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Section 1:
Infinite-Dimensional Stochastic Optimization
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Aspects of Stochastic Optimization Stochastic Optimization in∞-Dimensions?

Stochastic Optimization in ∞-Dimensions?

We are interested in composite optimization problems of the type:

min
x∈Xad

f (x) + Φ(F (x)) over x ∈ X .

X ,Y are real Hilbert spaces.

f : X → R is typically continuous, convex, differentiable.

Φ : Y → R is nonsmooth, convex, positive homogeneous, monotone.

F : X → Y is continuous, typically differentiable, expensive to evaluate.

“PDE”-part: replace X by {Xh}, Xh finite dim. subspaces with elements uh(x) =
∑N

i=1 u
h
i ϕ

h
i (x).

“PDE”-part: F (x) requires the solution of a PDE with input x .

“Random”-part: cannot evaluate F (x) or even F (xh) xh ∈ Xh.

Derivatives are dual objects, gradients are primal.

If we want to do xk − γk∇f (xk) in an algorithm, we need to first compute ∇f (x) = RRieszf
′(x).
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Aspects of Stochastic Optimization Stochastic Optimization in∞-Dimensions?

Riesz Mappings

Example

Let D ⊂ Rn be open and bounded. Let A ⊂ D be Lebesgue measurable with |A| > 0.

For x ∈ D, set ϕ(x) = 1 if x ∈ A and 0 otherwise.

Since H1
0 (D) ⊂ L2(D) and ϕ is bounded and measurable, we see that

H1
0 (D) 3 u 7→

∫
D

ϕ(x)u(x) dx

defines a bounded linear functional on H1
0 (D).

We can therefore identity ϕ with an element of H−1(D) = (H1
0 (D))∗.

It’s tempting to make the fallacious argument:

H1
0 (D) is a Hilbert space, I can just identify it with its dual and treat elements in H−1(D) like

they are in H1
0 (D).

But ϕ will have jumps in general, so ϕ 6∈ H1
0 (D)!
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Aspects of Stochastic Optimization Stochastic Optimization in∞-Dimensions?

Riesz Mappings

Example

The Riesz Representation Theorem states: Let H be a real Hilbert space and ϕ ∈ H∗ (the
topological dual of H). Then there exists a unique element uϕ ∈ H such that

〈ϕ, v〉H∗,H = (uϕ, v)H ∀v ∈ H and ‖ϕ‖H∗ = ‖uϕ‖H

...so if ϕ on p. 5 is in H−1(D), then there exists a unique uϕ ∈ H1
0 (D) such that

(uϕ, v)H1
0 (D) = 〈ϕ, v〉H−1(D),H1

0 (D) ∀v ∈ H1
0 (D).

You promised to talk about algorithms and numerical methods:
What does this mean for my computations?

Since (uϕ, v)H1
0 (D) = (∇uϕ,∇v)L2(D) ∀v ∈ H1

0 (D), we have

uϕ = (−∆)−1ϕ,

i.e., RRiesz requires the solution of Poisson problem in H1
0 (D).
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Aspects of Stochastic Optimization Stochastic Optimization in∞-Dimensions?

Using the Correct Discrete Gradients

Example

f : L2(D)→ R is defined via continuous bilinear form.

Xh ⊂ L2(D) is a finite dimensional subspace defined by the nodal basis arising from a finite
element discretization.

uh ∈ Xh is associated with coefficient vector uh ∈ Rn

fh : Rn → R is the FE discretization of f , e.g.

fh(uh) =
1

2
uT
h Lhuh

The correct gradient for a numerical approach would then be

RL2 (f ′h (uh)) = M−1
h Lhuh.

Mh is the mass matrix associated with the discrete L2-inner product.

If f (u) = (u, u)L2(D), then RL2 (f ′h (uh)) is just the vector of nodal values uh, not Mhuh!
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Aspects of Stochastic Optimization Stochastic Optimization in∞-Dimensions?

Using the Correct Discrete Gradients

Example

Suppose f : L2(D)→ R is defined

f (u) :=
1

2

∫
Ω

(L(ξ(ω))u, u)L2(D) dP(ω),

where ξ : (Ω,F ,P)→ Rd is a random vector.

Given an iid sample ξ1, . . . , ξN we would use

fN(u) :=
1

2N

N∑
i=1

(L(ξi )u, u)L2(D)

in empirical approximations of P.
The correct fully discrete gradient would then be

RL2 (f ′N,h(uh)) =
1

N

N∑
i=1

M−1
h Li

huh,

where uT
h L

i
huh = (L(ξi )uh, uh)L2(D).
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Aspects of Stochastic Optimization Stochastic Optimization in∞-Dimensions?

Using the Correct Discrete Gradients

A fully discrete problem would take the form:

min
x∈Xh

ad

fh(xh) + Φh,N(Fh,N(xh)) over xh ∈ Xh. (1)

h denotes dependence on mesh or scale, N is the sample size.

However, solvers based solely on n-dim algorithms applied to (1) are usually mesh dependent.

This can be a result either of using
- RRiesz = IdRn or
- Not actually having the required differentiability properties in the fully continuous setting.

The former means we have poor scaling and require more iterations than necessary.

The latter means the discrete derivatives (gradients, Hessians) do not correspond to an infinite
dimensional counterpart.
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Aspects of Stochastic Optimization Stochastic Optimization in∞-Dimensions?

Using the Correct Discrete Gradients

Example (Scaling)

Clearly u ≡ 0 ∈ L2(D) minimizes f (u) = 1
2
‖u‖2

L2(D).

Likewise uh = 0 ∈ Rn minimizes fh(uh) = 1
2
uT
h Mhuh.

Using the correct discrete gradients to minimize fh with a simple steepest descent approach yields

uh,k+1 = (1− αk)uu,k .

This involves a strongly convex quadratic objective

We can determine αk by an exact line search.

