 34



Introduction Stochastic optimization models Some results Conclusions

New Zealand greenhouse gas emissions

Total CO2 emissions in 2016 were 30 M t.
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Introduction Stochastic optimization models Some results Conclusions

New Zealand greenhouse gas emissions

Total CO2 emissions from electricity in 2016 were 3 M t.
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General equilibrium (with contracts/incentives)

Consumption dk , energy yj , flows f , prices π, σ

Consumers max
dk∈C

utility(dk)− TC (σ, d , f , y)− πTdk

Generators max
(yj )∈G

profit(yj , π)− TG (σ, d , f , y)

Transport min
f ∈F

cost(f , π, σ)

Market clearing

0 ≤ π ⊥
∑
j

yj −
∑
k

dk −Af ≥ 0

0 ≤ σ ⊥ E −
∑
j

Ej(yj) ≥ 0
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Conclusions

100% renewable electricity system has several interpretations with
different implications.

Policy should choose the objective function not the action: e.g.
reducing thermal capacity ceteris paribus can increase average
emissions.

Uncertainty in the model makes a difference.

Electricity system has uncertainties at many time scales. Can include
these in a single model with some approximations.

100% emission reduction in (NZ) electricity is needlessly expensive
given proportion of electricity emissions.

Next steps: A multistage model, and its competitive equilibrium
counterpart.
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A mathematical modelling approach to planning

Build and solve a social plannning model that optimizes electricity
capacity investment with constraints on CO2 emissions.

Social planning solution should be stochastic: i.e. account for future
uncertainty

Social planning solution should be risk-averse: because the industry is.

Approximate the outcomes of the social plan by a competitive
equilibrium with risk-averse investors.

Compensate for market failures from imperfect competition or
incomplete markets.
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