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Abstract

For a tree T and an integer k ≥ 1, it is well known that the k-th power T k of T is strongly
chordal and hence has a strong elimination ordering of its vertices. In this note we obtain a
complete characterization of strongly simplicial vertices of T k, thereby characterizing all strong
elimination orderings of the vertices of T k.
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1 Introduction

Strongly chordal graphs have received much attention since first defined in [9], in particular because
they yield polynomial time solvability of the domatic set and the domatic partition problems.
For more information on these problems we refer the reader to [4], [10], [11] and [6]. In [9] a
characterization of strongly chordal graphs in terms of balanced matrices is given. In [13] and [8] it
is shown that any power of a strongly chordal graph is again strongly chordal. We should note that
this does not hold for chordal graphs in general: Only odd powers of chordal graphs are guaranteed
to be again chordal, as was first explicitly shown in [3]. A simpler proof of this result can be found
in [2]. Since a tree is strongly chordal, then any power of a tree is again strongly chordal. Although
a direct consequence of [13] and [8], this was also shown explicitly in [7]. Since any power of a tree
is strongly chordal, this implies that it has a strong elimination orderings of its vertices.

The purpose of this note is to characterize completely the strongly simplicial vertices of a power
of a tree, and thereby give a complete characterization of the strongly elimination orderings of the
vertices of a power of a tree. Strongly simplicial vertices of powers of trees can be applied to obtain
an optimal greedy vertex coloring of squares of outerplanar graphs, as described in detail in [1]. In
particular, we derive here Theorem 2.9 and Corollary 2.11, the latter of which was used to obtain
the mentioned optimal greedy coloring algorithm in [1]. We should stress that the main result of
this note is not a theorem, but rather Definition 2.2. Namely the mere statement of what we mean
by k-strong simplicity of a vertex in a tree, as described in Lemma 2.1.

General notation The set {1, 2, 3, . . .} of natural numbers will be denoted by N. All graphs in
this note are assumed to be simple and undirected unless otherwise stated. The degree of a vertex
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u in graph G is denoted by dG(u). We denote by NG(u) the open neighborhood of u in G, that is
the set of all neighbors of u in G, and by NG[u] the closed neighborhood of u in G, that additionally
includes u. The distance ∂G(u, v), between vertices u and v, is the number of edges in a shortest
path between them. When the graph in question is clear from context, we omit the subscript in the
notation. For a graph G and k ∈ N, the power graph Gk is the simple graph with the same vertex
set as G, but where every pair of vertices of distance k or less in G is connected by an edge. In
particular, G2 is the graph in which, in addition to edges of G, every two vertices with a common
neighbor in G are also connected with an edge. The closed neighborhood of a vertex u in Gk will
be denoted by Nk

G[u] and the degree of vertex u will be denoted by dk(u).
Recall the following definition:

Definition 1.1 A vertex u in a graph G is simplicial if NG[u] induces a clique in G. If u is
simplicial and {NG[v] : v ∈ NG[u]} is linearly ordered by set inclusion, then u is strongly simplicial.

A graph G is strongly chordal if it has a strong elimination ordering of its vertices V (G) =
{u1, . . . , un}, such that each vertex ui is strongly simplicial in the subgraph of G induced by
ui and the previous vertices u1, . . . , ui−1. Clearly, a vertex of a tree is strongly simplicial if, and
only if, it is a leaf, which gives us a complete description of when exactly an ordering is a strong
elimination ordering of the tree. To describe strong simplicity in T k for arbitrary k ∈ N, we need
to introduce some special notation for trees.

Notation and terminology of trees The leaves of a tree T will be denoted by L(T ). The
diameter of T is the number of edges in a longest path in T and will be denoted by diam(T ). For a
tree T with diam(T ) ≥ 1 we can form the pruned tree pr(T ) = T −L(T ). For two vertices u and v
of a tree T , the unique path between them will be denoted by pT (u, v) or by p(u, v) when there is
no danger of ambiguity. The vertices of this path, including both u and v, is given by V (p(u, v)).
A center of T is a vertex of distance at most ddiam(T )/2e from all other vertices of T . A center of
T is either unique or one of two unique adjacent vertices. Clearly, the power graph T k of a tree T
is only interesting when k ∈ {1, . . . ,diam(T ) − 1}. For U ⊆ V (T ) the join of U in T is the unique
smallest subtree of T connecting all of U together. The connector of three leaves of T is the unique
vertex of degree three in the join of the leaves.