This (regardless of u0) yields α1 = 1! The algorithm will stop in one iteration.

If the incorrect discrete gradient is used, then this will not be the case. Try it at home.
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Aspects of Stochastic Optimization SGD Methods: Pros, Cons, and Behavior in Practice

Basic SGD-Type Algorithm

Preliminary Remarks

SGD: Stochastic Gradient Descent, also SA: Stochastic Approximation.

The problems of interest typically do not arise in a machine learning context.

We do not train prediction functions, rather we want robust solutions to engineering problems.

In machine learning, one commonly held belief is

By “undercomputing” we avoid “overfitting”.
-T. Dietterich in “Overfitting and Undercomputing in Machine Learning” (1995).

Thus, slower first-order methods that are stopped prematurely make sense in that framework.

If your model is tenuous at best and your data is noisy, then it’s probably not a good idea to
solve to high accuracy and expect good generalization out-of-sample.
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Aspects of Stochastic Optimization SGD Methods: Pros, Cons, and Behavior in Practice

Basic SGD-Type Algorithm

We consider the stochastic optimization problem

min
x∈X
{f (x) := EP[F (x , ·)]} .

X is nonempty, closed, and convex.

F : X × Ω→ R is convex and continuous in x for each ω and measurable in ω for each x .

f : X → R is finite and continuous.

Finite-dimensional noise: F (x , ω) = F̂ (x , ξ(ω)) where ξ : Ω→ Rd is a random vector.

We can generate an iid sample ξ1, ξ2, ... in Ξ ⊂ Rd . We now use the probability law Pξ := P◦ξ−1.

We can generate a stochastic subgradient G(x , ξ) ∈ ∂xF (x , ξ) for Pξ-a.e. ξ ∈ Ξ.

E[G(x , ξt)] ∈ ∂f (x) for t = 1, 2, . . . .

There is some σ ∈ R for all x ∈ X such that EPξ [‖G(x , ξ)− f ′(x)‖2
X∗ ] ≤ σ and f ′(x) ∈ ∂f (x).

Basic SGD Iteration

Given x0 ∈ X and {γk} with γk > 0, define {xk} such that xk+1 = ProjX (xk − γkG(xk , ξk))

12 / 59
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f : X → R is finite and continuous.

Finite-dimensional noise: F (x , ω) = F̂ (x , ξ(ω)) where ξ : Ω→ Rd is a random vector.

We can generate an iid sample ξ1, ξ2, ... in Ξ ⊂ Rd . We now use the probability law Pξ := P◦ξ−1.

We can generate a stochastic subgradient G(x , ξ) ∈ ∂xF (x , ξ) for Pξ-a.e. ξ ∈ Ξ.

E[G(x , ξt)] ∈ ∂f (x) for t = 1, 2, . . . .

There is some σ ∈ R for all x ∈ X such that EPξ [‖G(x , ξ)− f ′(x)‖2
X∗ ] ≤ σ and f ′(x) ∈ ∂f (x).

Basic SGD Iteration

Given x0 ∈ X and {γk} with γk > 0, define {xk} such that xk+1 = ProjX (xk − γkG(xk , ξk))
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Aspects of Stochastic Optimization SGD Methods: Pros, Cons, and Behavior in Practice

Basic SGD Algorithm for the Canonical Example

Recall our canonical example from Part I (p. 52).

min

{
f (z) := CVaRβ

[
1

2

∫
D

|S(z)− ud |2dx
]

+
α

2
‖z‖2

Z over z ∈ Zad

}
, (2)

where Zad ⊂ Z is a nonempty, closed, and convex set and S(z) = u is the unique solution to

Find u ∈ U : E
[∫

D

A∇u · ∇vdx
]

= E[〈Bz + f , v〉U∗,U ], ∀v ∈ U .

We also recall the variational formulation of CVaRβ :

CVaRβ [X ] = inf
t∈R

{
t +

1

1− βE[(X − t)+]

}
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Aspects of Stochastic Optimization SGD Methods: Pros, Cons, and Behavior in Practice

Basic SGD Algorithm for the Canonical Example

This leads to the “expanded” reduced problem:

min

{
EPξ

[
t +

1

2− 2β
(‖S(z)− ud‖2

L2(D) − 2t)+ +
α

2
‖z‖2

Z

]
over (z , t) ∈ Zad × R

}
. (3)

We then set

x = (z , t), X = Zad × R
F (x , ξ) = t + 1

2−2β
(‖S(z , ξ)− ud‖2

L2(D) − 2t)+ + α
2
‖z‖2

Z

f (x) = EP[F (x , ·)].

f is not strictly convex.
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Aspects of Stochastic Optimization SGD Methods: Pros, Cons, and Behavior in Practice

Pros

Due to the standing assumptions, we can show that G(x , ξ) can be split into a 2-tuple
G(x , ξ) = ([G(x , ξ)]z , [G(x , ξ)]t) with

[G(x , ξ)]z = αz + (1− β)−1(χ{F (z,ξ)>t} + qχ{F (z,ξ)=t})B(ξ)∗Λ(z , ξ)

[G(x , ξ)]t = 1− (1− β)−1(χ{F (z,ξ)>t} + qχ{F (z,ξ)=t})

where q ∈ [0, 1], e.g. q = 0, λ = Λ(z , ξ), and u(ξ) = S(z , ξ) such that

A(ξ)∗λ = u(ξ)− ud in H−1(D), A(ξ)u = B(ξ)z + f (ξ) in H−1(D).

Pro: 1 Forward Solve, ≤ 1 Adjoint Solve for each SGD-iteration:
- Given (zk , tk), draw a sample ξk ∈ Ξ.
- Solve for u(ξk) = S(zk , ξk) (in discrete setting: sparse structured linear system)
- If F (zk , ξk) > tk , solve for Λ(zk , ξk) (in discrete setting: sparse structured linear system)
- Else set qk = 0
- Construct G(xk , ξk) go to projection step.
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Aspects of Stochastic Optimization SGD Methods: Pros, Cons, and Behavior in Practice

Pros

Let Z = L2(D), a, b ∈ R such that a < b and

Zad := {z ∈ Z |a ≤ z ≤ b a.e. D }

Pro: Projection step for pointwise bilateral constraints is cheap:
- tk+1 = tk − γk [G(xk , ξk)]t
- zk+1 = zk − γk [G(xk , ξk)]z − (zk − γk [G(xk , ξk)]z − b)+ + (a− zk + γk [G(xk , ξk)]z)+

The projection is usually done at the nodal values in the discrete setting if, e.g., piecewise
constant or piecewise lineare FE are used.

Pro: The convergence theory includes the sampling aspect.

We could have easily taken batches of G(xk , ξ
j
k) and used their weighted averages at each step.

The basic theory indicates that we should choose diminishing sizes, e.g. 1/k.

Our practical experience yielded poor results. The fixed step γk = γ = 10 worked best.

Robust SA was invented to address this issue.

The theory tells us that we should take γk = O( 1√
k

), but...
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Aspects of Stochastic Optimization SGD Methods: Pros, Cons, and Behavior in Practice

Cons

Stepsizes

...some O’s are bigger than others: It is usually assumed that the feasible set has a finite
diameter DX .

In our case, there are no known bounds on t.

Back to CVaRβ :

CVaRβ [X ] = inf
t∈R

{
t +

1

1− βE[(X − t)+]

}
Assume for discussion X ∈ L1(Ω,F ,P) has a continuous cdf.

Then the minimizing t? is the left-side β-quantile of FX , i.e., t? = F−1
X (1− β).

Since our objective integrand J ◦ S is nonnegative, we could put an artificial lower bound on all t.

We do not know a priori what the maximum value of (J ◦ S)(z) for z ∈ Zad is. We could
estimate it, but that would costs thousands of additional PDE solves.

O also requires knowledge of σ (p. 12) as well as a constant M such that

‖EPξ [G(x , ξ)]‖ ≤ M ∀x ∈ Zad × R.
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We do not know a priori what the maximum value of (J ◦ S)(z) for z ∈ Zad is. We could
estimate it, but that would costs thousands of additional PDE solves.

O also requires knowledge of σ (p. 12) as well as a constant M such that

‖EPξ [G(x , ξ)]‖ ≤ M ∀x ∈ Zad × R.
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Aspects of Stochastic Optimization SGD Methods: Pros, Cons, and Behavior in Practice

Cons

Stopping and Behavior of the Iterates

When should we stop?

The theory provides an idea about the mean behavior of the objective function values in
relation to the optimal value for the aggregated mean of iterates x̄k = 1

k

∑k
i=1 xi .

These would say: Stop after k iterations, expect EPξ [f (x̄k)] to be within O( 1√
k

) of f (x?).

There are upper bounds for computable accuracy certificates. These typically contain σ,DX ,M.

But we are interested in the iterates xk , not necessarily f (xk).

We do not have f (xk), nor f̂N(xk) = 1
N

∑N
i=1 F (xk , ξ

i ) with N large to check the behavior of f (xk)

We do not have ∇f (xk) nor ∇f̂N(xk) = 1
N

∑N
i=1∇F (xk , ξ

i ) to check first order system.

These would require many more forward and adjoint solves.
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Aspects of Stochastic Optimization SGD Methods: Pros, Cons, and Behavior in Practice

How slow is it really? An example.

In this basic SGD approach, no second-order information is included.

In a deterministic setting, we would expect potentially slow convergence.

It is possible to add intermediate steps to get a better algorithm, e.g. stochastic accelerated
gradient descent method/stochastic accelerated approximation.

But how slow could it really be?

Example

Assume D ⊂ R2 is the unit square. PDE from contaminant mitigation problem.

Discretize the control and state (Q1-FEM) spaces on a uniform 32 x 32 grid. (coarse!)

Solve the problem using MC (10000 samples) and the PD-Risk algorithm (Section 2) up to a
tolerance of 1e-7 for the discrete-L2-norm of the first-order optimality system.

Use this as the “true” solution.

More samples and finer grids possible, this is just for discussion.
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Aspects of Stochastic Optimization SGD Methods: Pros, Cons, and Behavior in Practice

How slow is it really? An example.

γk = c/
√
k c = 1e4. Different c values yield similar behavior.

iter: number of SGD-iterations.

fval: function value.

abs-err f : absolute error of objective function values.

rel-err f : relative error of objective function values.

abs-err xk : absolute error in discrete L2-norm of iterate from “true” solution

rel-err xk : relative error in discrete L2-norm of iterate from “true” solution.

Example

iter time(s) fval abs-err f rel-err f abs-err xk rel-err xk
100 1.4 3.1274e-01 1.3403e-01 7.4999e-01 2.7098e+02 8.3928e-01

1000 14.7 2.5017e-01 7.1464e-02 3.9989e-01 2.0949e+02 6.4885e-01
10000 152.0 2.0502e-01 2.6312e-02 1.4723e-01 1.4802e+02 4.5846e-01

100000 2054.2 1.8906e-01 1.0353e-02 5.7933e-02 1.0943e+02 3.3892e-01
1000000 104636.2 1.8411e-01 5.3994e-03 3.0213e-02 8.8822e+01 2.7510e-01

Objective errors based on 100,000 samples that are different from those used for SAA and SA.
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Aspects of Stochastic Optimization SGD Methods: Pros, Cons, and Behavior in Practice

How slow is it really? An example.

After a million iterations and days of computing the relative error in the iterates is greater than 0.1.
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Thus, hundreds of millions of PDE-solves are needed to get an accurate solution.
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Aspects of Stochastic Optimization EA Methods: Pros and Cons

Empirical Approximation

In our canonical example, we can expand the decision space by a real-valued decision variable t
and consider an objective of the form

f (x) = EPξ [F (x , ·)] =

∫
Ξ

F (x , ξ)dP(ξ)

where F is nonsmooth and convex. Thus, the objective involves a high-dimensional integral.

