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SIMULATION-BASED DECISION MAKING

Simulation provides a predictive tool for decision making
when problems are intractable to analytical approaches

This talk considers a special case known as ranking &
selection
- X[q] = argmax;eqy 2, nf (%)
—  Stochastic black-box objective functions, observed by running iid
replications of a simulation model
Fruitful research on simulation-based decision making

—  Efficient sampling/allocation of simulation budget, convergent fast
local search, parallelization, surrogate model

— Open-source solver ISC (www.iscompass.net) has been used by
MITRE and the Argonne National Lab in real-world problems air
traffic management and power systems applications

—  What if the full-scale simulation model runs for hours?
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CAN APPROXIMATION MODELS HELP?

Full-featured model Approximation model

High-fidelity/full-scale  Low-fidelity/reduced-scale
discrete-event simulation, simulation, analytical
agent-based model, etc. approximation, full-model
with archived data

Complex Simple
Accurate Approximate

Time-consuming Fast
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MULTI-FIDELITY OPTIMIZATION METHODS

* A naive way of multi-fidelity optimization
—  Find some most promising designs using the approximation model
—  Evaluation using high-fidelity simulations
* Most approaches use interpolation/regression to “correct”
low-fidelity model

— Autoregressive framework with kriging/Gaussian process
regression (Kennedy and O’Hagan 2000)

— Radial basis function, Polynomial chaos
 Significant challenges arise when
— Solution space is high-dimensional
— High-fidelity simulation samples have heterogeneous noise
—  Quality of low-fidelity model is low
— Mixed decision variables (integer, categorical)
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SIMULATION OPTIMIZATION: AN ILLUSTRATIVE EXAMPLE

Resource allocation problem in a flexible manufacturing

system @%7
- 2producttypes pTTIoTTTTmTTTTTOTETTTTTTTT

i i
: v i
— 5 workstations ] Workstation 1 i
—  Non-exponential service times i — )
—  Re-entrant manufacturing process i Workstation 2 i
—  Product 1 has higher priority than product 2 i \L v M | i
: Workstation 3 E
1

Optimization problem: i o i
I Workstation 4 E
Decision variable : i
Number of machines at each workstation ] v |
. WOrkstatlo : Workstation 5 E
Objective : | | i

bl
1 1
1

Minimize Expected Total Processing Time e l/_ _l/_
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EXAMPLE: RESOURCE ALLOCATION PROBLEM

Decision variables: number of machines allocated to each
workstation

Minimize
Total Processing Time
Subject to
5 < # of machines at each workstation < 10
Total # of machines at all workstatiosn = 38

# of alternatives: 780

— Simulation/evaluation can be time consuming
— Solution space dimension can be large
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FULL SIMULATION & APPROXIMATION MODELS
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—— queueing

System Performance
—— full simulation

Approximation using M/M/c equations, p
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Alternative Designs

Bias 1s non-homogeneous and can be quite large
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ORDINAL RANKINGS OF DESIGNS BY LOW-FIDELITY
MODEL
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Designs with similar performance are grouped together, which

may potentially enhance search/opt
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A BAYESIAN FRAMEWORK FOR MULTI-FIDELITY MODELS

Fordesigni,i = 1,2, ..., k, we model the prior distribution of
high-fidelity (f) prediction and d-dimensional low-fidelity
predictions (g) by a Gaussian mixture model

- rli — (ﬁrgi)~2%=1 Tm¢(' |ﬁmr Zm)

- 7 — ) _ NMm Fm] 1 _ |Um Ym
o = (). = [ o = [Y,E O
fi can only be observed with a Gaussian noise N(0, 7)

g; is completely observed (negligible computing cost)

- G= (§1»§2» ---»gk)
We allocate a total of N high-fidelity simulation replications
to designs

— Let D,, denote the samples collected after n simulation replications

— Let n; be the number of simulation replications allocated to design i
after n simulation replications
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MODEL ESTIMATION

 We extend classical model-based clustering results to the
multi-fidelity setting with stochastic observations of f

— Binary hidden state random variable z; ,,, assigns design i to cluster m

- z; = (Zill, ...,zl-,M) follows a multinomial distribution with parameters
(Tl, v TM)
* The maximal likelihood estimate of model parameters 0, =
- M
Cmp oy Zm Ym=1
5 _ .
0 arg er;leaé(M L(D,, G; 6y)
- L(DTU G; QM) —
2yt S T & (xialf 02) (Rl S ) fi]
* The Expectation-maximization (EM) algorithm is applied to
A(M)
compute 6,
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MODEL ESTIMATION-CONT.

We estimate the number of components M using the
completely observed low-fidelity estimates G

Bayesian information criterion (BIC) is used to select M

log k
2

. 2 (d+1)(d+2)
—  BICy = logL,(G; &) — [ M - 1]
A - M
- u=arg max Ly (G;¢u), where &y = {Tm, B, A},

— Lg(G; $m) = ?:1[Z%=1 Tm¢(§i|,§mr = Am)]
— We select the M from a specified interval that has the largest BICy,
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THEOREM 1: STOCHASTIC MODEL-BASED CLUSTERING

- After EM iteration t, the posterior probability of {z; ,, = 1}

conditional on D,, and given 60" is

~(n,t) (n D)

A(Tl,t) m Lm
- 7 D) (D) where

Lm Z] . ] Cl]
o0 F0 2 ) A 2 A .
— C(n) |Z(n t)| exp {1 [—(v'("'t)) — v,(;:’t) (a,(,,?’t)) + 20(,(7?'0 (gi —
m

,\1(711,1:)) (?r(r:lt)) (gl 5(n, t)) Q(n t) (gl 5(n, t)) H’

(nt 1) (nt-1) L A At=1) —
~(n, t) z:l 1Zim f( : (nt) _ Zl 1%im )g‘ (nt) _ 1
- Oy yk s (Mt-1) r Pm - yk smt=1) 7 /Ulm - i 5D
i=1%im i=1%im ng Ym
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THEOREM 1: STOCHASTIC MODEL-BASED CLUSTERING

* The posterior distribution of f; conditionalon{z; ,, = 1},

D,, G, and given é\g"t)is normal with density function

¢ (f(n t), (n t))

t i 5t 5t . SmD)) (omd\!
D = 4 [ f(n) (n.t) 5 (nt) (gi— (n )) (Yi%)) ]

m m

I \

Weighted high-fidelity Weighted cluster mean Weighted prediction
simulation sample mean using low-fidelity
predictions

 The estimates of the model parameters are updated in the
next EM iteration accordingly

« The above results can be extended for noisy g;
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ASYMPTOTIC RESULTS

* Corollary 1: Suppose that design i is sampled infinitely
often as n — oo, then

cH o (il =5t)

Lm

- lim

- = 0 almost surely
noo [SM 0D S ¢(hi|ﬁ§-"'”,z§.”'”)]

— This result is consistent with the classical model-based clustering
) playing the role of ¢ (h |u(n ) Z(n t))
effect of stochastic simulation noise is eliminated

result with C(m when the

e Using asymptotic results, we obtain lightweight
approximations for posterior estimates that do not require
EM iteration

GEORGE MASON UNIVERSITY



ASYMPTOTICALLY OPTIMAL SAMPLING ALLOCATION PoOLICY

* Allocate W = {wy, ..., w;} high-fidelity simulations to
X1, ..., X7 to maximize the large deviation rate of incorrect
selection event

* The large deviation rate of P(f; < f;) when fi(n) > ];(n) is
given by
(hi—£)’
Gi j(wi,wj) = —— ]a_z
:(7+3)

l
e
Wi W]

* Define an approximate large deviation rate (ALDR)

N . A F(n)
ALDR(W) & iglll[g] 1y i (Wl[n],Wi), where 1j,) £ airzglr,rllﬁxfi
* It can be shown that ALDR (W) converges with probability
1 to an upper bound on the large deviation rate of incorrect

selection event
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MULTI-FIDELITY BUDGET ALLOCATION POLICY

 Based on the clustering statistics, we define the following
posterior means and variances

- fi(n) fl(n) = vl(ﬁ)l i =1,.., k, where m; is the cluster with
the largest cIustermg statistic for design i

— Let [i] be the design index after sorting all designs in descending
order posterior means, i.e., f[g] >eee> f(n)

- Let 51.(")=(f<"> f(n>)

 The (approximately) optimal sampling allocation policy can
be obtained by solving

Wiy _ i 8] () Wi
fori,j #1, w= [ ¥

D) (n) 1= (P |&iz1

YUl v o 5 il
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UNDERSTANDING THE SAMPLING ALLOCATION POLICY

Signal to Noise Ratio

54 /

[3]
W[l] 5(")//0, (n)
y W1 5(") / (n)

v

[1] [2] [3] Design

inversely proportional to

the square of the signal to noise ratio
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IMACHINE ALLOCATION RESULTS

 Compare the PCS achieved by the new multi-fidelity budget
allocation policy (MFBA) with optimal computing budget
allocation (OCBA) for one fidelity level and equal
allocation (EQ)

11000

10000

9000

8000+

7000+

6000

5000+

4000

3000

2000

J High-Fidelity Models
L Xxx Low-Fidelity Models ||
%
K
g
Xx\‘
e
g
K. AR Y0NS MR ‘ﬂ
700

0 100 200

300

400 500 600
Design Indices

0.95}
09t
0.85} g
0.8t e
."
3 075} .-
0
0.7H -
. e
065 _.=°
e
[
06F e
——— MFBA
0'55A. ......... - --OCBA
------- EA
0.5 1 1 1 1 1
2500 3000 3500 4000 4500

Simulation Budget

GEORGE MASON UNIVERSITY




CRITICAL CARE FACILITY RESOURCE ALLOCATION

 Allocate 15 additional beds to four care units to reduce the
number of patients denied admission because no bed is
available at ICU/CCU

* The low-fidelity model is based on M/M/c equations but
has poor quality due to limited buffer space and unstable
systems

. Exit, 20%
Intensive >
Care Unit
Patient Ent i
. v Intermediate cCU |-X20%
™y ‘\\A Coronary | v
< " Care Unit | Exit, 5%
A (ccu) T R i >
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RESULTS

 Compare the PCS achieved by the new multi-fidelity budget
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CONCLUSIONS

We present a new Bayesian framework with a Gaussian
mixture model prior to utilize multi-fidelity information to
improve simulation sampling efficiency for the selection of
the best design

The multi-fidelity budget allocation policy significantly
improves sampling efficiency compared to a single-fidelity
optimal sampling policy

Future research includes

—  Multi-fidelity simulation optimization methods for large-scale
problems

— Incorporation of design co-variates information

Thank you!
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