Let T be rooted at r ∈ V (T ). The k-th ancestor of u ∈ V (T ), if it exists, is the vertex on p(u, r)
of distance k from u, and is denoted by ak

r(u). An ancestor of u is a vertex of the form ak
r (u) for

some k ≥ 0. Note that u is viewed as an ancestor of itself. The descendants of u, denoted by Dr[u],
is the collection of all the vertices having u as an ancestor. For u ∈ V (T ), the distance ∂T (u, r)
to the root r will be referred to as the level of u and denoted by lT (u) or by l(u) when there is
no danger of ambiguity. For U ⊆ V (T ) the least common ancestor of U , denoted by lca(U), is
the unique common ancestor of U on the largest level. For a vertex u in T the subset Ru ⊆ V (T )
contains all r ∈ V (T ) with ∂T (u, r) maximum. Note that this definition of Ru works for unrooted
trees T . Also note that for each u ∈ V (T ) we necessarily have Ru ⊆ L(T ). In fact, we have the
following observations that will be useful in the next section.

Claim 1.2 Let T be a tree and u ∈ V (T ). Then the center(s) of T is(are) on the path p(u, r) for
each r ∈ Ru.

Proof. Root T at a center c. If r ∈ V (T ) is such that c is not on the path p(u, r) then there is a
longer path going from u through c, and hence r 6∈ Ru. ut
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Claim 1.3 Let T be a tree, u ∈ V (T ) and r ∈ Ru. Then r is an endvertex of a path of T of
maximum length diam(T ).

Proof. By Claim 1.2 the center(s) of T is(are) on p(u, r). If c is a center of T , then there is a
vertex x that is (i) an endvertex of a maximum length path of T and (ii) such that c ∈ V (p(u, x)).
By definition we have ∂T (u, x) ≤ ∂T (u, r) and hence ∂T (c, x) ≤ ∂T (c, r). Therefore equality holds
and r is also an endvertex of a maximum length path in T . ut

By the above two Claims 1.2 and 1.3 we have the following.

Claim 1.4 Let T be a tree with diam(T ) = d and u ∈ V (T ). If u ∈ V (T ) and r ∈ Ru, then
∂T (u, r) ≥ dd/2e.

With this setup we can start to discuss our first results, the characterization of simplicial vertices
of powers of trees.

2 Characterization of simplicial vertices

We start with the following lemma.

Lemma 2.1 Let T be a tree, u, r ∈ V (T ) and k ∈ N. If T is rooted at r, let Pu;k(r) be the following
statement:

Pu;k(r) : If ak
r (u) exists, then ∂T (v, ak−1

r (u)) ≤ k−1 for all v ∈ Dr[a
k−1
r (u)]. Otherwise

(if ak
r(u) does not exist), T k is a complete graph.

Then the truth value of Pu;k(r) is independent on r ∈ Ru.

Proof. By definition of Ru the k-th ancestor ak
r(u) exists for one particular r ∈ Ru iff ak

r(u) exists
for all r ∈ Ru. Hence, we can assume that ak

r (u) exists for all r ∈ Ru. In this case we may further
assume u to be a leaf of T , since otherwise Pu;k(r) is false regardless of r ∈ Ru. For r, r′ ∈ Ru it
suffices to show that if Pu;k(r) does not hold, then Pu;k(r

′) does not hold either:
Since all three vertices r, r′ and u are leaves of T , we have the connector u′ ∈ V (T ) \ {u, r, r′}.

Clearly we have ∂T (u′, r) = ∂T (u′, r′). Looking at the join of r, r′ and u, there are two cases to
consider.

If ak−1
r (u) ∈ V (p(u, u′)), then ak−1

r (u) = ak−1
r′ (u) and Dr[a

k−1
r (u)] = Dr′ [a

k−1
r′ (u)] so Pu;k(r

′) is
also false in this case.

If ak−1
r (u) ∈ V (p(u′, r)), then ak−1

r′ (u) is the corresponding vertex of V (p(u′, r′)) at the same
distance from u′ as ak−1

r (u) is. Assume there is a descendant v of ak−1
r (u) with ∂T (v, ak−1

r (u)) ≥ k.
We must consider three separate cases of the location of the connector v ′ of r, r′ and v to be.

