MATH 316 - HOMEWORK 4
SOLUTIONS TO SELECTED EXERCISES

Section 7.3, Exercise 1.

(b). Let a, = [(=1)"+3]". Then |a,|"/" = (=1)" +3 = 2 if n is odd and 4 if n is
even. Therefore limsup,, . |a,|'/" = 4 and so the radius of convergence R = 1/4
and the power series converges absolutely on (3/4,5/4). Checking the endpoints
we have that if x = 3/4 then (z — 1)¥ = (—=1/4)* so that ((—1)" + 3)*(—1/4)" =
[((—1)"tt —3)/4]" = (—=1/2)" if n is odd and (—1)" if n is even. If x = 5/4 then
(z — 1)* = (1/4)% so that ((=1)" + 3)"(1/4)" = [((—=1)" + 3)/4]" = 1/2" if n is
odd and 1 if n is even. In both cases the terms of the series do not converge to
zero hence the series diverges. Therefore the interval of convergence is (3/4,5/4).

(c). Let ax, = log[(k + 1)/k]. Then applying L’Hopital’s rule,

log[(k + 1)/k L1 2
lim = lim og|(k + 1)/k] = lim gfﬂiif = lim T =1.

Hence the radius of convergence is R = 1 and the series converges absolutely on

k+1
the interval (—1,1). Checking the series for t = —1, we note that Z log ( —IL_ ) (—1)*

converges by the Alternating Series Test since limy_, log[(k + ) / k] = log(1) =
0 and furthermore that log[(k + 1)/k| is decreasing in k (this follows since
(d/dz)log[(z +1)/x] =1/(x+1) —1/x <0 for x > 1). If z = 1 then the series

k+1
Z log Z diverges by the Limit Comparison Test since, using L’Hopital’s

R:ule7

_logl(k+1)/K) . wmioE . ko
dm e T T Ty T

and since Y. (1/k) diverges. Hence the interval of convergence is [—1, 1).

(HB)---(2k-1)

t*. Applying the Ratio Test we

(d). Consider the series »

~ (k+1)!
find that )
lim T 1/2.
k—oo ak+1 k—o0 2k + 1

Hence the above series has radius of convergence R = 1/2 and converges abso-
lutely for |t| < 1/2. Hence the series given in the problem converge absolutely
for |22| < 1/2 or |z| < 1/4/2. Inserting the endpoint x = 1/4/2 gives the series
i (1)@B)---(2k—1)
2F(k + 1)!

and inserting the endpoint = —1/4/2 gives the series
k=1
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. In either case,
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Hence in each case the series converges by Raabe’s Test and the interval of

convergence is [—1/v/2,1/v/2].

Exercise 2.
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where we have used Example 7.36. This identity is valid on (—1,1).
Another approach to the summation is the following.
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where we have used Example 7.36 in the last line and in the third line the fact
that 302 ka* = 3532, kx® because the k = 0 term in the first sum is zero.
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Here we have used Example 7.37. Also note that in the third line we have used the

—_z k 0o —x k
fact that 332 (1—2)F = 143532, (1—2)* and that 352, U282 = 1+, U=t
Since we are subtracting those sums, 1 can be added to each without changing
their difference. This identity is valid on (0, 2) if we take log(z)/(1 — ) to have

the value 0 at z = 1.

Exercise 7.

F*(0)
— K
Theorem 7.48 shows that in fact f is analytic on all of R.

2¥ for all z € R. If we can show this then

We will prove first that Z

The proof of the first statement reduces to showing that the sequence of re-
mainders R, (r) = R%/(z) converges to zero for all z € R as n — oo. But by
Lagrange’s Formula,

R = o [ 0@ de = o [T 0 - ) d

where we have made the substitution u = x — ¢ in the integral. By hypothesis,
with a replaced by z,

Exercise 8.
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(a). First note that e = T Z F and hence that




by Taylor’s formula for some ¢ between 0 and x. Therefore,
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Now, if n > 1 then 1/(2n + 1) < 1/3 < 1 and certainly e/(2n + 1) < 3 since
e < 3. Hence ’fol R, (z)dx| < (3/n!).

Another way to do this is the following. Since we can integrate the power series
for e* term-by-term we have that
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sinceif n > 1,1/(2n+1) <1/3 and (n+1)/n < 2.

A third way to look at it gives the precise answer in the book. Since |R,(z)| =
(e¢/nh)|z|*" < e/n! < 3/n!, for z € (0, 1) we have from before that
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