
MATH 316 – HOMEWORK 6
SOLUTIONS TO SELECTED EXERCISES

Section 9.1, Exercise 3.

xk → a if and only if ‖xk‖ → 0 as k → ∞ and {yk} bounded means that there
is an M ∈ R such that ‖yk‖ ≤ M for all k ∈ N. By the Cauchy–Schwarz
inequality,

0 ≤ |xk · yk| ≤ ‖xk‖‖yk‖ ≤ M ‖xk‖.
Since M ‖xk‖ → 0 as k → ∞, the Squeeze Theorem says that xk · yk → 0 as
k →∞.

Exercise 5.

(ı). Suppose that xk → a and xk → b as k →∞. Given ε > 0 there is a k0 ∈ N
such that ‖xk0 − a‖ < ε/2 and ‖xk0 − b‖ < ε/2. By the triangle inequality

‖a− b‖ ≤ ‖a− xk‖+ ‖xk − b‖ < ε/2 + ε/2 = ε.

Since ε > 0 was arbitrary, ‖a− b‖ = 0 or a = b.

(ıı). Suppose that xk → a as k → ∞, let {xkj
} be given, and let ε > 0. Since

xk → a there is an N such that if k ≤ N then ‖xk − a‖ < ε. Since {xkj
} is a

subsequence, kj ≥ j for all j and hence if j ≥ N , kj ≥ j ≥ N so that ‖xkj
−a‖ < ε

as well. Therefore, xkj
→ a as j →∞.

Exercise 6.

(ı). Suppose that xk → a as k →∞. By the triangle inequality,

0 ≤ |‖xk‖ − ‖a‖| ≤ ‖xk − a‖

so that by the Squeeze Theorem, ‖xk‖ → ‖a‖. Since {‖xk‖}k∈N is a convergent
sequence of real numbers, it is bounded, hence {xk} is bounded.

(ıı). Suppose that xk → a as k →∞ and let ε > 0. There is an N ∈ N such that
k ≥ N implies that ‖xk − a‖ < ε/2. If n, m ≥ N then by the triangle inequality,

‖xn − xm‖ ≤ ‖xk − a‖+ ‖a− xm‖ < ε/2 + ε/2 = ε.

Hence {xk} is Cauchy.

Exercise 10.



(a). (=⇒) Suppose that a is a cluster point of E and let r > 0. Since E ∩Br(a)
contains infinitely many points it contains at least two points, at least one of
which is not a. Hence E ∩Br(a) \ {a} is not empty.

(⇐=) Let r > 0. Since E ∩ Br(a) \ {a} is not empty there is a point x1 ∈
E∩Br(a)\{a}. Let r1 = ‖x1−a‖. Since x1 6= a, r1 > 0 and by hypothesis there
is a point x2 ∈ E ∩Br1(a) \ {a}. Clearly x2 6= x1 since ‖x2− a‖ < r1 = ‖x1− a‖
and also x2 6= a. Letting r2 = ‖x2 − a‖, r2 > 0 and by hypothesis we can choose
x3 distinct from x2 and x1 in E ∩Br2(a)\{a}. Continuing in this fashion we can
define an infinite sequence of distinct points {xk} ⊆ E ∩Br(a) as required.

An alternate proof for this direction is the following. Suppose that for some
r > 0, E ∩ Br(a) and hence also E ∩ Br(a) \ {a} is finite. If we enumerate
the set as {x1, . . . , xN} then for each 1 ≤ j ≤ N , ‖xj − a‖ > 0. Let r0 =
min{‖xj − a‖: 1 ≤ j ≤ N}. Then r0 > 0 and E ∩ Br0(a) \ {a} is empty. (Note:
This is a proof of this implication by contrapositive.)

(b). If E is a bounded infinite subset of R then there exists an infinite sequence
{xk}k∈N of distinct points in E. By the Bolzano–Weierstrass Theorem, {xk} has
a convergent subsequence {xkj

}j∈N converging to some a ∈ Rn. Since the xkj

are distinct points, a is a cluster point of {xkj
}j∈N and hence also of E.

