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Consider optimization problem

min
x∈X

{
f(x) = E[F (x, ξ)]

}
,

where X ⊂ Rn, F : Rn×Rm → R and ξ is an m-dimensional random
vector. In case of two-stage linear stochastic programming with
recourse, X = {x ∈ Rn+ : Ax = b} and F (x, ξ) is the first stage

cost c>x plus the optimal value of the second stage problem

min
y∈Rm

q>y subject to Tx+Wy = h, y ≥ 0,

with ξ formed from random components of q, T,W, h.

For fixed x ∈ X the expectation E[F (x, ξ)] is given by the integral

E[F (x, ξ)] =
∫
F (x, z)dP (z),

where P is the probability distribution of ξ.
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A standard approach to solving such stochastic programs is to

discretize distribution P , i.e., to construct scenarios ξk, k =

1, ...,K, with assigned probabilities pk > 0, and hence to ap-

proximate E[F (x, ξ)] by
∑K
k=1 pkF (x, ξk). In the two-stage linear

case this leads to the linear program

min
x,y1,...,yK

c>x+
∑K
k=1 pkq

>
k yk

s.t. Tkx+Wkyk = hk, k = 1, ...,K,
Ax = b, x ≥ 0, yk ≥ 0, k = 1, ...,K.

In order to have an accurate approximation of the ‘true’ distri-

bution P the number K of required scenarios typically growths

exponentially with dimension m.
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Computational complexity of solving two-stage linear stochas-
tic programs (deterministic point of view): the approximate so-
lutions, with a sufficiently high accuracy, of linear two-stage
stochastic programs with fixed recourse are #P -hard even if
the random problem data is governed by independent uniform
distributions (Dyer and Stougie, 2006, Hanasusanto, Kuhn and
Wiesemann, 2016).

Sample complexity of solving stochastic programs

Generate a sample ξj, j = 1, ..., N , of random vector ξ and ap-
proximate the expectation E[F (x, ξ)] by the respective sample
average. This leads to the following so-called Sample Average
Approximation (SAA) of the ‘true’ problem

min
x∈X

f̂N(x) =
1

N

N∑
j=1

F (x, ξj)

 .
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Slow convergence of the sample average f̂N(x) to the expecta-

tion f(x). By the Central Limit Theorem, for fixed x the error

f̂N(x)− f(x) = Op(N
−1/2).

Let v̂N be the optimal value of the SAA problem and v0 and

S0 be the optimal value and set of optimal solutions of the true

problem. Then under mild regularity conditions

v̂N = min
x∈S0

f̂N(x) + op(N
−1/2).

In particular, if S0 = {x0}, then

N1/2[v̂N − v0]⇒ N(0, σ2(x0))

(Shapiro, 1991).
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Large Deviations type bounds. Suppose that: ε > δ ≥ 0, the set
X is of finite diameter D, there is a constant σ > 0 such that

Mx′,x(t) ≤ exp{σ2t2/2}, t ∈ R, x′, x ∈ X,
where Mx′,x(t) is the moment generating function of the random
variable F (x′, ξ)− F (x, ξ)− E[F (x′, ξ)− F (x, ξ)], there exists κ(ξ)
such that its moment generating function is finite valued in a
neighborhood of zero and∣∣∣F (x′, ξ)− F (x, ξ)

∣∣∣ ≤ κ(ξ)‖x′ − x‖, x′, x ∈ X and a.e. ξ.

Then for L = E[κ(ξ)] and sample size

N ≥
8σ2

(ε− δ)2

[
n log

(
O(1)DL

(ε− δ)2

)
+ log

(
2

α

)]
,

we are guaranteed that Pr
(
ŜδN ⊂ S

ε
)
≥ 1 − α. Here ŜδN and Sε

are the sets of δ-optimal and ε-optimal solutions of the SAA and
true problems respectively.
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Stochastic Approximation (SA) approach. Suppose that

the problem is convex, i.e., the feasible set X is convex and

F (·, ξ) is convex for a.e. ξ. Classical SA algorithm

xj+1 = ΠX(xj − γjG(xj, ξ
j)),

where G(x, ξ) ∈ ∂xF (x, ξ) is a calculated (sub)gradient, ΠX is the

orthogonal (Euclidean) projection onto X and γj = θ/j. Theoret-

ical bound (assuming f(·) is strongly convex and differentiable)

E[f(xj)− v0] = O(j−1),

for an optimal choice of constant θ (recall that v0 is the optimal

value of the true problem). This algorithm is very sensitive to

choice of θ.
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Robust SA approach (B. Polyak, 1990, Nemirovski ). Constant
step size variant: fixed in advance sample size (number of iter-
ations) N and step size γj ≡ γ, j = 1, ..., N : x̃N = 1

N

∑N
j=1 xj.

