
MATH 316 – HOMEWORK 2
SOLUTIONS TO SELECTED EXERCISES

Section 6.4, Exercise 3.

(a). Applying the Ratio Test we compute

lim
k→∞

∣∣∣∣
ak+1

ak

∣∣∣∣ = lim
k→∞
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(
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)3
1

k + 2
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since lim
(

k+1
k

)3
= 1 by L’Hopital’s rule, and lim 1/(k + 2) = 0. Since 0 < 1 the

Ratio Test implies that the series converges absolutely.

(b). Applying the Ratio Test we compute

lim
k→∞

∣∣∣∣
ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣
(−1)(−3) · · · (1− 2k)(−1− 2k)

(1)(4) · · · (3k − 2)(3k + 1)

(1)(4) · · · (3k − 2)

(−1)(−3) · · · (1− 2k)

∣∣∣∣
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k→∞

(1)(3) · · · (2k − 1)(2k + 1)

(1)(4) · · · (3k − 2)(3k + 1)

(1)(4) · · · (3k − 2)

(1)(3) · · · (2k − 1)

= lim
k→∞

2k + 1

3k + 1
= 2/3

by L’Hopital’s rule. Since 2/3 < 1 the Ratio Test implies that the series converges
absolutely.

(c). Applying the Ratio Test we compute

lim
k→∞
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k→∞

∣∣∣∣
(k + 2)k+1

pk+1(k + 1)!

pk k!

(k + 1)k

∣∣∣∣

= lim
k→∞

1

p

(k + 2)k+1k!

(k + 1)!(k + 1)k

= lim
k→∞

1

p

(k + 2)k+1

(k + 1)(k + 1)k

= lim
k→∞

1

p

(k + 2)k+1

(k + 1)k+1

= lim
k→∞

1

p

(
k + 2

k + 1

)k+1



= lim
k→∞

1

p

(
1 +

1

k + 1

)k+1

=
e

p

since lim(1 + (1/k))k = e by L’Hopital’s rule. If p > e then e/p < 1 and the
Ratio Test implies that the series converges absolutely.

(d). Letting an =
∣∣∣∣
(−1)k+1

√
k

k + 1

∣∣∣∣ =

√
k

k + 1
and bk = 1/

√
k, L’Hopital’s rule implies

that limk ak/bk = k/(k + 1) = 1 and so by the Limit Comparison Test the series∑
k

√
k/(k+1) diverges with

∑
k 1/

√
k the latter being a p-series with p = 1/2 < 1.

Hence the original series does not converge absolutely.

On the other hand, the sequence
√

k/(k + 1) decreases to zero. To see this, let
f(x) =

√
x/(x + 1). Then f ′(x) = (1 − x)/(2

√
x(x + 1)2) < 0 for x > 1. The

Alternating Series Test implies that the original series converges and hence it
converges conditionally.

(e). Applying the Root Test we compute

lim
k→∞

|ak|1/k = lim
k→∞

(
(k + 1)1/2

k1/2 kk

)1/k

= lim
k→∞

(
k + 1

k

)1/2k
1

k

= 0

since lim[(k+1)/k]1/2k = 1 since it converges to the form 10 which is not indeter-
minate, and since lim 1/k = 0. Since 0 < 1 the Root Test implies that the series
converges absolutely.

Exercise 4.

Since {bn} converges, it is bounded, and hence there is a number B such that
for all k, |bk| ≤ B. Since

∑
k ak converges, given ε > 0 there is an N such that if

n ≥ m ≥ N then |∑n
k=m | < ε/(3B).

Now suppose that n ≥ m ≥ N . The summation by parts formula says that

n∑

k=m

akbk =

(
n∑

k=m

ak

)
bn −

n−1∑

k=m




k∑

j=m

aj


 (bk+1 − bk).