First case, v′ ∈ V (p(u, u′)): Here v ∈ Dr[a
k−1
r (u)]∩Dr′ [a

k−1
r′ (u)] and further ∂T (v, ak−1

r′ (u)) =
∂T (v, ak−1

r (u)) ≥ k, so we have Pu;k(r
′) to be false in this case.

Second case, v′ ∈ V (p(u′, r)): Here ∂T (v′, ak−1
r (u)) ≤ ∂T (v′, ak−1

r′ (u)) and hence

∂T (v, ak−1
r′ (u)) = ∂T (v, v′) + ∂T (v′, ak−1

r′ (u))

≥ ∂T (v, v′) + ∂T (v′, ak−1
r (u))

= ∂T (v, ak−1
r (u))

≥ k.
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Since ak−1
r′ (u) ∈ V (p(v, r′)) the vertex v is a descendant of ak−1

r′ (u) when T is rooted at r′. Hence
Pu;k(r

′) is false in this case as well.
Third case, v′ ∈ V (p(u′, r′)): By definition of Ru we have that ∂T (u, r′) ≥ ∂T (u, v), and hence

∂T (v′, r′) ≥ ∂T (v′, v). By symmetry we have therefore

∂T (r, ak−1
r′ (u)) = ∂T (r′, ak−1

r (u))

= ∂T (r′, v′) + ∂T (v′, ak−1
r (u))

≥ ∂T (v, v′) + ∂T (v′, ak−1
r (u))

= ∂T (v, ak−1
r (u))

≥ k.

Since ak−1
r′ (u) ∈ V (p(r, r′)) the vertex r is a descendant of ak−1

r′ (u) when T is rooted at r′. Hence
Pu;k(r

′) is false in this final case. This completes our proof of the lemma. ut

Remark: The statement Pu;k(r) can, at first sight, seem complex. By the right view point it is
however quite natural and simple:

1. First root T at the vertex u.

2. The vertices at the lowest level constitute the set Ru ⊆ L(T ).

3. Pick r ∈ Ru and re-root T at r.

4. If ak
r (u) does not exist, then Pu;k(r) is true only if k ≥ diam(T ).

5. If ak
r (u) does exist, then Pu;k(r) is true only if u is on the lowest level of the sub-tree of T

that is rooted at ak−1
r (u).

By Lemma 2.1 the following definition makes sense.

Definition 2.2 Let T be a tree and k ∈ N. We say that a vertex u ∈ V (T ) is k-strongly simple,
or k-ss for short, if the statement Pu;k(r) from Lemma 2.1 is true for one (and hence all) r ∈ Ru.

Note that by definition we have a0
r(u) = u for every vertex u ∈ V (T ). Hence, a vertex u in a proper

tree T (with at least one edge) is 1-ss in T if, and only if, u is a leaf of T . Also note that in general
for 1 ≤ k < diam(T ), only leaves of T can possibly be k-ss.

By Claim 1.4 and Definition 2.2 we have the following.

Corollary 2.3 If 1 ≤ k′ ≤ k ≤ dd/2e and u ∈ V (T ) is k-ss, then u is also k ′-ss.

The next result describes k-strong simplicity for the remaining interesting values of k:

Theorem 2.4 Let T be a tree and u ∈ V (T ). If d = diam(T ) and k ∈ {dd/2e, . . . , d− 1}, then the
following are equivalent:

1. u is an endvertex of a path of maximum length d.

2. u is k-ss.

3. u is dd/2e-ss.
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Proof. By Definition 2.2 we clearly have (1) ⇒ (2) ⇒ (3). What remains to show is (3) ⇒ (1).
Let h = dd/2e and assume that u is h-ss in T . Since ah

r (u) exists for any r ∈ Ru we have
∂T (v, ah−1

r (u)) ≤ h − 1 for all v ∈ Dr[a
h−1
r (u)]. By Claim 1.2 the center(s) is(are) contained in

V (p(u, r)) and by the value of h, also contained in Dr[a
h
r (u)]. Let c be the center that is closest to

u:
If c ∈ Dr[a

h−1
r (u)], then Dr[c] ⊆ Dr[a

h−1
r (u)] and hence, in particular, ∂T (v, ah−1

r (u)) ≤ h−1 for
all v ∈ Dr[c]. Since Dr[c] contains a vertex x such that ∂T (x, r) = d and hence ∂T (x, c) = bd/2c, we
must have h − 1 ≥ ∂T (x, ah−1

r (u)) = ∂T (x, c) + ∂T (c, ah−1
r (u)) = bd/2c + ∂T (c, ah−1

r (u)), which can
only occur if d is odd and ah−1

r (u) = c. In this case ∂T (u, c) = bd/2c and hence u is an endvertex
of maximum length path of T .

