The Fundamental Theorem of Calculus Part I1.
A. Functions of Bounded Variation.

Definition 0.1 Given f on [a,b], a closed, finite interval, and P = {xg, x1, ..., xx} a
partition of [a, b], we define the variation of f with respect to P by

V(f.P) = Z () — fla)]

and the total variation of f on [a,b] by
TV (f) =sup{V(f, P): P a partition of [a,b]}.

A real-valued function f defined on [a, b] has bounded variation on [a,b] if T(f) < co.

Examples. (1) If f is monotone on [a,b] then TV (f) = |f(b) — f(a)] < o0, so that f is BV
on [a,b]. This implies that the Cantor function ¢(z) is BV on [0, 1].

(2) If f is Lipschitz on [a, b] then TV (f) < ¢(b — a) where ¢ is the Lipschitz constant of f.
(3) f(z) =sin(1/x) on (0, 1] with f(0) =0 is not BV on [0, 1].
(4) f(x) = xsin(1/x) is continuous on [0, 1] but not BV on [0, 1].

Definition 0.2 Given f BV on [a, b], we define the total variation function of f by TV (f|(, )-
Letting TV ( f], ) = 0 and TV f|, ;) = TV (f) we see that the total variation function is
defined for all x € [a, b].

Lemma 0.1 If f is BV on [a,b] then the total variation function of f is real-valued and
increasing on [a, b] and moreover, the function f(z)+TV ( f[, ) is real-valued and increasing
on [a,b].

Theorem 0.1 (Jordan) A function f is BV on [a,b] if and only if it can be written as the
difference of two increasing functions on [a, b].



B. Absolutely Continuous Functions.

Definition 0.3 A real-valued function f on [a,b] is absolutely continuous on [a, b] provided
that for every € > 0 there is a 6 > 0 such that if {(ax, bx)}}_, is a finite, disjoint collection
of open intervals in (a, b) then

n

S (b —a) <6 = 3 15(b) — fla)] <

k=1 k=1

Remark 0.1 (1) If f is AC on [a, b] then f is continuous on [a, b]. However, the converse is
false.

(2) Claim: If f is AC on [a,b], then f is BV on [a,b].

(3) Since the function f(x) = z sin(1/x) is continuous on [0, 1] but not BV on [0, 1], it is not
AC on [0,1].

(4) The Cantor function ¢(x) is not AC on [0, 1]. We will prove this in detail but the reason
for this is the following. ¢(z) increases on [0, 1] from ¢(0) = 0 to ¢(1) = 1, but its derivative
vanishes off the Cantor set C' which has measure zero. This means that ¢ has to do all of
its “climbing” on a set of measure zero, and its total variation over any finite collection of
intervals containing C' must be 1. This example means that there are monotone, continuous
functions that are not AC.

(5) If f is Lipschitz on [a, b] then f is AC on [a,b]. However, the converse is false as can be
seen by considering the function f(x) = y/z on [0,1]. This function is not Lipschitz but is
AC on [0, 1].

Theorem 0.2 If f is AC on [a,b] then f can be written as the difference of increasing
functions, both absolutely continuous on [a, b].

The key to proving this Theorem is the following claim.

Claim: If f is AC on [a, b] then so is its total variation function.



C. The Fundamental Theorem Part II.

Theorem 0.3 If f is AC on [a,b] then f is differentiable a.e. on [a,b] and its derivative
satisfies

b
[ 1= 1) - ().
The proof of this Theorem relies on the following Lemma.

Lemma 0.2 Suppose that f is continuous on [a,b], and for each h > 0 define the divided
difference function g,(x) on [a, b] by

) = 10D = 1)

(where we assume that f has been extended to [a,00) by letting f(x) = f(b) for x > b).
Then f is absolutely continuous if and only if the collection {gs }o<n<1 is uniformly integrable
over [a, b].

In fact we can extend the previous Theorem as follows.

Theorem 0.4 A function f defined on a closed, bounded interval [a, b] is AC on [a, b] if and
only if f is an indefinite integral over [a,b], that is, if and only if f can be written

fl@) =)+ [ g
for some function ¢ integrable over |a, b].

Remark 0.2 (1) If f is BV on [a, b] then it follows from the Lebesgue Differentiation The-
orem and Jordan’s Theorem that f is differentiable a.e. and that f’ is integrable on [a, b].
(2) We would like to say that f(x) = [" f'+ f(a) for all x € [a, b], but we know that this is not
necessarily the case. However the previous theorem implies that the function g(z) = [ f’ is
absolutely continuous.

(3) What can we say about the remainder h(z) = f(z) — g(x) = f(x) — [V f'7 Since f’ is
integrable on [a,b], the FTC Part I tells us that A’'(z) = 0 a.e. Such a function is called
singular on [a, b]

(4) We conclude that if f is BV on [a,b] then it can be written as f = g + h where g is
absolutely continuous on [a,b] and h is singular on [a,b]. This is known as the Lebesgue
decomposition of f.