We use quadrature everywhere in PDE-constrained optimization, why not here?

What are our options if dimΞ >> 1?

EA = Empirical Approximations. Sometimes called “Sample Average Approximation” (SAA).

Includes

Monte Carlo (MC),
Quasi-Monte Carlo (QMC), Randomized QMC,
Deterministic quadrature approaches, e.g., sparse grids.

Sample-before-you-go: Replace f (x) by f̂N(x) =
∫

Ξ
F (x , ξ)dPN(ξ) =

∑N
i=1 πiF (x , ξi )
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Aspects of Stochastic Optimization EA Methods: Pros and Cons

Pros

Recall again (3), using an EA for the expectation leads to

min

{
f̂N(x) =

1

N

N∑
i=1

[
t +

1

2− 2β
(‖S(z , ξi )− ud‖2

L2(D) − 2t)+ +
α

2
‖z‖2

Z

]
over (z , t) ∈ Zad × R

}
.

There have been enormous advances in nonlinear programming and numerical PDE-constrained
optimization over the past several decades.

Pro: we may use a number of powerful optimization algorithms with convergence theory in a
fully continuous setting.

Pro: For a fixed EA of the objective, the stopping criterion can be based on the residual of the
first-order system.

Pro: Calculation of the ω-dependent states, adjoint states, and Hessian vector products are
parallelizable.
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Aspects of Stochastic Optimization EA Methods: Pros and Cons

Cons

Con: In contrast to SGD-type methods, the convergence theory either works in the fully
continuous (pre-EA) or the sample-based deterministic (post-EA) regime. OPEN PROBLEM

Con: PDE-constrained optimization problems are large scale, the EA PDE-constrained problems
can be significantly larger depending on N even for low stochastic dimension.

So if we’re using second-order information and globalization strategies:
How slow could such an approach really be?
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Aspects of Stochastic Optimization EA Methods: Pros and Cons

Does linear algebra necessarily slow things down?

Example

Recall the Example from p. 20.

The Robust Stochastic Mirror Descent method yielded the following:

iter time(s) fval abs-err f rel-err f abs-err xk rel-err xk
100 1.4 3.1274e-01 1.3403e-01 7.4999e-01 2.7098e+02 8.3928e-01

1000 14.7 2.5017e-01 7.1464e-02 3.9989e-01 2.0949e+02 6.4885e-01
10000 152.0 2.0502e-01 2.6312e-02 1.4723e-01 1.4802e+02 4.5846e-01

100000 2054.2 1.8906e-01 1.0353e-02 5.7933e-02 1.0943e+02 3.3892e-01
1000000 104636.2 1.8411e-01 5.3994e-03 3.0213e-02 8.8822e+01 2.7510e-01

In contrast, using the PD-Risk method with SAA (Section 2 below)

N time(s) fval nstate nadjoint nstatesens nadjointsens totalsolves

100 680.0 1.7924e-01 27500 7112 36554 36554 107720
1000 2889.3 1.7871e-01 83000 30035 197168 197168 507371
10000 23540.5 1.7871e-01 700000 268612 1594077 1594077 4156766
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Aspects of Stochastic Optimization EA Methods: Pros and Cons

Open Problem(s)

1 Asymptotic consistency and rates of convergence as PN → P.

2 Link convergence of EA to convergence of the deterministic algorithms.

ad 1. Some work for the strongly convex linear quadratic risk-neutral case has been done, but for
nonsmooth, nonconvex problems such questions of stability are largely open.

ad 2. The PD-Risk algorithm (Section 2) converges in the fully continuous setting, how can 1. or
another method be used to argue convergence when using EA methods?
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Aspects of Stochastic Optimization EA Methods: Pros and Cons

Section 2:
The Primal-Dual Risk Minimization Algorithm
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Primal-Dual Risk Minimization Motivation

Rethinking the Canonical Example

We consider as our risk measure mean + CVaR:

R(X ) = (1− ν)E[X ] + ν inf
a∈R

{
a + 1

1−βE[(X − a)+]
}
, β ∈ (0, 1), ν ∈ (0, 1].

We can then transform the minimization problem

min
z∈Zad

{R[J (S(z))] + ℘(z)}

into

min
(z,t)∈Zad×R

(1− ν)EP[J (S(z))] + ℘(z) + νt︸ ︷︷ ︸
=:g(x)

+

=:Φ[G(x)]︷ ︸︸ ︷
ν

1− βEP
[
(J (S(z))− t)+

]
where x = (z , t), Xad = Zad × R, G(x) := J (S(z))− t and

Φ[X ] :=
ν

1− βEP
[
(X )+

]
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Primal-Dual Risk Minimization Motivation

Examples

You could make a similar transformation with a number of other important examples:

Using Φ(X ) = E[(X )+], we can represent three other popular risk measures:

Mean-plus-semideviation of order 1

R(X ) = E[X ] + cE[(X − E[X ])+], c > 0,

Mean-plus-semideviation-from-target of order 1

R(X ) = E[X ] + cE[(X − t)+], c > 0, t ∈ R,

The buffered probability of exceedence

R(X ) = inf
a≥0

E[(a(X − τ) + 1)+], τ ∈ R.