If c ∈ Dr[a
h
r (u)]\Dr[a

h−1
r (u)], then c = ah

r (u) and d must be even. Therefore h = ∂T (u, ah
r (u)) =

∂T (u, c) and u is an endvertex of a maximum length path of T in this case as well. This completes
the proof. ut

Remarks: What is defined to be an “extreme leaf” of T by Kearney and Corneil in [7] is precisely
a vertex that satisfies one condition in Theorem 2.4 (and hence all of them), that is a k-ss vertex
of T where k ∈ N and d/2 ≤ k < d.

The following is the first step toward a complete description of strongly simplicial vertices of
powers of trees:

Theorem 2.5 Let T be a tree and k ∈ N. A k-ss vertex of T is strongly simplicial in the power
graph T k.

To prove Theorem 2.5, we will use the following from [2, Lemma 2.2, p. 45]:

Lemma 2.6 If T is a tree rooted at r ∈ V (T ) and u ∈ V (T ), then all the vertices of T on levels
at most l(u) and of distance at most k from u, form a clique in T k.

Proof. (Theorem 2.5:) We may assume k < diam(T ). Let u be a k-ss vertex of T and let r ∈ Ru

be a fixed root. By Lemma 2.6 N k
T [u] forms a clique in T k.

We now show that {N k
T [v] : v ∈ Nk

T [u]} is linearly ordered by set inclusion. For u′, u′′ ∈ Nk
T [u]

we show that if l(u′) ≥ l(u′′) then Nk
T [u′] ⊆ Nk

T [u′′]. Assume l(u′) ≥ l(u′′) and let v ∈ Nk
T [u′].

If lca(u′, u′′) is a descendant of lca(u′, v), then lca(u′, u′′) ∈ V (p(u′, v)) and hence ∂T (u′′, v) ≤
∂T (u′, v) ≤ k so v ∈ Nk

T [u′′]. Otherwise lca(u′, v) must be a descendant of lca(u′, u′′). Here we
further consider two cases, depending on where u is: If lca(u′, u′′) is a descendant of lca(u, u′′),
then, by the k-strong simplicity of u, we have l(v) ≤ l(u) and hence ∂T (u′′, v) ≤ ∂T (u′′, u) ≤ k
and hence v ∈ Nk

T [u′′]. Otherwise, in this case, lca(u, u′′) is a descendant of lca(u′, u′′) and hence
lca(u, u′′) ∈ V (p(u′′, lca(u′, u′′))). Since l(u′) ≥ l(u′′) and l(u) ≥ l(v) we have

∂T (u′′, v) = ∂T (u′′, lca(u′′, u′)) + ∂T (lca(u′′, u′), v)

≤ ∂T (u′, lca(u′′, u′)) + ∂T (lca(u′′, u′), u)

= ∂T (u′, u),

≤ k,

showing that v ∈ N k
T [u′′] in this final case. This completes the proof that {N k

T [v] : v ∈ Nk
T [u]} is

linearly ordered by set inclusion. ut
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Lemma 2.7 Let T be a tree, u ∈ V (T ) and T be rooted at r ∈ Ru. If ak
r(u) exists and there is a

descendant w of ak−1
r (u) of distance k or more from ak−1

r (u), then u is not strongly simplicial in
T k.

Proof. We may assume that l(w) = l(u) + 1. Going upward from w toward the root r, let v be
the first ancestor of w that is contained in N k

T [u] (such a vertex exists, since w is a descendant of
ak−1

r (u) ∈ Nk
T [u].) Since ∂T (w, v) ≤ ∂T (w, ak−1

r (u)) = k we have

w ∈ Nk
T [v] \ Nk

T [ak
r (u)]. (1)

If ∂T (u,w) ≤ k, then N k
T [u] is not a clique in T k since ∂T (w, ak

r (u)) = k+1, and hence u is not even
simplicial. So we assume ∂T (u,w) > k. In this case, since v ∈ V (p(u,w)), we have by definition of
r ∈ Ru that ∂T (w, v) ≤ ∂T (ak

r (u), r), and hence there is a unique vertex w′ on the path p(ak
r (u), r)

with ∂T (w, v) = ∂T (ak
r (u), w′). Therefore we have

∂T (v, w′) = ∂T (v, ak
r (u)) + ∂T (ak

r (u), w′)

= ∂T (w, v) + ∂T (v, ak
r (u))

= ∂T (w, ak
r (u))

= k + 1.

But since we also have ∂T (w′, ak
r (u)) = ∂T (w, v) ≤ ∂T (w, ak−1

r (u)) = k, then w′ ∈ Nk
T [ak

r (u)]\Nk
T [v],

which together with (1) shows that u is not strongly simplicial in T k. ut

Let T be a tree, u ∈ V (T ) and T be rooted at r ∈ Ru. If ak
r (u) does not exist, then N k

T [u] = V (T ).
If k < diam(T ) then N k

T [u] cannot induce a clique in T and hence u is not simplicial, let alone
strongly simplicial in T . We summarize:

Lemma 2.8 If ak
r (u) does not exist and k < diam(T ), then u is not strongly simplicial in T k.

By Theorem 2.5 and Lemmas 2.7 and 2.8 we have the following.

Theorem 2.9 For a tree T and k ∈ N, the vertex u ∈ V (T ) is k-ss in T if, and only if, u is
strongly simplicial in T k.

Note: Theorem 2.9 yields a procedure to characterize all strong elimination orderings u1, . . . , un

of a power of a tree T on n vertices, and hence an algorithm to list them all in polynomial time.

By Theorems 2.4 and 2.9 we have the following corollary:

Corollary 2.10 Let T be a tree and u ∈ V (T ). If d = diam(T ) and k ∈ {dd/2e, . . . , d − 1}, then
u is strongly simplicial in T k if, and only if, u is strongly simplicial in T dd/2e.

For a tree T we can recursively define T (i) by T (0) = T and T (i) = pr(T (i−1)) for i ∈ N, as long
as T (i−1) has leaves, that is, is neither empty nor one vertex. With this notation we obtain the
following.

Corollary 2.11 Let T be a tree with diam(T ) = d ≥ 2. For u ∈ V (T ) and k ∈ {1, . . . , d(d−1)/2e},
the following are equivalent:

1. For a center c ∈ V (T ), the vertex ak−1
c (u) is a leaf of T (k−1).
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2. u is strongly simplicial in T k.

Proof. Assume ∂T (u, c) ≤ k − 1 for the(each) center c of T . Then, first of all ak−1
c (u) is either

isolated or does not exist, and secondly ak
r (u) exists for each r ∈ Ru and further, since Dr[a

k
r (u)]

contains c, it also contains an endvertex x of a maximum length path. We therefore have ∂T (x, c) ≥
bd/2c > k−1 ≥ ∂T (u, c), so by Lemma 2.7 u is not strongly simplicial in T k. Hence, both statements
of the corollary are wrong in this case.

If ∂T (u, c) ≥ k for a center c, then ak
c (u) exists. By Claim 1.2 we have c ∈ V (p(u, r)) for each

r ∈ Ru, and since k ≤ d(d − 1)/2e we have that ak
r (u) also exists and further

ak−1
c (u) = ak−1

r (u) and Dc[a
k−1
c (u)] = Dr[a

k−1
r (u)], (2)

when T is rooted at c on one hand and at r on the other. By (2) the first statement is equivalent
to k-strong simplicity and the corollary easily follows. ut

Remark: When determining a strong elimination ordering of the vertices of the graph G = T k it
suffices to only know the graph G, since in [7] a polynomial time algorithm is given to obtain the
k-th root T from G (provided that we know G is a k-th power of a tree G = T k. In fact, Chang
et. al. [5] claim they can in this case obtain the k-th root in linear time). However, for a general
graph H it is NP-hard to compute the k-th root H of G = Hk as shown in [12].
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