Theoretical bound

E[f(x̃N)− v0] ≤
D2
X

2γN
+
γM2

2
,

where DX = maxx∈X ‖x− x1‖2 and M2 = maxx∈X E‖G(x, ξ)‖22.
For optimal (up to factor θ) γ = θDX

M
√
N

we have

E
[
f(x̃N)− v0

]
≤
DXM

2θ
√
N

+
θDXM

2
√
N
≤
κDXM√

N
,

where κ = max{θ, θ−1}. By Markov inequality it follows that

Pr
{
f(x̃N)− v0 > ε

}
≤
κDXM

ε
√
N

,

and hence to the sample size estimate N ≥ κ2D2
XM

2

ε2α2 .
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Multistage stochastic programming. Let ξt be a random (stochas-
tic) process. Denote ξ[t] := (ξ1, .., ξt) the history of the process
ξt up to time t. The values of the decision vector xt, chosen at
stage t, may depend on the information ξ[t] available up to time
t, but not on the future observations. The decision process has
the form

decision(x0) observation(ξ1) decision(x1) 
... observation(ξT ) decision(xT ).

Risk neutral T -stage stochastic programming problem:

min
x1,x2(·),...,xT (·)

E
[
F1(x1) + F2(x2(ξ[2]), ξ2) + · · ·+ FT

(
xT (ξ[T ]), ξT

) ]
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . . , T.

In linear case, Ft(xt, ξt) := c>t xt and

Xt(xt−1, ξt) := {xt : Btxt−1 +Atxt = bt, xt ≥ 0} , t = 2, ..., T.
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Optimization is performed over feasible policies (also called de-

cision rules). A policy is a sequence of (measurable) functions

xt = xt(ξ[t]), t = 1, ..., T . Each xt(ξ[t]) is a function of the data

process up to time t, this ensures the nonanticipative property

of a considered policy.

If the number of realizations (scenarios) of the process ξt is finite,

then the above (linear) problem can be written as one large

(linear) programming problem.
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Dynamic programming equations. Going recursively backwards
in time. At stage T consider

QT (xT−1, ξT ) := inf
xT∈XT (xT−1,ξT )

FT (xT , ξT ).

At stages t = T − 1, ...,2, consider

Qt(xt−1, ξ[t]) := inf
xt∈Xt(xt−1,ξt)

Ft(xt, ξt) + E
[
Qt+1(xt, ξ[t+1])

∣∣∣ξ[t]

]
︸ ︷︷ ︸

Qt+1(xt,ξ[t])

.

At the first stage solve:

Min
x1∈X1

F1(x1) + E[Q2(x1, ξ1)].

If the random process is stagewise independent, i.e., ξt+1 is in-
dependent of ξ[t], then Qt+1(xt) = E[Qt+1(xt, ξt+1)] does not
depend on ξ[t].
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For example, suppose that the problem is linear and only the

right hand side vectors bt are random and can be modeled as a

(first order) autoregressive process

bt = µ+ Φbt−1 + εt,

where µ and Φ are (deterministic) vector and regression matrix,

respectively, and the error process εt, t = 1, ..., T , is stagewise

independent. The corresponding feasibility constraints can be

written in terms of xt and bt as

Btxt−1 +Atxt ≤ bt, Φbt−1 − bt + µ+ εt = 0.

That is, in terms of decision variables (xt, bt) this becomes a

linear multistage stochastic programming problem governed by

the stagewise independent random process ε1, ..., εT .
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Discretization by Monte Carlo sampling Independent of each

other random samples ξjt = (cjt , B
j
t , A

j
t , b

j
t), j = 1, ..., Nt, of respec-

tive ξt, t = 2, ..., T , are generated and the corresponding scenario

tree is constructed by connecting every ancestor node at stage

t− 1 with the same set of children nodes ξ1
t , ..., ξ

Nt
t . In that way

the stagewise independence is preserved in the generated sce-

nario tree. We refer to the constructed problem as the Sample

Average Approximation (SAA) problem.

