Exponential Model

Given n data points, find the parameters C and b, for the exponential equation

$$y = C \cdot 10^{bx}$$

so that the data points come as close as possible to the graph of the equation.

If there are more than 2 data points we will use the least squares method to find the parameters C and b, causing this model to be the "best fit" rather than an "exact fit".

Method:

- 1. Find the coefficients of a line that models the modified data set $(x, log_{10}y)$.
- 2. The coefficients of the line found in part 1 are $log_{10}C$ and b.
- 3. Calculate the value of C using $C = 10^{\log_{10}(C)}$.
- 4. Write the exponential model $y = C \cdot 10^{bx}$ with the values you found.

Power Law Model

Given n data points, find the parameters C and b, for the power law equation

$$y = C \cdot x^b$$

so that the data points come as close as possible to the graph of the equation.

If there are more than 2 data points we will use the least squares method to find the parameters C and b, causing this model to be the "best fit" rather than an "exact fit".

Method:

- 1. Find the coefficients of a line that models the modified data set $(log_{10}x, log_{10}y)$.
- 2. The coefficients of the line found in part 1 are $log_{10}C$ and b.
- 3. Calculate the value of C using $C = 10^{\log_{10}(C)}$.
- 4. Write the power law model $y = C \cdot x^b$ with the values you found.