Since {bk} is decreasing we have that |bk+1 − bk| = (bk − bk+1) and we compute

∣∣∣∣
n∑

k=m

akbk

∣∣∣∣ ≤
∣∣∣∣

n∑

k=m
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∣∣∣∣|bn|+
n−1∑

k=m

∣∣∣∣
k∑

j=m
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∣∣∣∣|bk+1 − bk|



≤ Bε/(3B) +
n−1∑

k=m

ε/(3B)(bk − bk+1)

< B ε/(3B) + ε/(3B)
n−1∑

k=m

(bk − bk+1)

= B ε/(3B) + ε/(3B) (bm − bn)

≤ B ε/(3B) + 2B ε/(3B) = ε.

A slicker proof discovered by several of you is the following. Since
∑

k ak converges
so does

∑
k b ak. Also since the sequence of partial sums of

∑
k ak converges that

sequence is bounded. Since bk decreases to b, the sequence (bk − b) decreases
to zero. Hence we can apply Dirichlet’s Test and conclude that

∑
k ak(bk − b)

converges. Therefore

∑

k

ak bk =
∑

k

ak(bk − b) +
∑

k

akb

converges since the sum of two convergent series converges.

Exercise 8.

Let M be such that |∑n
k=m bk| ≤ M for all n ≥ m ≥ 1. Such an M exists by the

same argument used to prove Dirichlet’s Test. By Summation by Parts, we have
that

∣∣∣∣
n∑

k=m

ak bk

∣∣∣∣ =
∣∣∣∣
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)
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 (ak+1 − ak)

∣∣∣∣

≤ |an|
∣∣∣∣
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∣∣∣∣ +
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∣∣∣∣
k∑
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∣∣∣∣|ak+1 − ak|

≤ M

(
|an|+

n−1∑

k=m

|ak+1 − ak|
)

Given ε > 0 choose N so large that if n ≥ m ≥ N then |an| < ε/2M and∑n−1
k=m |ak+1 − ak| < ε/2M . The former inequality comes from the fact that

lim an = 0 and the latter from the fact that
∑∞

k=1 |ak+1 − ak| < ∞. Then for all
such n and m,

∣∣∣∣
n∑

k=m

ak bk

∣∣∣∣ ≤ M

(
|an|+

n−1∑

k=m

|ak+1 − ak|
)

< M(ε/2M + ε/2M) = ε.

Section 6.6, Exercise 1.



(a). If ak = 1/(log(k))log(k) then |ak|1/k = 1/(log(k))log(k)/k and in order to eval-
uate limk |ak|1/k we need to use L’Hopital’s Rule to evaluate limk(log(k))log(k)/k.
Since this evaluates to the indeterminate form ∞0 we take the logarithm and
evaluate using L’Hopital’s Rule,

lim
k

log[(log(k))log(k)/k] = lim
k

(log(k)/k) log(log(k))

= lim
k

log(k) log(log(k))

k

= lim
k

1
k

+ 1
k

log(log(k))

1

= lim
k

1

k
+ lim

k

log(log(k))

k

= 0 + lim
k

1
k log(k)

1
= 0.

Hence, limk(log(k))log(k)/k = e0 = 1 and also limk |ak|1/k = limk 1/(log(k))log(k)/k =
1. Hence the Root Test fails.

Using the Logarithmic Test, we note that log(1/|ak|) = log[(log(k))log(k)] =
log(k) log(log(k)). Hence

log(1/|ak|)
log(k)

=
log(k) log(log(k))

log(k)
= log(log(k)) →∞

as k → ∞. Since ∞ > 1 the Logarithmic Test implies that the original series
converges.

(b). Applying the Ratio Test we get

∣∣∣∣
ak+1

ak

∣∣∣∣ =
(1)(3) · · · (2k − 1)(2k + 1)

(4)(6) · · · (2k + 2)(2k + 4)

(4)(6) · · · (2k + 2)

(1)(3) · · · (2k − 1)
=

2k + 1

2k + 4
→ 1

as k →∞. Hence the Ratio Test fails.

However, ∣∣∣∣
ak+1

ak

∣∣∣∣ =
2k + 1

2k + 4
= 1− 3

2k + 4
= 1− 3/2

k + 2
.

This satisfies Raabe’s Test with p = 3/2 > 1 and we conclude that the series
converges.