The total number of scenarios of the SAA problem is given by

the product N =
∏T
t=2Nt and quickly becomes astronomically

large with increase of the number of stages even for moderate

values of sample sizes Nt.
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For T = 3, under certain regularity conditions, for ε > 0 and

α ∈ (0,1), and the sample sizes N1 and N2 satisfying

O(1)
[(
D1L1
ε

)n1
exp

{
− O(1)N1ε

2

σ2
1

}
+
(
D2L2
ε

)n2
exp

{
−O(1)N2ε

2

σ2
2

} ]
≤ α,

we have that any first-stage ε/2-optimal solution of the SAA

problem is an ε-optimal first-stage solution of the true problem

with probability at least 1− α.

In particular, suppose that N1 = N2 and take L := max{L1, L2},
D := max{D1, D2}, σ2 := max{σ2

1, σ
2
2} and n := max{n1, n2}.

Then the required sample size N1 = N2:

N1 ≥
O(1)σ2

ε2

[
n log

(
O(1)DL

ε

)
+ log

(
1

α

)]
,

with total number of scenarios N = N2
1 (Shapiro, 2006).
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If we measure computational complexity, of the ”true” problem,

in terms of the number of scenarios required to approximate true

distribution of the random data process with a reasonable accu-

racy, the conclusion is rather pessimistic. In order for the optimal

value and solutions of the SAA problem to converge to their true

counterparts all sample sizes N2, ..., NT should tend to infinity.

Furthermore, available estimates of the sample sizes required for

a first stage solution of the SAA problem to be ε-optimal for

the true problem, with a given confidence (probability), sums

up to a number of scenarios which grows as O(ε−2(T−1)) with

decrease of the error level ε > 0. This indicates that from the

point of view of the number of scenarios, complexity of multi-

stage programming problems grows exponentially with increase

of the number of stages.
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Curse of dimensionality

One of the main difficulties in solving the dynamic programming

equations (of the SAA problem) is how to represent the cost-to-

go functions in a computationally feasible way.

For dimension of xt say greater than 3 and large number of

stages it is practically impossible to solve the dynamic program-

ming equations with high accuracy. Several alternatives were

suggested in recent literature.
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Approximate dynamic programming
Basic idea is to approximate the cost-to-go functions by a class of
computationally manageable functions. Since functions Qt(·) are
convex it is natural to approximate these functions by piecewise
linear functions given by maximum of cutting hyperplanes.

Stochastic Dual Dynamic Programming (SDDP) method
(Pereira and Pinto, 1991). For trial decisions x̄t, t = 1, ..., T−1,
at the backward step of the SDDP algorithm, piecewise linear
approximations Qt(·) of the cost-to-go functions Qt(·) are con-
structed by solving problems

Min
xt∈Rnt

(cjt)
Txt + Qt+1(xt) s.t. Bjt x̄t−1 +A

j
txt = b

j
t , xt ≥ 0,

j = 1, ..., Nt, and their duals, going backward in time t = T, ...,1.

Denote by v0 and v̂N the respective optimal values of the true
and SAA problems.
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By construction

Qt(·) ≥ Qt(·), t = 2, ..., T.

Therefore the optimal value of

Min
x1∈Rn1

cT1x1 + Q2(x1) s.t. A1x1 = b1, x1 ≥ 0

gives a lower bound for the optimal value v̂N of the SAA problem.

We also have that

v0 ≥ E[v̂N ].

Therefore on average v̂N is also a lower bound for the optimal

value of the true problem.
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The approximate cost-to-go functions Q2, ...,QT and a feasible

first stage solution x̄1 define a feasible policy. That is for a real-

ization (sample path) ξ1, ..., ξT of the data process, x̄t = x̄t(ξ[t])

are computed recursively in t = 2, ..., T as a solution of

Min
xt≥0

cTt xt + Qt+1(xt) s.t. Btx̄t−1 +Atxt = bt.

In the forward step of the SDDP algorithm M sample paths

(scenarios) are generated and the corresponding x̄t, t = 2, ..., T ,

are used as trial points in the next iteration of the backward step.

