
MATH 316 – HOMEWORK 3
SOLUTIONS TO SELECTED EXERCISES

Section 7.1, Exercise 1.

(a). Let R = max(|a|, |b|). Then [a, b] ⊆ [−R, R] and for all x ∈ [a, b], |x/n| ≤
R/n. Given ε > 0, choose N ≥ R/ε. If n ≥ N then |x/n| ≤ R/n < ε for all
x ∈ [a, b], and x/n → 0 uniformly on [a, b].

(b). Given x ∈ (0, 1), 1/x ∈ R and since 1/n → 0 as n → ∞, 1/(nx) =
(1/x)(1/n) → 0 as n →∞. Hence 1/(nx) → 0 pointwise on (0, 1) as n →∞.

Note that for all n ∈ N, supx∈(0,1) |1/(nx)| ≥ 1 since if x = 1/n then 1/(nx) =
1/[(1/n)(n)] = 1. This shows that 1/(nx) does not converge to zero uniformly
on (0, 1) because if it did then supx∈(0,1) |1/(nx)| → 0 as n →∞.

Exercise 5.

We will first show that under the given hypotheses, f(x) must be bounded. Since
each fn(x) is bounded on E, for each n there is an Mn ∈ R such that |fn(x)| ≤ Mn

for all x ∈ E. Since fn → f uniformly on E, there is an N such that if n ≥ N
then |f(x)− fn(x)| < 1 for all x ∈ E. Then for all x ∈ E,

|f(x)| ≤ |f(x)− fN(x)|+ |fN(x)| < 1 + MN < ∞

so that f(x) is bounded.

To show that {fn} is uniformly bounded, note that for all x ∈ E, and n ≥ N ,

|fn(x)| ≤ |fn(x)− f(x)|+ |f(x)| < 1 + sup
t∈E

|f(t)| < ∞.

Therefore for all n ∈ N, and all x ∈ E,

|fn(x)| ≤ max(M1, M2, . . . , MN−1, 1 + sup
t∈E

|f(t)|).

Exercise 6.

Let ε > 0. In order to show that f is uniformly continuous on E, we must find a δ
such that whenever x, y ∈ E and |x−y| < δ then |f(x)−f(y)| < ε. Since fn → f
uniformly we can choose N so large that if n ≥ N then |f(x)− fn(x)| < ε/3 for
all x ∈ E. Since fN(x) is uniformly continuous on E, choose δ > 0 so that if
x, y ∈ E and |x − y| < δ then |fN(x) − fN(y)| < ε/3. Then whenever x, y ∈ E
and |x− y| < δ,

|f(x)−f(y)| ≤ |f(x)−fN(x)|+|fN(x)−fN(y)|+|fN(y)−f(y)| < ε/3+ε/3+ε/3 = ε.



Exercise 10.

By way of some perspective on this problem, note that if we replace the number
b with f(x) and the numbers bk with fk(x) in Exercise 7(b), p. 159, we have that

f1(x) + f2(x) + · · · + fn(x)

n
→ f(x)

as n → ∞ for each x ∈ E. This says that if fk → f pointwise on E, then the
averages of {fk} also converge pointwise to f . The core of the problem is to show
that if we replace pointwise with uniformly, the result still holds.

To this end, note that making the replacements as above, Exercise 7(a), p. 159,
says that if there are M, N ∈ N such that |f(x)− fk(x)| ≤ M for all k ≥ N and
for all x ∈ E, then for all x ∈ E and all n > N ,

∣∣∣∣n f(x)−
n∑

k=1

fk(x)
∣∣∣∣ ≤

N∑

k=1

|f(x)− fk(x)|+ M(n−N).

Now we proceed as in the proof of Exercise 7(b) with all necessary changes being
made. Let ε > 0 and, since fk → f uniformly on E, choose N so large that if
k ≥ N then |f(x)− fk(x)| < ε/2 for all x ∈ E. Then for all n > N ,

∣∣∣∣f(x)− f1(x) + · · ·+ fn(x)

n

∣∣∣∣ =
1

n

∣∣∣∣n f(x)−
n∑

k=1

fk(x)
∣∣∣∣

≤ 1

n

N∑

k=1

|f(x)− fk(x)|+ ε

2

(n−N)

n

≤ 1

n

N∑

k=1

|f(x)− fk(x)|+ ε

2

since (n−N)/n < 1 for all n > N .

Since each fk(x) is bounded on E, Problem 5 says that f(x) is also bounded on
E. Suppose then that for each k ∈ N, |fk(x)| ≤ Mk and that |f(x)| ≤ M for all
x ∈ E. Then

∣∣∣∣
N∑

k=1

|f(x)− fk(x)|
∣∣∣∣ ≤

N∑

k=1

(|f(x)|+ |fk(x)|) ≤
N∑

k=1

(M + Mk) = NM +
N∑

k=1

Mk

which number is independent of x ∈ E and n.

Now choose N0 so large that if n ≥ N0 then
1

n
(NM +

N∑

k=1

Mk) <
ε

2
. Hence for

all n ≥ N0, and all x ∈ E,
∣∣∣∣f(x)− f1(x) + · · ·+ fn(x)

n

∣∣∣∣ < ε.

Section 7.2, Exercise 1.



(a). To prove this, we use the Weierstrass M-test. Since | cos(t)| ≤ 1 for all
t ∈ R, then | cos(kx)/k2| ≤ 1/k2 for all k ∈ N and x ∈ R. Since by the p-series
test

∑
k(1/k

2) < ∞, the Weierstrass M-test implies that
∑

k cos(kx)/k2 converges
absolutely and uniformly on R.

(b). Using the well-known inequality | sin(t)| ≤ |t| for all t ∈ R, we have that
| sin(x/k2)| ≤ |x|/k2 for all x ∈ R and k ∈ N. Hence by the Comparison Test,
if we show that

∑
k(x/k2) converges uniformly on any bounded interval, then it

will follow that
∑

k sin(x/k2) will do the same.

Let [a, b] ⊆ R be given and by choosing R = max(|a|, |b|) we can assert that
[a, b] ⊆ [−R,R]. Then if x ∈ [a, b], |x| ≤ R and |x|/k2 ≤ R/k2. Since∑

k(R/k2) = R
∑

k(1/k
2) < ∞ since by the p-series test

∑
k(1/k

2) < ∞, the
Weierstrass M-test implies that

∑
k x/k2 and hence

∑
k sin(x/k2) converges abso-

lutely and uniformly on R.

Exercise 2.

For this result we will apply the Weierstrass M-test. If [a, b] ⊆ (−1, 1) then
a > −1 and b < 1 so that choosing r = max(|a|, |b|) we have that r < 1 and that
[a, b] ⊆ [−r, r] ⊆ (−1, 1). If x ∈ [a, b] then |x| ≤ r and |xk| = |x|k ≤ rk. Since 0 <
r < 1,

∑
k rk converges since it is a convergent geometric series. Therefore by the

Weierstrass M-test the original series
∑

k xk converges absolutely and uniformly
on [a, b].