General coherent measures of risk also treatable.
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Primal-Dual Risk Minimization Motivation

Properties of Φ

Φ has a number of very favorable properties:
- positively homogeneous
- subadditive
- convex
- montone wrt the usual ordering on L1(Ω,F ,P)
- continuous on L1(Ω,F ,P)

If Φ∗ is the Fenchel conjugate of Φ and A = dom(Φ∗) its essential domain, then

Φ[X ] = sup
ϑ∈A

E[ϑX ]

where
A = {ϑ ∈ L∞(Ω,F ,P) | 0 ≤ ϑ ≤ ν/(1− β) a.s. }

We will work mainly work with L2(Ω,F ,P) instead of L1(Ω,F ,P) for obvious reasons below.
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Primal-Dual Risk Minimization Motivation

Rethinking the Canonical Example

Our canonical example takes on the form

min
x∈Xad

sup
ϑ∈A

g(x) + E[ϑG(x)]

The objective ` : X × L2(Ω,F ,P)→ R

`(x , ϑ) := g(x) + E[ϑG(x)]

looks a lot like a Lagrangian.

This motivates an algorithmic approach based on the method of multipliers.

We need the generalized augmented Lagrangian (on the dual variables).

This means we will solve subproblems in x using the objective

L(x , λ, r) = max
θ∈A

{
`(x , θ)− 1

2r
E[(λ− θ)2]

}
= g(x) + E[λG(x)] +

r

2
E[G(x)2]− 1

2r
E[{(Id−PA)(rG(x) + λ)}2].
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Primal-Dual Risk Minimization Motivation

Properties of L

The proposed algorithm should make use of the functional L given by

L(x , λ, r) = g(x) + E[λG(x)] +
r

2
E[G(x)2]− 1

2r
E[{(Id−PA)(rG(x) + λ)}2].

where Id identity on L2(Ω,F ,P), P projection onto A, and the maximizer is given by

Λ(x , λ, r) := PA(rG(x) + λ).

Note that the current structure allows a simple pointwise projection:

P(X ) = X − (−X )+ − (X − ν

1− β )+

In an EA setting, this amounts to one projection for each i = 1, . . . ,N.

L can be written as the functional

L(x , λ, r) = g(x) + Φr,λ(G(x)),

where Φr,λ is the infimal convolution of Φ with Ψr,λ(Y ) = E[λY ] + r
2
E[Y 2].
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Primal-Dual Risk Minimization Motivation

Properties of L

In fact, Φr,λ[X ] = E[φ(X , λ, r)] where the scalar function φ : R× R× (0,∞)→ R is given by

φ(x , t, r) :=
1

2r
{(rx + t)2

+ − (rx + (t − 1))2
+ − t2}

Thus, despite the initially complicated formula for L, there is a simple equivalent formula.

We also have the boundsa

Φ(X )− K 2

r
≤ Φr,λ(X ) ≤ Φ(X ) ∀ θ ∈ A, r > 0

where K is the Lipschitz modulus of Φ at 0.

This provides simple upper and lower bounds on L!

A generalized (Newton/slant) derivative of φ′x(·, t, r) is given by

Gt,r (x) = r [sign(rx + 1)− sign(rx + t − 1)]

These are needed for the quadratic model in the trust-region subproblem, see p. 51, 52.

a
These are a direct consequence of epi-regularized risk measures.
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Primal-Dual Risk Minimization Motivation

Summary

We seek to solve the canonical example by directly exploiting the properties of the risk measure.

The step calculation the primal variables x ∈ X should be determined by solving (inexactly)

min
x

L(x , λk , rk) = g(x) + Φrk ,λk (G(x))

for fixed dual variable λk and penalty parameter rk .

g(x) is at least C 1 and Φr,λ(G(x)) is C 1,1 (provided J (S(z)), ℘ are sufficiently smooth).

Given xk we update λk using the prox-operator

λk+1 = P(rkG(xk) + λk)

and rk+1 ≥ rk (if necessary).
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Given xk we update λk using the prox-operator

λk+1 = P(rkG(xk) + λk)

and rk+1 ≥ rk (if necessary).
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Primal-Dual Risk Minimization The Algorithm

The Algorithm

Algorithm 1: Primal-Dual Risk Minimization

1 Given x0 ∈ Xad, r0 ∈ (0,∞), λ0 ∈ A, ρx ∈ (0, 1), ρλ ∈ (0, 1), ρr ∈ (1,∞), 0 < τx < τx,0, and
0 < τλ < τλ,0.;

2 for k = 0, 1, 2, . . . do

1 Find xk+1 ∈ Xad s.t. ‖xk+1 −PXad (xk+1 −∇xL(xk+1, λk , rk))‖X ≤ τx,k ;

2 Set λk+1 = Λ(xk+1, λk , rk);

3 if (4) is satisfied then
return xk+1

4 if ‖λk − λk+1‖Y > τλ,k then
rk+1 = ρr rk

5 Set τx,k+1 = ρxτx,k and τλ,k+1 = ρλτλ,k .

Practical Stopping Criterion

‖xk+1 −PXad (xk+1 −∇xL(xk+1, λk , rk))‖X ≤ τx (4a)

‖λk − λk+1‖Y ≤ τλ (4b)
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Primal-Dual Risk Minimization Convergence Theory

Remarks on convergence

The PD-Risk Algorithm is more versatile than just the canonical example.

There is convergence theory for the primal variables x , dual variables λ in both convex and
nonconvex settings.

In the convex setting, we can consider ε-minimizers.

In the nonconvex setting, we need to consider ε-stationary points.

We will only discuss the convergence theory for the primal variables in the context of the
canonical example here (i.e. in the convex case).

For readability, we work with the general structure

min
x∈Xad

g(x) + Φ(G(x))
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Primal-Dual Risk Minimization Convergence Theory

Convergence of the primal variables

Definition (ε-Minimizers)

An ε-minimizer, ε ≥ 0, is any x ∈ Xad such that

g(x) + Φ(G(x))− ε ≤ min
y∈Xad

{g(y) + Φ(G(y))}.

Similarly, an ε-minimizer, ε ≥ 0, of L(·, λ, r) over Xad is any x ∈ Xad such that

L(x , λ, r)− ε ≤ inf
y∈Xad

L(y , λ, r).

The general theory requires four main assumptions.

These are stated on the next slide for your later convenience.