Note that the functions Q2, ...,QT and x̄1 define a feasible policy

also for the true problem.
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Convergence of the SDDP algorithm

It is possible to show that, under mild regularity conditions, the

SDDP algorithm converges as the number of iterations go to

infinity. That is, the computed optimal values and generated

policies converge w.p.1 to their counterparts of the considered

SAA problem. However, the convergence can be very slow and

one should take such mathematical proofs very cautiously.

Moreover, it should be remembered that the SAA problem is just

an approximation of the “true” problem. It is possible to show

that, in a certain probabilistic sense, the SAA problem converges

to the “true” problem as all sample sizes Nt, t = 2, ..., T , tend to

infinity.

19



Stopping criteria

The policy value E
[∑T

t=1 c
T
t x̄t(ξ[t])

]
can be estimated in the for-

ward step of the algorithm. That is, let ξi2, ..., ξ
i
T , i = 1, ...,M , be

sample paths (scenarios) generated at a current iteration of the

forward step, and

ϑi :=
T∑
t=1

(cit)
Tx̄it, i = 1, ...,M,

be the corresponding cost values. Then E[ϑi] = E
[∑T

t=1 c
T
t x̄t(ξ

i
[t])

]
,

and hence

ϑ̄ =
1

M

M∑
i=1

ϑi

gives an unbiased estimate of the policy value.
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Also

σ̂2 =
1

M − 1

M∑
i=1

(ϑi − ϑ̄)2

estimates variance of the sample ϑ1, ..., ϑM . Hence

ϑ̄+ zασ̂/
√
M

gives an upper bound for the policy value with confidence of

about 100(1− α)%. Here zα is the corresponding critical value.

At the same time this gives an upper bound for the optimal value

of the corresponding multistage problem, SAA or the “true”

problem depending from what data process the random scenarios

were generated.
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The Brazilian hydro power operation planning problem

The Brazilian power system generation is hydro dominated (about

75% of the installed capacity) and characterized by large reser-

voirs presenting multi-year regulation capability, arranged in com-

plex cascades over several river basins. The hydro plants use

store water in the reservoirs to produce energy in the future, re-

placing fuel costs from the thermal units. Since the water inflows

depend on rainfalls, the amount of future inflows is uncertain and

cannot be predicted with a high accuracy.

The purpose of hydrothermal system operation planning is to

define an operation strategy which, for each stage of the planning

period, given the system state at the beginning of the stage,

produces generation targets for each plant.
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The Brazilian hydro power operation planning problem is a mul-

tistage, large scale (more than 200 power plants, of which 141

are hydro plants), stochastic optimization problem. On a high

level, planning is for 5 years on monthly basis together with 5

additional years to smooth out the end of horizon effect. This

results in 120-stage stochastic programming problem. Four en-

ergy equivalent reservoirs are considered, one in each one of the

four interconnected main regions, SE, S, N and NE. The re-

sulting policy obtained with the aggregate representation can be

further refined, so as to provide decisions for each of the hydro

and thermal power plants.
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Typical example of behavior of the lower and upper bounds pro-

duced by the SDDP algorithm for an SAA problem (Shapiro,

Tekaya, Paulo da Costa, Pereira, 2013).

8 state variables, 120 stages, 1 cut per iteration



Theoretical analysis and numerical experiments indicate that

computational complexity of the SDDP algorithm grows fast

with increase of the number of state variables. The optimality

gap jumped from 4% to 20% when the number of state vari-

ables was increased from 4 to 8 as a result of considering an

autoregressive model.

Sensitivity to initial conditions

Individual stage costs for the risk neutral approach in two cases:

all the reservoirs start at 25% or at 75% of the maximum ca-

pacity. The yellow curve denotes the 75% initial reservoir level

and the dark green denotes the 25% initial level.
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Variability of SAA problems
Table shows the 95% confidence interval for the lower bound and
average policy value at iteration 3000 over a sample of 20 SAA
problems. Each of the policy value observations was computed
using 2000 scenarios. The last 2 columns of the table shows
the range divided by the average of the lower bound (where
the range is the difference between the maximum and minimum
observation) and the standard deviation divided by the average
value. This problem has relatively low variability (approx. 4%)
for both of the lower bound and the average policy value.

95% C.I. left Average
95%

C.I. right
range

average
sdev.

average
(×109) (×109) (×109)

Lower bound 22.290 22.695 23.100 15.92% 4.07%
Average policy 27.333 27.836 28.339 17.05% 4.12%

SAA variability for risk neutral SDDP
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Risk averse approach

How to control risk, i.e., to reduce chances of extreme costs, at
every stage of the time process.

