
MATH 316 – HOMEWORK 4
SOLUTIONS TO SELECTED EXERCISES

Section 7.3, Exercise 1.

(b). Let an = [(−1)n +3]n. Then |an|1/n = (−1)n +3 = 2 if n is odd and 4 if n is
even. Therefore lim supn→∞ |an|1/n = 4 and so the radius of convergence R = 1/4
and the power series converges absolutely on (3/4, 5/4). Checking the endpoints
we have that if x = 3/4 then (x− 1)k = (−1/4)k so that ((−1)n + 3)n(−1/4)n =
[((−1)n+1 − 3)/4]n = (−1/2)n if n is odd and (−1)n if n is even. If x = 5/4 then
(x − 1)k = (1/4)k so that ((−1)n + 3)n(1/4)n = [((−1)n + 3)/4]n = 1/2n if n is
odd and 1 if n is even. In both cases the terms of the series do not converge to
zero hence the series diverges. Therefore the interval of convergence is (3/4, 5/4).

(c). Let ak = log[(k + 1)/k]. Then applying L’Hopital’s rule,

lim
k→∞

∣∣∣∣
ak

ak+1

∣∣∣∣ = lim
k→∞

log[(k + 1)/k]

log[(k + 2)/(k + 1)]
= lim

k→∞

1
x+1

− 1
x

1
x+2

− 1
x+1

= lim
k→∞

x + 2

x
= 1.

Hence the radius of convergence is R = 1 and the series converges absolutely on

the interval (−1, 1). Checking the series for x = −1, we note that
∞∑

k=1

log

(
k + 1

k

)
(−1)k

converges by the Alternating Series Test since limk→∞ log[(k + 1)/k] = log(1) =
0 and furthermore that log[(k + 1)/k] is decreasing in k (this follows since
(d/dx) log[(x + 1)/x] = 1/(x + 1)− 1/x < 0 for x ≥ 1). If x = 1 then the series
∞∑

k=1

log

(
k + 1

k

)
diverges by the Limit Comparison Test since, using L’Hopital’s

Rule,

lim
k→∞

log[(k + 1)/k]

1/k
= lim

k→∞

1
k+1

− 1
k

−1/k2
= lim

k→∞
k

k + 1
= 1

and since
∑

k(1/k) diverges. Hence the interval of convergence is [−1, 1).

(d). Consider the series
∞∑

k=1

(1)(3) · · · (2k − 1)

(k + 1)!
tk. Applying the Ratio Test we

find that

lim
k→∞

∣∣∣∣
ak

ak+1

∣∣∣∣ = lim
k→∞

k + 2

2k + 1
= 1/2.

Hence the above series has radius of convergence R = 1/2 and converges abso-
lutely for |t| < 1/2. Hence the series given in the problem converge absolutely
for |x2| < 1/2 or |x| < 1/

√
2. Inserting the endpoint x = 1/

√
2 gives the series

∞∑

k=1

(1)(3) · · · (2k − 1)

2k(k + 1)!
and inserting the endpoint x = −1/

√
2 gives the series



∞∑

k=1

(−1)k (1)(3) · · · (2k − 1)

2k(k + 1)!
. In either case,

∣∣∣∣
ak+1

ak

∣∣∣∣ =
2k + 1

2k + 4
= 1− 3

2k + 4
= 1− (3/2)

k + 2
.

Hence in each case the series converges by Raabe’s Test and the interval of
convergence is [−1/

√
2, 1/

√
2].

Exercise 2.

(a).
∞∑

k=1

3x3k−1 =
3

x

∞∑

k=1

(x3)k =
3

x

x3

1− x3
=

3x2

1− x3
valid on (−1, 1).

(b).

∞∑

k=2

kxk−2 =
1

x2

∞∑

k=2

kxk

=
1

x2

( ∞∑

k=1

kxk − x

)

=
1

x2

(
x

(1− x)2
− x

)

=
1

x2

(
x− x(1− x)2

(1− x)2

)

=
1

x2

2x2 − x3

(1− x)2
=

2− x

(1− x)2

where we have used Example 7.36. This identity is valid on (−1, 1).

Another approach to the summation is the following.

∞∑

k=2

kxk−2 =
∞∑

k=0

(k + 2) xk

=
∞∑

k=0

kxk + 2
∞∑

k=0

xk

=
∞∑

k=1

kxk +
2

(1− x)

=
x

(1− x)2
+

2

(1− x)
=

2− x

(1− x)2

where we have used Example 7.36 in the last line and in the third line the fact
that

∑∞
k=0 kxk =

∑∞
k=1 kxk because the k = 0 term in the first sum is zero.



(c).

