
Tutorial: Parallel, Distributed, and Decentralized
Optimization Methods

Wotao Yin
(UCLA Math & Alibaba US Damo Academy)

East Coast Optimization Meeting 2021

1 / 48

Objective

Large arbitrary-scale optimization methods

Explore structures, e.g., finite sums and block diagonals, and create parallel
subproblems

Make communication efficient by going decentralized

Live demonstration of parallel, distributed, and decentralized optimization

2 / 48

Book: Large-Scale Convex Optimization via Monotone Operators

large-scale-book.mathopt.
com

Ernest Ryu (Seoul Nat’l U) and Wotao Yin

Taught twice at SNU and UCLA
Audience: mathematicians and engineers
Goals:

• present convex optimization through the
abstraction of monotone operators

• cover parallel, distributed, decentralized,
stochastic, and block-coordinate methods

• include just the theories to develop and
use methods correctly, not analysis
focused

3 / 48

large-scale-book.mathopt.com
large-scale-book.mathopt.com

Open-source software: BlueFog

github.com/Bluefog-Lib/
bluefog

Bicheng Ying (Google), Kun
Yuan (Alibaba), Hanbin Hu
(UCSB), Ji Liu (Baidu), and

Wotao Yin

A software framework for decentralized
optimization

• implements various decentralized
topologies

• is capable of non-blocking asynchronous
steps

• also supports parallel and (centralized)
distribute computing

• can be used to run gradient, stochastic
gradient, proximal, ... methods

4 / 48

github.com/Bluefog-Lib/bluefog
github.com/Bluefog-Lib/bluefog

5 / 48

Parallel computing

• definition: Calculations are carried out simultaneously by multiple
computing nodes (CPU cores in one or multiple computers).

• Not all computational tasks can benefit from parallel computing.
Loosely speaking, a method is parallelizable if it has a parallel
implementation that provides a significant speedup using many agents.

• Embarrassingly parallel is great.
Example: matrix sum C = A+B

parallel for i=1 ,... ,m, j=1 ,... ,n {
C[i,j] = A[i,j]+B[i,j]

}

6 / 48

Parallel reduction

• Reduction combines a set of numbers into one number with an associative
binary operator.
Example: xsum =

∑n

i=1 xi

• With p ≥ bn/2c agents, reduction take O(logn) steps.

• With p < bn/2c agents, reduction take O(n/p+ log p) steps.

Example: sum of 40 numbers on 4 agents

7 / 48

Discussion: cost of parallel computing

Adding parallel costs of single steps may be inadequate because:

• good performance requires proper data organization;

• different steps of a method may prefer different data organizations;

• also:

Other costs:

• Latency

• Data transmission time

• Coordination time (barrier, memory lock) — sometimes hard to quantify

8 / 48

Amdahl’s law
Consider

minimize
x∈Rn

f(x) + 1
m

m∑
i=1

hi(x),

and its proximal gradient method

vk = − α
m

m∑
i=1

∇hi(xk)

xk+1 = proxαf
(
xk + vk

)
.

Suppose it takes 6ms to evaluate vk on one agent and 3ms to evaluate xk+1.
Imagine we reduce 6ms to 0ms by parallel computing but cannot improve that
3ms. Then, the speedup is 6+3

0+3 = 3.

If the parallelizable part takes time η ∈ [0, 1] in proportion and we speed it up
by s times, then the total speedup is

1
1− η + η/s

.

9 / 48

SPMD (single program, multiple data) and Allreduce

SPMD (single program, multiple data)

One code for all agents; but different agents have different data and their
unique ranks.

hello_world .py
import bluefog .torch as bf

bf.init ()
print ("I’m rank {} of {}". format (bf.rank (), bf.size ()))

> bfrun -np 4 python hello_world.py
I’m rank 1 of 4
I’m rank 0 of 4
I’m rank 3 of 4
I’m rank 2 of 4

You can use “if bf.rank()==0:[tasks]” to execute something only on one
agent

10 / 48

Allreduce

• AllReduce is a reduce operation that returns the result to all agents

• Often used in SPMD implementations of iterative methods

• Different implementations:
• dedicate a master agent (gather, local reduce, distribute), not scalable
• butterfly allreduce: theoretically both latency and bandwidth optimal,

but causing contentions
• ring allreduce: bandwidth optimal, less contention, but not latency

optimal

11 / 48

Allreduce demo

• BlueFog’s allreduce (by default) is a ring-allreduce of averaging

• Demo: compute the average of the ranks of all agents
1
n

(0 + 1 + · · ·+ (n− 1)) = n− 1
2

• Demo: solve

minimize
x∈Rd

n∑
i=1

hi(x)

by distributed gradient descent

xk+1 = xk − α

n

n∑
i=1

∇hi(xk).