They are all satisfied for the canonical example. HOMEWORK!
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Primal-Dual Risk Minimization Convergence Theory

Convergence of the primal variables

Assumption

1 The optimization space X is a reflexive Banach space and 6= Xad ⊆ X is convex and closed.

2 The deterministic objective function g : X → R is weakly lower semicontinuous and the uncertain
objective function G : X → L2(Ω,F ,P) is completely continuous, i.e.,

xk ⇀ x in X =⇒ G(xk)→ G(x) in L2(Ω,F ,P).

3 The functional Φ : Y → R is convex, positively homogeneous and monotonic

4 There exists a constant γ ∈ R such that the lower γ-level

levγ (P) := {x ∈ X | g(x) + Φ(G(x)) ≤ γ } ∩ Xad, (5)

is nonempty and bounded.
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Primal-Dual Risk Minimization Convergence Theory

Convergence of the primal variables

Theorem

Let {(xk , λk , rk)} ⊂ Xad × Y × (0,∞) denote the sequence of iterates produced by Algorithm 1, where
rk → r? > 0 (possibly +∞) and xk satisfies

L(xk , λk−1, rk−1)− εk ≤ inf
x∈Xad

L(x , λk−1, rk−1) (6)

for some sequence {εk} ⊂ [0,∞) with εk → ε? (possibly zero). Then, any weak accumulation point x?

of {xk} satisfies

g(x?) + Φ(G(x?))−
(

K2

r?
+ ε?

)
≤ min

x∈Xad

{g(x) + Φ(G(x))}

where K > 0 is such that ‖θ‖Y ≤ K for all θ ∈ A. That is, x? is a (K2

r?
+ ε?)-optimal solution.

As mentioned earlier, this is the relevant convergence statement for convex problems.

It holds for more than just the canonical example!
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Primal-Dual Risk Minimization Convergence Theory

Convergence of the primal variables

Proof.

This type of convergence proof is typical for PDE-constrained optimization.

We need to work with the weak topology due to a lack of norm compactness of closed balls in
general Hilbert spaces. Convergence is done in the continuous setting.

Suppose x? is a weak accumulation point of {xk}.
By definition, there exists {xkj } such that xkj ⇀ x? in Xad.

The bounds on Φr,λ (p. 33), continuity of Φ, weak lsc of g and complete continuity of G yield:

g(x) + Φ(G(x)) ≥ lim inf
kj→∞

L(x , λkj−1, rkj−1) (upper bd. on Φ)

≥ lim inf
kj→∞

{L(xkj , λkj−1, rkj−1)− εkj−1} (def. of xk)

≥ lim inf
kj→∞

{g(xkj ) + Φ(G(xkj ))− K2

rkj−1
− εkj−1} (lower bd. on Φ)

≥ g(x?) + Φ(G(x?))−
(

K2

r?
+ ε?

)
∀x ∈ Xad. (g wlsc, G cc, Φ cont.)
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Primal-Dual Risk Minimization Convergence Theory

Convergence of the primal variables

Sufficient condition

The existence of weak accumulation points can be guaranteed by the condition: ∃γ? > 0 satisfying

γ? >

(
min
x∈Xad

{g(x) + Φ(G(x))}
)

+
K 2

r?
+ ε?

such that the γ?-lower level set of levγ?(P) is bounded.
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Primal-Dual Risk Minimization Convergence Theory

Convergence of the dual variables

Theorem

In addition to the standing assumptions, define v(θ) := infx∈Xad `(x , θ). Assume there exists λ0 ∈ A
such that v(λ0) > −∞.

Suppose Algorithm 1 is executed with {rk} ⊂ [r ,∞) for some r > 0 and
xk+1 ∈ Xad satisfying

L(xk+1, λk , rk)− ε2
k

2rk
≤ inf

x∈Xad

L(x , λk , rk) with
∞∑
k=0

εk <∞, εk ≥ 0. (7)

Furthermore, assume that for each k, there exists a saddle point:

inf
x∈Xad

sup
θ∈A

{
`(x , θ)− 1

2rk
E[(θ − η)2]

}
= sup
θ∈A

inf
x∈Xad

{
`(x , θ)− 1

2rk
E[(θ − η)2]

}
∀ η ∈ Y.

Then {λk} converges weakly to λ? ∈ A, which is a solution to the dual problem: maxθ∈A v(θ)

Uses the same assumptions as the primal theorem.

Much more involved proof.
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Primal-Dual Risk Minimization Convergence Theory

Convergence of the dual variables

Sufficient conditions for the dual variables

`(x , ·)− 1
2rk

E[(· − η)2] is concave and weakly usc over the weakly compact convex set A. If `(·, λ) is
quasiconvex for each λ ∈ A, then Sion’s theorem ensures the existence of a saddle point.

Extension to Nonconvex Case

1 Also addressed in the paper.

2 Need to consider convergence of ε-stationary points.

3 Convergence proofs require slightly more structure on g and G .
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Primal-Dual Risk Minimization Convergence Theory

Section 3:
Implementation and Numerical Solution
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Implementation and Numerical Solution Implementation Aspects

Solving the Subproblems

We recommend using a matrix-free trust-region approach to solve the subproblems.

“Matrix-free” does not mean there are no matrices involved, rather no matrix factorizations, i.e.,
direct solvers, or eigenvalue calculations are used.

We briefly discuss the necessary computations using the CG method proposed by Steihaug.

Assume for discussion that Zad = Z .

This will tie in parts of Part I and Part II.

We remain in the fully continuous setting for readability, but indicate the necessary computations
in an EA approach.
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Implementation and Numerical Solution Implementation Aspects

Solving the Subproblems: Quadratic Model, Gradients, & Hessians

Take as the quadratic model for the canonical

ϕ(p) = (∇f (x), d)X +
1

2
(H(x)d , d)X

Here, ∇f (x) = RRieszf
′(x), where

f ′(x) = g ′(x) + Φ′r,θ(G(x)) ◦ G ′(x).

The components of f ′(x) are as follows:[
g ′(x)

]
t
δt = νδt[

g ′(x)
]
z
δz = (1− ν)EP[(S(z)− ud ,S

′(z)δz)Z ] + α(z , δz)Z[
Φ′r,θ(G(x)) ◦ G ′(x)

]
t
δt =

ν

r(1− β)
EP[φ′(G(x), θ, r)]δt[

Φ′r,θ(G(x)) ◦ G ′(x)
]
z
δz =

ν

r(1− β)
EP[φ′(G(x), θ, r)(S(z)− ud , S

′(z)δz)Z ]
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Implementation and Numerical Solution Implementation Aspects

Solving the Subproblems: Quadratic Model, Gradients, & Hessians

Combining these observations, we have[
f ′(x)

]
t
δt = EPξ [ν +

ν

r(1− β)
φ′(G(x), θ, r)]δt

[f ′(x)]zδz =

(
αz + EPξ

[(
(1− ν) +

ν

r(1− β)
φ′(G(x), θ, r)

)
(B∗λ)

]
, δz

)
Z

where λ(ξ) solves
A(ξ)∗λ = u(ξ)− ud in H−1(D)

and u(ξ) = S(z , ξ) solves
A(ξ)u = B(ξ)z + f (ξ) in H−1(D).

for Pξ-a.e. ξ ∈ Ξ.

Compare this to the SGD discussions (with ν = 1):
- EPξ disappears
- φ′(G(x), θ, r)/r(1− β) is a regularization of the characteristic functions.
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Implementation and Numerical Solution Implementation Aspects

Solving the Subproblems: Quadratic Model, Gradients, & Hessians

Keeping the spacial terms continuous, in an EA setting, e.g., Monte Carlo, we would need:

N states solves
A(ξi )u = B(ξi )z + f (ξi ) in H−1(D) i = 1, . . . ,N,

which can be done in parallel.

≤ N adjoint solves
A(ξi )∗λ = u(ξi )− ud in H−1(D) i = 1, . . . ,N,

which can also be done in parallel, but only when the i th state solve is available.

N function evaluations
φ′(G(x , ξi ), θ, r) i = 1, . . . ,N

Recall: G(x , ξ) = J (S(z , ξ))− t.

≤ N “matrix-vector” products

B∗(ξi )λ(ξi ) i = 1, . . . ,N.

N + 1 “axpy’s” for the weighted sum.

Don’t forget the Riesz maps/proper inner products when considering the fully discrete problem!
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Implementation and Numerical Solution Implementation Aspects

Solving the Subproblems: Quadratic Model, Gradients, & Hessians

For a matrix-free trust region approach to the subproblems, the previous slide tells us how to
calculate the gradient used in the quadratic model and for the trial point (first step) of the
algorithm.

We only need to do this once.

Otherwise, we need a way of computing “Hessian-vector” products. This mirrors the discussion
on p. 33 in Part I. However, Φ is only C 1,1.

Start with g(x). Given a direction δx = (δz , δt) ∈ X , we have

g ′′(x)δx = αδz + (1− ν)E[B∗µ]

where µ(ξ) solves
A(ξ)∗µ = w(ξ) in H−1(D)

and w(ξ) solves
A(ξ)w = B(ξ)w in H−1(D).

for Pξ-a.e. ξ ∈ Ξ.

We can easily adapt this to an EA replacing ξ and “Pξ-a.e. ξ ∈ Ξ” by ξi for all i = 1, . . . ,N.
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Implementation and Numerical Solution Implementation Aspects

Solving the Subproblems: Quadratic Model, Gradients, & Hessians

We can use generalized Hessians (Newton/Slant derivatives) for the second derivative of Φ
without violating the assumptions used to prove convergence of Steihaug’s CG method.

50 / 59



Implementation and Numerical Solution Implementation Aspects

Solving the Subproblems: Quadratic Model, Gradients, & Hessians

Hessian Computation for “Φ-part”

Define the Lagrangian L(u, x , λ):

L(u, x , λ) =
ν

1− βEPξ [φ(J(u, z)− t, θ, r)] + 〈Au − [Bz + f ], λ〉V ,V∗

Given x ∈ X , we have u(ξ): A(ξ)u(ξ) = B(ξ)z + f (ξ) w.p.1

Given u(·), we solve for λ(ξ): A∗(ξ)λ(ξ) = ud − u(ξ) w.p.1

Given u(·), x , direction v ∈ X solve for w(ξ): A(ξ)w = B(ξ)[v ]z .

Given u(·), z , λ(·),w(·), v solve for p(ξ):

A(ξ)∗p(ξ) = L′′uu(u, x , λ)w − L′′ux(u, x , λ)v .

Given u(·), z , λ(·),w(·), v , p(·) yields

H(x , ξ)v = B(ξ)∗p −∇xuL(u, x , λ)w +∇xxL(u, x , λ)v .

This is just notation. These red terms are not second derivatives as they do not exist a priori.
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Solving the Subproblems: Quadratic Model, Gradients, & Hessians

Hessian Computation for “Φ-part”

For the terms

L′′uu(u, x , λ)w , L′′ux(u, x , λ)v , ∇xuL(u, x , λ)w , ∇xxL(u, x , λ)v .

we recommend to formally apply the notation of Newton/slant derivatives from semismooth
Newton methods to obtain expressions.

These can be derived using the usual chain rule and the pointwise formula for the Newton
derivatives of the scalar function φ. HOMEWORK!
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Implementation Details

We conclude with two illustrative examples.

