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G E O R G E  M A S O N  U N I V E R S I T Y

• Simulation provides a predictive tool for decision making 
when problems are intractable to analytical approaches 

• This talk considers a special case known as ranking & 
selection
‒ [ଵ] ௜∈{ଵ,ଶ,…,ூ} ௜

‒ Stochastic black-box objective functions, observed by running iid
replications of a simulation model 

• Fruitful research on simulation-based decision making
‒ Efficient sampling/allocation of simulation budget, convergent fast 

local search, parallelization, surrogate model 
‒ Open-source solver ISC (www.iscompass.net) has been used by 

MITRE and the Argonne National Lab in real-world problems air 
traffic management and power systems applications

‒ What if the full-scale simulation model runs for hours?

SIMULATION-BASED DECISION MAKING
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CAN APPROXIMATION MODELS HELP? 

Full-featured model Approximation model
High-fidelity/full-scale 

discrete-event simulation, 
agent-based model, etc. 

Low-fidelity/reduced-scale 
simulation, analytical 

approximation, full-model 
with archived data

Complex Simple 
Accurate Approximate

Time-consuming Fast
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• A naïve way of multi-fidelity optimization
‒ Find some most promising designs using the approximation model
‒ Evaluation using high-fidelity simulations

• Most approaches use interpolation/regression to “correct” 
low-fidelity model
‒ Autoregressive framework with kriging/Gaussian process 

regression (Kennedy and O’Hagan 2000)
‒ Radial basis function, Polynomial chaos 

• Significant challenges arise when
‒ Solution space is high-dimensional 
‒ High-fidelity simulation samples have heterogeneous noise 
‒ Quality of low-fidelity model is low 
‒ Mixed decision variables (integer, categorical)

MULTI-FIDELITY OPTIMIZATION METHODS
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Resource allocation problem in a flexible manufacturing 
system

‒ 2 product types  
‒ 5 workstations
‒ Non-exponential service times
‒ Re-entrant manufacturing process
‒ Product 1 has higher priority than product 2

Optimization problem:

Decision variable
Number of machines at each workstation

Objective
Minimize Expected Total Processing Time

SIMULATION OPTIMIZATION: AN ILLUSTRATIVE EXAMPLE

Workstation 1Workstation 1

Workstation 2Workstation 2

Workstation 3Workstation 3

Workstation 4Workstation 4

Workstation 5Workstation 5

P2P2P1P1



G E O R G E  M A S O N  U N I V E R S I T Y

Decision variables: number of machines allocated to each 
workstation

EXAMPLE: RESOURCE ALLOCATION PROBLEM

780

Total 

Simulation/evaluation can be time consuming
Solution space dimension can be large



G E O R G E  M A S O N  U N I V E R S I T Y

FULL SIMULATION & APPROXIMATION MODELS

Bias is non-homogeneous and can be quite large



G E O R G E  M A S O N  U N I V E R S I T Y

Designs with similar performance are grouped together, which 
may potentially enhance search/optimization efficiency

ORDINAL RANKINGS OF DESIGNS BY LOW-FIDELITY
MODEL



G E O R G E  M A S O N  U N I V E R S I T Y

• For design , , we model the prior distribution of 
high-fidelity ( ) prediction and d-dimensional low-fidelity 
predictions ( ) by a Gaussian mixture model 
‒ ௜ ௜ ௜ ௠ ௠ ௠

ெ
௠ୀଵ

‒ ௠ ௠ ௠ ௠
௠ ௠

௠
்

௠
, ௠

ିଵ ௠ ௠

௠
்

௠

• can only be observed with a Gaussian noise 
• is completely observed (negligible computing cost) 

‒ ଵ ଶ ௞

• We allocate a total of high-fidelity simulation replications 
to designs  
‒ Let ௡ denote the samples collected after simulation replications
‒ Let ௜ be the number of simulation replications allocated to design 

after simulation replications

A BAYESIAN FRAMEWORK FOR MULTI-FIDELITY MODELS
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• We extend classical model-based clustering results to the 
multi-fidelity setting with stochastic observations of 
‒ Binary hidden state random variable ௜,௠ assigns design to cluster 

‒ ௜ ௜,ଵ ௜,ெ follows a multinomial distribution with parameters 
ଵ ெ

• The maximal likelihood estimate of model parameters 
, 

‒ ெ
(௡)

ఏಾ∈஀ಾ
௡ ெ

‒ ௡ ெ

௠ ௜,௟ ௜ ௜
ଶ

௜ ௠ ௠ ௜
௡೔
௟ୀଵℝ

ெ
௠ୀଵ

௞
௜ୀଵ

• The Expectation-maximization (EM) algorithm is applied to 
compute 

MODEL ESTIMATION
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• We estimate the number of components using the 
completely observed low-fidelity estimates 

• Bayesian information criterion (BIC) is used to select 

‒ ெ ௚ ெ
(ௗାଵ)(ௗାଶ)

ଶ

୪୭୥ ௞

ଶ

‒ ெ
కಾ∈ஆಾ

௚ ெ , where ெ ௠ ௠, ௠ ௠ୀଵ

ெ

‒ ௚ ெ ௠ ௜ ௠ ௠
ெ
௠ୀଵ

௞
௜ୀଵ

‒ We select the M from a specified interval that has the largest ெ

MODEL ESTIMATION-CONT.
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• After EM iteration t, the posterior probability of 
conditional on and given is 

‒ ௜,௠
(௡,௧)  ఛො೘

(೙,೟)
஼೔,೘

(೙,೟)

∑ ఛො
ೕ
(೙,೟)

஼
೔,ೕ
(೙,೟)ಾ

ೕసభ
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THEOREM 1: STOCHASTIC MODEL-BASED CLUSTERING
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• The posterior distribution of conditional on { , 

, , and given is normal with density function 

‒ ௜,௠
(௡,௧)

௜,௠
(௡) ௡೔

ఙ೔
మ ௜

(௡)
௠
(௡,௧)

௠
(௡,௧)

௜ ௠
(௡,௧)

௜,௠
(௡,௧) ்

• The estimates of the model parameters are updated in the 
next EM iteration accordingly 

• The above results can be extended for noisy 

THEOREM 1: STOCHASTIC MODEL-BASED CLUSTERING

Weighted high-fidelity 
simulation sample mean 

Weighted cluster mean Weighted prediction 
using low-fidelity 
predictions
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• Corollary 1: Suppose that design is sampled infinitely 
often as , then 

‒
௡→ஶ

஼೔,೘
(೙,೟)

∑ ஼
೔,ೕ
(೙,೟)ಾ

ೕసభ

థ ௛೔|ఓෝ೘
(೙,೟)

,ஊ೘
೙,೟

∑ థ ௛೔|ఓෝ
ೕ
(೙,೟)

,ஊೕ
೙,೟ಾ

ೕసభ

almost surely 

‒ This result is consistent with the classical model-based clustering 
result with ௜,௠

(௡,௧) playing the role of ௜ ௠
(௡,௧)

௠
௡,௧ when the 

effect of stochastic simulation noise is eliminated 

• Using asymptotic results, we obtain lightweight 
approximations for posterior estimates that do not require 
EM iteration

ASYMPTOTIC RESULTS
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• Allocate high-fidelity simulations to 
to maximize the large deviation rate of incorrect 

selection event

• The large deviation rate of when is 
given by 

௜,௝ ௜ ௝
௜ ௝

ଶ

௜
ଶ

௜

௝
ଶ

௝

• Define an approximate large deviation rate (ALDR) 

௜ஷଵ ೙
ଵ ೙ ,௜ ଵ ೙ ௜ , where ௡

௜ୀଵ,…,ூ
௜
(௡)

• It can be shown that converges with probability 
1 to an upper bound on the large deviation rate of incorrect 
selection event

ASYMPTOTICALLY OPTIMAL SAMPLING ALLOCATION POLICY
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• Based on the clustering statistics, we define the following 
posterior means and variances 

‒ ௜
(௡)

௜,௠ෝ ೔

(௡), ௜
(௡)

௜,௠ෝ ೔

(௡) , , where ௜ is the cluster with 
the largest clustering statistic for design 

‒ Let be the design index after sorting all designs in descending 
order posterior means, i.e., [ଵ]

(௡)
[௞]
(௡)

‒ Let ௜
(௡)

[ଵ]
(௡)

௜
(௡) ଶ

• The (approximately) optimal sampling allocation policy can 
be obtained by solving  

௪[೔]

௪[ೕ]

𝓋[೔]
(೙)
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(೙)

𝓋
[ೕ]
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ఋ
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మ

𝓋
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௜ஷଵ

 

MULTI-FIDELITY BUDGET ALLOCATION POLICY



G E O R G E  M A S O N  U N I V E R S I T Y

UNDERSTANDING THE SAMPLING ALLOCATION POLICY

Design [1] [2] [3]

[ଶ]
(௡)

[𝟑]
(௡)

[𝟐]
(௡)

[ଷ]
(௡)

inversely proportional to 

the square of the signal to noise ratio

Signal to Noise Ratio

[௜]

[௝]

[௝]
(௡)

[௝]
(௡)

[௜]
(௡)

[௜]
(௡)
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• Compare the PCS achieved by the new multi-fidelity budget 
allocation policy (MFBA) with optimal computing budget 
allocation (OCBA) for one  fidelity level and equal 
allocation (EQ)

MACHINE ALLOCATION RESULTS
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• Allocate 15 additional beds to four care units to reduce the 
number of patients denied admission because no bed is 
available at ICU/CCU 

• The low-fidelity model is based on M/M/c equations but 
has poor quality due to limited buffer space and unstable 
systems 

CRITICAL CARE FACILITY RESOURCE ALLOCATION
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• Compare the PCS achieved by the new multi-fidelity budget 
allocation policy (MFBA) with OCBA EQ

RESULTS
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• We present a new Bayesian framework with a Gaussian 
mixture model prior to utilize multi-fidelity information to 
improve simulation sampling efficiency for the selection of 
the best design 

• The multi-fidelity budget allocation policy significantly 
improves sampling efficiency compared to a single-fidelity 
optimal sampling policy 

• Future research includes
‒ Multi-fidelity simulation optimization methods for large-scale 

problems
‒ Incorporation of design co-variates information
‒ …

• Thank you! 

CONCLUSIONS