12 / 48

Primal decomposition and dual decomposition

Primal decomposition
Consider

minimize
x1,...,xn,y

r(y) +
n∑
i=1

hi(xi, y)

When y is fixed, we can deal with x1, . . . , xn separately.

Define fi(y) = minxi hi(xi, y) and obtain master problem:

minimize
y

r(y) +
n∑
i=1

fi(y).

Various methods update x1, . . . , xn and y alternatively.

When f1, . . . , fn are smooth, applying the proximal-gradient method on y:

x?i (yk) ∈ arg min
xi

fi(xi, yk)

(0, gki) ∈ ∂fi(x?i (yk), yk)

yk+1 = proxαr

(
yk − α

n∑
i=1

gki

)
.

13 / 48

Example: resource sharing problem with total resource penalty

• Consider minimizing (total cost) + (sum of local costs)

minimize
x1,...,xn

r

(
n∑
i=1

Bixi

)
+

n∑
i=1

hi(xi).

Introduce yi = Bixi and write

minimize
y1,...,yn

f0

(
n∑
i=1

yi

)
+ 1

2

n∑
i=1

min
xi
{hi(xi) : Bixi = yi}.

• Demo: use r = ‖ · ‖1, hi(xi) = 1
2‖Axi − bi‖

2, and invertible Bi

14 / 48

Dual decomposition
Consider:

minimize
xi∈Rdi ,y∈Rq

r(y) + 1
n

n∑
i=1

fi(xi)

subject to
n∑
i=1

Bixi ≤ y,

This primal problem is generated by the Lagrangian

L(x1, . . . , xn, y, u) = r(y)− 〈u, y〉+ 1
n

n∑
i=1

(fi(xi) + 〈u,Bixi〉)− δRn+ (u).

With
ψi(u) = sup

xi∈Rpi
(〈−u,Bixi〉 − fi(xi))

we obtain the master dual problem

maximize
u∈Rq

−r∗(u)− δRq+ (u)− 1
n

n∑
i=1

ψi(u).

Under certain strict convexity assumptions, primal solutions can be recovered
from the dual problem.

15 / 48

Alternating Direction of Multipliers (ADM or ADMM)
Consider

minimize
x,y

f(x) + g(y)

subject to Ax︸︷︷︸
=z

+By = b

With infimal postcomposition

(A� f)(z) := inf{f(x) : Ax = z}

we obtain the master problem

minimize
z

(A� f)(z) + (B � g)(b− z).

Applying Douglas-Rachford Splitting, we get ADMM:

xk+1 ∈ arg min
x

Lα(x, yk, uk)

yk+1 ∈ arg min
y

Lα(xk+1, y, uk)

uk+1 = uk + α(Axk+1 +Byk+1 − c).

where Lα(x, y, u) = f(x) + g(y) + 〈u,Ax+By − c〉+ α
2 ‖Ax+By − c‖2.

16 / 48

Distributed ADMM

When x = [x1; . . . ;xn], f(x) =
∑n

i=1 fi(xi), and block diagonal A such that

Ax =

A1x1
...

Anxn

 ,
ADMM generates separable subproblems subject to parallel computing

xk+1
i ∈ arg min

xi

f(xi) + 〈uk, Aixi〉+ α

2 ‖Aixi + (Byk)i − ci‖2, i = 1, . . . , n

yk+1 ∈ arg min
y

Lα(xk+1, y, uk)

uk+1
i = uki + α(Aixk+1

i + (Byk+1)i − ci), i = 1, . . . , n.

Steps 1 and 3 are embarrassingly parallel.

17 / 48

Summary of part 1

Finite-sum and block diagonal structures lend themselves to parallel computing

Infimal postcomposition can break coupling

Dual decomposition (Lagrange multipliers) can decouple linear constraints

Various software packages (e.g. PyTorch, BlueFog) have made distributed
optimization easy, not just for machine learning.

Part 2: reduce communication costs by avoiding long-distance messages (i.e.,
going decentralized)

18 / 48

	Introduction
	background
	SPMD (single program, multiple data) and Allreduce
	Primal decomposition and dual decomposition

	pbs@ARFix@1:
	pbs@ARFix@2:
	pbs@ARFix@3:
	pbs@ARFix@4:
	pbs@ARFix@5:
	pbs@ARFix@6:
	pbs@ARFix@7:
	pbs@ARFix@8:
	pbs@ARFix@9:
	pbs@ARFix@10:
	pbs@ARFix@11:
	pbs@ARFix@12:
	pbs@ARFix@13:
	pbs@ARFix@14:
	pbs@ARFix@15:
	pbs@ARFix@16:
	pbs@ARFix@17:
	pbs@ARFix@18:
	pbs@ARFix@19:
	pbs@ARFix@20:

