
MATH 316 – HOMEWORK 5
SOLUTIONS TO SELECTED EXERCISES

Section 8.1, Exercise 6.

In order to prove that
∑∞

k=1 akbk converges absolutely it is enough to show that
the partial sums

∑n
k=1 |akbk| are bounded independently of n, that is, that there

is a number M ∈ R such that for all n,
∑n

k=1 |akbk| ≤ M .

Given n and applying the Cauchy-Schwarz inequality to the sum
∑n

k=1 |akbk| we
have

n∑

k=1

|akbk| ≤
(

n∑

k=1

|ak|2
)1/2 (

n∑

k=1

|bk|2
)1/2

=

(
n∑

k=1

a2
k

)1/2 (
n∑

k=1

b2
k

)1/2

since the ak and bk are real numbers. Since for all k, a2
k ≥ 0 and b2

k ≥ 0,

(
n∑

k=1

a2
k

)1/2 (
n∑

k=1

b2
k

)1/2

≤
( ∞∑

k=1

a2
k

)1/2 ( ∞∑

k=1

b2
k

)1/2

= M < ∞

by the hypothesis of the problem. This establishes a bound on the partial sums
mentioned above and completes the proof.

Section 8.2, Exercise 1.

(a). The normal vector for such a plane would be a vector perpendicular to both
(0, 1, 3) (the vector represented by the arrow from the point (1, 1, 0) to the point
(1, 2, 3)) and the vector (−2, 1,−3) (the vector represented by the arrow from the
point (1, 1, 0) to the point (−1, 2,−3)). Such a vector is given by (3, 3,−1) (this
can be found by computing a cross-product or by solving a linear system of two

equations in 3 unknowns, namely

[
−2 1 −3

0 1 3

] 


x
y
z


 =

[
0
0

]
). This leads to

the equation 3x + 3y − z = 6 for the plane.

(b). Solution is arrived at similarly to (a). The plane is given by the equation
−x + y = 3.

Exercise 3.

As before we require a vector perpendicular to the vectors (1, 1, 0, 0), (−1, 1, 1, 0),
and (−1,−4, 0, 1) (these are the vectors represented by the arrows from (1, 0, 0, 0)
to (2, 1, 0, 0), (0, 1, 1, 0), and (0, 4, 0, 1) respectively). Setting up the required

linear system, namely,




1 1 0 0
−1 1 1 0
−1 4 0 1







x
y
z
w


 =




0
0
0


, we obtain (1,−1, 2, 5)

as a solution. This leads to the equation x− y + 2z + 5w = 1 for the hyperplane.



Exercise 5.

(a). By linearity of T ,

T (0, 1) =
1

2
T (0, 2) = (2, 0, 1/2),

T (1, 0) = T (1, 1)− T (1, 0) = (3, π, 0)− (2, 0, 1/2) = (1, π,−1/2).

Hence the matrix representation of T is the 3× 2 matrix




1 2
π 0

−1/2 1/2


.

(b). By linearity of T ,

T (1, 0, 0) = T (0,−1, 1) + T (1, 1,−1) = (1, 0) + (4, 7) = (5, 7),

T (0, 1, 0) = T (1, 1, 0)−T (0,−1, 1)−T (1, 1,−1) = (e, π)−(1, 0)−(4, 7) = (e−5, π−7),

T (0, 0, 1) = T (1, 1, 0)− T (1, 1,−1) = (e, π)− (4, 7) = (e− 4, π − 7).

Hence the matrix representation of T is the 2 × 3 matrix

[
5 e− 5 e− 4
7 π − 7 π − 7

]
.

The particular linear combinations used above were arrived at by observing that




1 0 1
1 −1 1
0 1 −1




−1

=




0 1 1
1 −1 0
1 −1 −1


 .