∞∑

k=1

2k

k + 1
(1− x)k =

∞∑

k=1

(
2− 2

k + 1

)
(1− x)k

= 2
∞∑

k=1

(1− x)k − 2
∞∑

k=1

(1− x)k

k + 1

= 2
∞∑

k=0

(1− x)k − 2
∞∑

k=0

(1− x)k

k + 1

=
2

1− (1− x)
+

2 log(1− (1− x))

1− x

=
2

x
+

2 log(x)

1− x
.

Here we have used Example 7.37. Also note that in the third line we have used the

fact that
∑∞

k=0(1−x)k = 1+
∑∞

k=1(1−x)k and that
∑∞

k=0
(1−x)k

k+1
= 1+

∑∞
k=1

(1−x)k

k+1
.

Since we are subtracting those sums, 1 can be added to each without changing
their difference. This identity is valid on (0, 2) if we take log(x)/(1− x) to have
the value 0 at x = 1.

Exercise 7.

We will prove first that
∞∑

k=0

f (k)(0)

k!
xk for all x ∈ R. If we can show this then

Theorem 7.48 shows that in fact f is analytic on all of R.

The proof of the first statement reduces to showing that the sequence of re-
mainders Rn(x) = R0,f

n (x) converges to zero for all x ∈ R as n → ∞. But by
Lagrange’s Formula,

R0,f
n+1(x) =

1

n!

∫ x

0
(x− t)nf (n+1)(t) dt =

1

n!

∫ x

0
un f (n+1)(x− u) du

where we have made the substitution u = x − t in the integral. By hypothesis,
with a replaced by x,

lim
n→∞R0,f

n+1(x) = lim
n→∞

1

n!

∫ x

0
un f (n+1)(x− u) du = 0.

Exercise 8.

(a). First note that ex2

=
∞∑

k=0

(x2)k

k!
=

∞∑

k=0

x2k

k!
and hence that

ex2 −
n−1∑

k=0

x2k

k!
= Rn(x) =

ec

n!
x2n



by Taylor’s formula for some c between 0 and x. Therefore,
∫ 1

0

(
ex2 −

n−1∑

k=0

x2k

k!

)
dx =

∫ 1

0
ex2

dx−
n−1∑

k=0

1

k!

∫ 1

0
x2k dx

=
∫ 1

0
ex2

dx−
n−1∑

k=0

1

(2k + 1)k!

=
∫ 1

0
Rn(x) dx.

Now,
∣∣∣∣
∫ 1

0
Rn(x) dx

∣∣∣∣ ≤
∫ 1

0
|Rn(x)| dx =

∫ 1

0

ec

n!
x2n dx ≤ e

n!

∫ 1

0
x2n dx =

e

(2n + 1)n!
.

Now, if n ≥ 1 then 1/(2n + 1) ≤ 1/3 < 1 and certainly e/(2n + 1) < 3 since

e < 3. Hence
∣∣∣∣
∫ 1
0 Rn(x) dx

∣∣∣∣ < (3/n!).

Another way to do this is the following. Since we can integrate the power series
for ex2

term-by-term we have that
∫ 1

0
ex2

dx =
∞∑

k=0

1

k!

∫ 1

0
x2k dx =

∞∑

k=0

1

(2k + 1)k!
.

Therefore,
∫ 1

0
ex2

dx −
n−1∑

k=0

1

(2k + 1)k!
=

∞∑

k=n

1

(2k + 1)k!

=
1

2n + 1

1

n!
+

1

2n + 3

1

(n + 1)!
+ · · ·

=
1

2n + 1

1

n!

[
1 +

2n + 1

2n + 3

1

n + 1
+

2n + 1

2n + 5

1

(n + 1)(n + 2)
+ · · ·

]

≤ 1

2n + 1

1

n!

[
1 +

1

n + 1
+

1

(n + 1)(n + 2)
+ · · ·

]

≤ 1

2n + 1

1

n!

[
1 +

1

n + 1
+

1

(n + 1)2
+ · · ·

]

=
1

2n + 1

1

n!

1

1− 1
n+1

=
1

2n + 1

1

n!

n + 1

n
< (2/3)

1

n!
<

3

n!

since if n ≥ 1, 1/(2n + 1) < 1/3 and (n + 1)/n < 2.

A third way to look at it gives the precise answer in the book. Since |Rn(x)| =
(ec/n!)|x|2n ≤ e/n! < 3/n!, for x ∈ (0, 1), we have from before that
∣∣∣∣
∫ 1

0
ex2

dx−
n−1∑

k=0

1

(2k + 1)k!

∣∣∣∣ ≤
∫ 1

0

∣∣∣∣ex2−
n−1∑

k=0

1

k!
x2k

∣∣∣∣ dx =
∫ 1

0
|Rn(x)| dx ≤

∫ 1

0

3

n!
dx =

3

n!
.


