1. Suppose in a given year we have 1% of the population chronically insane, 12% mildly insane and 87% sane. What percent of the population is expected to be chronically insane after one year? After two years?

Answer: Let
$$X_0 = \begin{bmatrix} .01 \\ 0 \\ .87 \\ .12 \end{bmatrix}$$
. Calculate $T^*X_0 = \begin{bmatrix} .0124 \\ .0209 \\ .8526 \\ .1141 \end{bmatrix}$ and $T^2*X_0 = \begin{bmatrix} .0147 \\ .0414 \\ .8355 \\ .0184 \end{bmatrix}$

1.24% after one year; 1.47% after 2 years;

2. What percent of mildly insane people will be chronically insane after one year? After two years?

Answer: Use T and T² to get this information. Percent taken from 1st row, 4th column; 2% after one year; 3.9% after two years;

3. Suppose 200 people are mildly insane. How many of these people will be chronically insane after two years?

Answer: Let
$$X = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 200 \end{bmatrix}$$
. Calculate $T^2 * X = \begin{bmatrix} 7.8 \\ 11.7 \\ 0 \\ 180.5 \end{bmatrix}$ 7.8 people

Alternatively: (use information problem 2 above) 3.9% of 200=7.8

4. Find the percent of mildly insane people who will eventually become chronically insane.

Answer: Calculate the stable matrix for this process.

40% of mildly insane people eventually end up chronically insane.

Sec 8:3 Progression of Hental Illness

>> T=[1 0 0 .02;0 1 .01994 .03;0 0 .98 0; 0 0 .00006 .95] T =	>>% To find the stable matrix >>% partition T and identify the >>% submatrices S and R
1.0000 0 0 0.0200 0 1.0000 0.0199 0.0300 0 0 0.9800 0	>> S=T(1:2,3:4) S =
0 0 0.0001 0.9500	0 0.0200
>> X0=[.01;0; .87;.12] X0 =	0.0199 0.0300
0.0100	>> R=T(3:4,3:4)
0 0.8700	R =
0.1200	0.9800 0 0.0001 0.9500
>> T*X0 ans =	>> S*inv(eye(2)-R)
0.0124	ans =
0.0209	0.0010 0.4000
0.8526 0.1141	0.0012
>> T^2*X0	>> stableT=[1 0 .0012 .4;0 1 .9988 .6;0 0 0 0;0 0 0 0]
ans =	0 0 0,0 0 0 0]
0.0147	stableT =
0.0414 0.8355	1.0000 0 0.0012 0.4000
0.1084	0 1.0000 0.9988 0.6000
	0 0 0 0
>> T^2 ans =	0 0 0 0
1.0000	