Value-at-Risk of a random outcome (variable) Z at level α ∈
(0,1):

V@Rα(Z) = inf{t : FZ(t) ≥ 1− α},

where FZ(t) = Pr(Z ≤ t) is the cdf of Z. That is, V@Rα(Z) is the
(1− α)-quantile of the distribution of Z.

Note that V@Rα(Z) ≤ c is equivalent to Pr(Z > c) ≤ α. Therefore
it could be a natural approach to impose constraints (chance
constraints) of V@Rα(Z) ≤ c for Z = cost, chosen constant c and
significance level α at every stage of the process.
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There are two problems with such approach. It is difficult to han-

dle chance constraints numerically and could lead to infeasibility

problems.

Average Value-at-Risk (also called Conditional Value-at-Risk)

AV@Rα(Z) = inf
t∈R

{
t+ α−1E[Z − t]+

}
Note that the minimum in the above is attained at

t∗ = V@Rα(Z). If the cdf FZ(z) is continuous, then

AV@Rα(Z) = E
[
Z|Z ≥ V@Rα(Z)

]
.

It follows that AV@Rα(Z) ≥ V@Rα(Z). Therefore the constraint

AV@Rα(Z) ≤ c is a conservative approximation of the chance

constraint V@Rα(Z) ≤ c.
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In the problem of minimizing expected cost E[Z] subject to the

constraint AV@Rα(Z) ≤ c, we impose an infinite penalty for vi-

olating this constraint. This could result in infeasibility of the

obtained problem. Instead we can impose a finite penalty and

consider problem of minimization of E[Z] + κAV@Rα(Z) for some

constant κ > 0. Note that this is equivalent to minimization of

ρ(Z), where

ρ(Z) = (1− λ)E[Z] + λAV@Rα(Z)

for λ ∈ (0,1) and κ = λ
1−λ.
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This leads to the following (nested) formulation of risk averse

multistage problem.

Min
A1x1=b1,x1≥0

cT1x1 + ρ2|ξ1

[
inf

B2x1+A2x2=b2
x2≥0

cT2x2 + . . .

+ρT−1|ξ[T−2]

[
inf

BT−1xT−2+AT−1xT−1=bT−1
xT−1≥0

cTT−1xT−1

+ρT |ξ[T−1]
[ inf
BTxT−1+ATxT=bT

xT≥0

cTTxT ]
]]
,

with

ρt|ξ[t]
(·) := (1− λ)E|ξ[t]

[·] + λAV@Rα|ξ[t]
(·)

being conditional analogue of ρ(·).
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We can write the risk averse multistage programming problem

as

Min
x1,x2(·),...,xT (·)

ρ̄
[
F1(x1) + F2(x2(ξ[2]), ξ2) + · · ·+ FT

(
xT (ξ[T ]), ξT

) ]
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . . , T,

where Ft(xt, ξt) = cTt xt and

Xt(xt−1, ξt) = {xt : Btxt−1 +Atxt = bt, xt ≥ 0}.

ρ̄(Z1 + ...+ ZT ) = ρ|ξ1

(
ρ|ξ[2]

(
· · · ρ|ξ[T−1]

(Z1 + ...+ ZT )
))

= Z1 + ρ|ξ1

(
Z2 + ρ|ξ[2]

(
+ · · · ρ|ξ[T−1]

(ZT )
))

is the corresponding composite risk measure. The optimization is

performed over (nonanticipative) policies x1, x2(ξ[2]), ..., xT (ξ[T ])

satisfying the feasibility constraints.
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With some modifications the SDDP algorithm can be applied to

the above multistage problem.

Remarks

Unfortunately there is no easy way for evaluating value of the

risk objective of generated policies, and hence constructing a

corresponding upper bound. Some suggestions were made in

the recent literature. However, in larger problems the optimality

gap (between the upper and lower bounds) never approaches

zero in any realistic time. Therefore stopping criteria based on

stabilization of the lower bound (and may be optimal solutions)

could be reasonable. Also it should be remembered that there

is no intuitive interpretation for the risk objective ρ̄(cost) of the

total cost. Rather the goal is to control risk at every stage of

the process.
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