Section 9.2, Exercise 2.

(a).

lim
x→0

lim
y→0

sin(x) sin(y)

x2 + y2
= lim

x→0

sin(x) sin(0)

x2
= 0.

lim
y→0

lim
x→0

sin(x) sin(y)

x2 + y2
= lim

y→0

sin(0) sin(y)

y2
= 0.

Letting y = x we have

lim
(x,y)→(0,0)

y=x

sin(x) sin(y)

x2 + y2
= lim

x→0

sin2(x)

2x2
=

1

2
.

Therefore the limit does not exist.

(b).

lim
x→0

lim
y→0

x2 + y4

x2 + 2y4
= lim

x→0

x2

x2
= 1.

lim
y→0

lim
x→0

x2 + y4

x2 + 2y4
= lim

y→0

y4

2y4
=

1

2
.

Therefore the limit does not exist.

(c).

lim
x→0

lim
y→0

x− y

(x2 + y2)α
= lim

x→0

x

x2α
= lim

x→0
x1−2α = 0



since 1− 2α > 0. Similarly,

lim
y→0

lim
x→0

x− y

(x2 + y2)α
= lim

y→0
−y1−2α = 0.

To see that lim
(x,y)→(0,0)

x− y

(x2 + y2)α
= 0, note that we have the estimates

∣∣∣∣
x

(x2 + y2)α

∣∣∣∣ = |x|1−2α

∣∣∣∣
x2α

(x2 + y2)α

∣∣∣∣ = |x|1−2α

(
x2

x2 + y2

)α

≤ |x|1−2α

since x2/(x2 + y2) ≤ 1 for all (x, y) 6= (0, 0). Similarly

∣∣∣∣
y

(x2 + y2)α

∣∣∣∣ ≤ |y|1−2α

for all (x, y) 6= (0, 0). Now given ε > 0 choose δ > 0 so that δ < (ε/2)1/(1−2α). If
(x2+y2)1/2 < δ then also |x| and |y| < δ and |x|1−2α and |y|1−2α < ε/2. Therefore

∣∣∣∣
x− y

(x2 + y2)α

∣∣∣∣ ≤
∣∣∣∣

x

(x2 + y2)α

∣∣∣∣ +
∣∣∣∣

y

(x2 + y2)α

∣∣∣∣ ≤ |x|1−2α + |y|1−2α ≤ ε/2 + ε/2 = ε.

Exercise 3.

(a). To see that lim
(x,y)→(0,0)

x3 − y3

x2 + y2
= 0, note that we have the estimates

∣∣∣∣
x3 − y3

x2 + y2

∣∣∣∣ ≤ |x|
∣∣∣∣

x2

x2 + y2

∣∣∣∣ + |y|
∣∣∣∣

y2

x2 + y2

∣∣∣∣ ≤ |x|+ |y| ≤
√

2(x2 + y2)1/2

where the final inequality follows from the Cauchy–Schwarz inequality. Hence

given ε > 0 choose δ < ε/
√

2. Then if (x2+y2)1/2 < δ,
∣∣∣∣
x3 − y3

x2 + y2

∣∣∣∣ ≤
√

2(x2 + y2)1/2 < ε.

(b). To see that lim
(x,y)→(0,0)

|x|αy4

x2 + y4
= 0, note that we have the estimates

∣∣∣∣
|x|αy4

x2 + y4

∣∣∣∣ ≤ |x|α
∣∣∣∣

y4

x2 + y4

∣∣∣∣ ≤ |x|α ≤ (x2 + y2)α/2

since y4/(x2 + y4) ≤ 1 for all (x, y) 6= (0, 0) and since |x| ≤ (x2 + y2)1/2. Hence

given ε > 0 choose δ < ε1/α. Then if (x2+y2)1/2 < δ,
∣∣∣∣
|x|αy4

x2 + y4

∣∣∣∣ ≤ (x2 + y2)α/2 < ε.