The parameters are

name Pollutant Burgers

CVAR β = 0.9, ν = 0.75 β = 0.9, ν = 0.75

The Burgers example is nonconvex as the associated differential equation is nonlinear.

iter: Number of iterations for Algorithm 1.

nfval is the total number of evaluations of L(x , λ, r)

ngrad is the total number of evaluations of the gradient of L(·, λ, r)

nhess Hessian vector products

subiter is the total number of subproblem iterations from step 1

τx = 10−8, τλ = 10−6, ρx = 0.1, ρλ = 0.1 and ρr = 10
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Example 1: A Contaminant Mitigation Problem

Find optimal placement of mitigating factors z by solving:

min
z∈Zad

{
R
(
κs

2

∫
D

S(z)2 dx

)
+ κc‖z‖1

}
where κs = 105, κc = 1 and S(z) = u : Ω→ H1(D) solves the weak form of

−∇ · (ε(ω)∇u) + V(ω) · ∇u = f (ω)− Bz in D, a.s.

u = 0 on Γd = {0} × (0, 1), a.s.

ε(ω)∇u · n = 0 on ∂D \ Γd , a.s.

D = (0, 1)2 is the physical domain, (Ω,F ,P) complete probability space

Z is the control space, e.g., L2(D) or Rn; Zad = {z ∈ Z | 0 ≤ z ≤ 1}.
ε,V, f are random variables or fields: permeability, wind, sources, etc.

u is the advected pollutant.

R : X → R is a convex combination of mean and CVaR
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Example 1: A Contaminant Mitigation Problem

Control z ∈ R9 for intensity of mitigating factors at nine fixed positions in space:

Bz =
9∑

k=1

zk exp

(
− (x − pk)>(x − pk)

2σ2

)
, σ = 0.05.

Mean Value: Replace uncertain parameters by mean values, solve deterministic problem.

The least robust type of solution.

Figure: MV of sources f (l.), uncontrolled state in MV problem (m.), optimal control MVP (r.).
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Results Example 1

Q1-FEM on uniform mesh of 4096 quadrilaterals.

Empirical approximation with 10,000 Monte Carlo samples.

Algorithm 1

name iter nfval ngrad subiter nhess

CVAR 9 65 43 46 18

Figure: optimal solutions for MVP (l.), risk neutral (c.), Mean-CVaR (r.).
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Example 2: Optimization of Steady Viscous Burger’s Eq.

Find risk-averse optimal forcing term z by solving

min
z∈Z

{
R
(

1

2

∫
D

(S(z)− 1)2 dx

)
+
α

2

∫
D

z2 dx

}
where u = S(z) : Ω→ U = H1(D) solves the weak form of

−ν(ω)∂xxu + u∂xu = f (ω) + z in D, a.s.

[u(ω)](0) = d0(ω), [u(ω)](1) = d1(ω) a.s.

α = 10−3, D = (0, 1), Z = L2(0, 1)

ν, f , d0, d1: Random viscosity, forcing, boundary values.
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Results Example 2

P1-FEM on (non-uniform) mesh of 256 intervals

Sample average approximation with 10,000 Monte Carlo samples.

Nonlinear PDE solve: Newton globalized with a backtracking line search.

This problem is nonconvex.

Algorithm 1

name iter nfval ngrad subiter nhess

CVAR 8 44 42 116 36
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Summary Part II

PDE-constrained optimization under uncertainty can be viewed as an extension of stochastic
programming to infinite dimensions.

We need to be especially careful when building algorithms (correct derivatives, inner products,
matrix-free subproblems solvers,... )

Stochastic approximation-based methods are initially attractive due to the low amount of
PDE-solves per iteration.

However, the sheer number of iterations needed to reach a solution of high accuracy is
intractable.

Coherent risk measures, e.g., CVaR, have a significant amount of exploitable structure.

This leads to a provably convergent SAA-based primal-dual risk minimization algorithm.

The performance of this algorithm is promising.
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D. Peschka, M. Thomas, A. Glitzky, R. Nürnberg, K. Gärtner, M. Virgilio, S. Guha, Th. Schroeder, G. Capellini, and Th.

Koprucki.

Modeling of edge-emitting lasers based on tensile strained germanium microstrips.

IEEE Photonics Journal, 7(3):1–15, (2015).

59 / 59



Implementation and Numerical Solution Summary and Outlook

References: Books on PDE-constrained optimization

Lions, J.-L.

Optimal control of systems governed by partial differential equations.

Springer-Verlag, New York-Berlin, 1971.
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Ruszczynśki, A. and Shapiro, A. (eds.)

Handbooks in Operations Reseach & Management Science, Vol. 10 Elsevier Science B.V., 2003.

59 / 59



Implementation and Numerical Solution Summary and Outlook

References: Books on optimization theory and PDEs

Attouch, H., Buttazzo, G. and Michaille, G.

Variational analysis in Sobolev and BV spaces,

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006.

Bonnans, J. F. and Shapiro, A.

Perturbation Analysis of Optimization Problems.

Springer Verlag, Berlin, Heidelberg, New York, 2000.

Evans, L.C.

Partial differential equations.

American Mathematical Society, Providence, RI, 2010.

Gilbarg, D. and Trudinger, N. S.

Elliptic partial differential equations of second order.

Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.

Grisvard, P.

Elliptic problems in nonsmooth domains.

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.

Luenberger, D.G.

Optimization by vector space methods.

John Wiley & Sons, Inc., New York-London-Sydney, 1969.

59 / 59



Implementation and Numerical Solution Summary and Outlook

References: Books on numerical methods for PDEs

Brenner, S.C. and Scott, L.R.

The mathematical theory of finite element methods.

Springer, New York, 2008.

Ern, A. and Guermond, J.-L.

Theory and practice of finite elements.

Springer-Verlag, New York, 2004.

Braess, D.

Finite elements. Theory, fast solvers, and applications in elasticity theory.

Cambridge University Press, Cambridge, 2007.

Bartels, S.

Numerical methods for nonlinear partial differential equations.

Springer, Cham, 2015.

59 / 59



Implementation and Numerical Solution Summary and Outlook

References: Applications and numerics of random PDE
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