
MATH 316 – HOMEWORK 8
SOLUTIONS TO SELECTED EXERCISES

Section 11.5, Exercise 1.

Define the function g(s) = f(a + su) for s ∈ R. Then g is an ordinary function
of a single real variable. The first thing to show is that g′(s) = Du(a + su). To
see this we compute

g′(s) = lim
h→0

g(s + h)− g(s)

h

= lim
h→0

f(a + (s + h)u)− f(a + su)

h

= lim
h→0

f((a + su) + hu)− f(a + su)

h
= Du(a + su)

by the definition of the directional derivative (Def. 11.19) where a in the defini-
tion has been replaced by a + su.

Since g(s) is differentiable on [0, 1] (since by the above g′(s) exists for s ∈ (0, 1),
and since the one–sided derivatives exist at the endpoints), it is continuous on
[0, 1]. Therefore by the Mean Value Theorem there is a t ∈ (0, 1) such that
g(1)− g(0) = g′(t)(1− 0) = g′(t). Since g(1) = f(a + u) and g(0) = f(a) and in
light of the previous paragraph, this becomes

f(a + u)− f(a) = Du(a + tu)

as required.

Exercise 5.

(a). We can consider g1(t) = f(tx + (1 − t)a, y) as a composite f ◦ h1(t) where
h1 : R → R2 is given by h1(t) = (tx + (1− t)a, y). Therefore by the Chain Rule,

g′1(t) = D(f)(h1(t))Dh1(t)

=
[

fx1(tx + (1− t)a, y) fx2(tx + (1− t)a, y)
] [

d(tx + (1− t)a)/dt
d(y)/dt

]

=
[

fx1(tx + (1− t)a, y) fx2(tx + (1− t)a, y)
] [

x− a
0

]

= fx1(tx + (1− t)a, y)(x− a)

Similarly if g2(t) = f(a, ty + (1− t)b) then

g′2(t) = fx2(a, ty + (1− t)b)(y − b).



Note that g(t) = g1(t)+g2(t), that g(1) = f(x, y)+f(a, y), g(0) = f(a, y)+f(a, b),
and finally that

g′(t) = fx1(tx + (1− t)a, y)(x− a) + fx2(a, ty + (1− t)b)(y − b)

as required.

(b). Since f is differentiable in the ball Br(a, b), g is continuous on [0, 1] and
differentiable on (0, 1). Therefore by the Mean Value Theorem, there is an s ∈
(0, 1) such that

g(1)− g(0) = g′(s)(1− 0) = g′(s).

But this is the same as

f(x, y)+f(a, y)−(f(a, y)+f(a, b)) = fx1(sx+(1−s)a, y)(x−a)+fx2(a, sy+(1−s)b)(y−b).

Letting c = sx + (1− s)a and d = sy + (1− s)b we have that

f(x, y)− f(a, b) = fx1(c, y)(x− a) + fx2(a, d)(y − b)

as required.

Section 11.6, Exercise 1.

(a). In this case, f is a linear transformation with matrix B =

[
3 −1
2 5

]
. Then

clearly f is invertible on all of R2 by the linear transformation with matrix

B−1 =
1

17

[
5 1

−2 3

]
. In this case D(f−1)(a, b) = B−1, that is, it is a constant

matrix.

(b). In this case note that f(0, 0) = (0, 1) (in fact, for any integer n, f(2πn,−2πn) =
(0, 1), but we will choose (0, 0).) By the Inverse Function Theorem it is enough
to check that ∆f (0, 0) 6= 0. But

∆f (u, v) =

∣∣∣∣∣
1 1

cos(u) − sin(v)

∣∣∣∣∣ = −(sin(v) + cos(u))

so that ∆f (0, 0) = −1 6= 0.

Exercise 2.

(a). Let F (x, y, z) = xyz + sin(x + y + z). Since F (0, 0, 0) = 0 the Implicit
Function Theorem says that we can solve for z in terms of x and y as long as
Fz(0, 0, 0) 6= 0. But Fz(x, y, z) = xy + cos(x + y + z) so that Fz(0, 0, 0) = 1 6= 0.

(b). In this case, F (x, y, z) = x2 + y2 + z2 + (2xy + 3z + 8)1/3 − 2 and as
before we can solve for z in terms of x and y as long as Fz(0, 0, 0) 6= 0. But
Fz(x, y, z) = 2z + (2xy + 3z + 8)−2/3 so that Fz(0, 0, 0) = 1/4 6= 0.



Exercise 3.

In this case we define the function F :R5 → R3 by

F (x, y, u, v, w) = (u5 + xv2 − y + w, u5 + yu2 − x + w,w4 + y5 − x4 − 1).

Since F (1, 1, 1, 1,−1) = 0, the Implicit Function Theorem says that we can solve
for u, v, and w in terms of x and y as long as the determinant

∂(F1, F2, F3)

∂(u, v, w)
=

∣∣∣∣∣∣∣

∂F1/∂u ∂F1/∂v ∂F1/∂w
∂F2/∂u ∂F2/∂v ∂F2/∂w
∂F3/∂u ∂F3/∂v ∂F3/∂w

∣∣∣∣∣∣∣

does not vanish at the point (1, 1, 1, 1,−1). But

∂(F1, F2, F3)

∂(u, v, w)
=

∣∣∣∣∣∣∣

5u4 2xv 1
2yu 5v4 1
0 0 4w3

∣∣∣∣∣∣∣
= 4w3(25u4v4 − 4xyuv) = −84 6= 0

when evaluated at (1, 1, 1, 1,−1).


