MATH 316 - HOMEWORK 2
SOLUTIONS TO SELECTED EXERCISES

Section 6.4, Exercise 3.

(a). Applying the Ratio Test we compute
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since lim (%) = 1 by L’Hopital’s rule, and lim 1/(k + 2) = 0. Since 0 < 1 the
Ratio Test implies that the series converges absolutely.

(b). Applying the Ratio Test we compute
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by L’Hopital’s rule. Since 2/3 < 1 the Ratio Test implies that the series converges
absolutely.

(c). Applying the Ratio Test we compute
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since lim(1 + (1/k))* = e by L’Hopital’s rule. If p > e then ¢/p < 1 and the
Ratio Test implies that the series converges absolutely.
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(d). Letting a, = ‘( k:)—l— 1\/_ = k\j—_l and by, = 1/vk, L’Hopital’s rule implies
that limy ax /by = k/(k + 1) = 1 and so by the Limit Comparison Test the series
S, VE/(k+1) diverges with 37, 1/v/k the latter being a p-series with p = 1/2 < 1.
Hence the original series does not converge absolutely.

On the other hand, the sequence vk/(k + 1) decreases to zero. To see this, let
f(x) = x/(x +1). Then f'(z) = (1 —z)/(2vz(x + 1)?) < 0 for x > 1. The
Alternating Series Test implies that the original series converges and hence it
converges conditionally.

(e). Applying the Root Test we compute
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since lim[(k + 1) /k]'/?* = 1 since it converges to the form 1° which is not indeter-
minate, and since lim 1/k = 0. Since 0 < 1 the Root Test implies that the series
converges absolutely.

Exercise 4.

Since {b,} converges, it is bounded, and hence there is a number B such that
for all k, |bx| < B. Since Y, aj converges, given € > 0 there is an N such that if
n>m > N then | Y}_,, | < ¢€/(3B).

Now suppose that n > m > N. The summation by parts formula says that

Since {by} is decreasing we have that |bxy1 — bg| = (bg — bxy1) and we compute
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A slicker proof discovered by several of you is the following. Since }°;. a; converges
so does Y i bag. Also since the sequence of partial sums of ", a; converges that
sequence is bounded. Since by, decreases to b, the sequence (by — b) decreases
to zero. Hence we can apply Dirichlet’s Test and conclude that >, ax (b — b)
converges. Therefore

Zakbk = Zak(bk — b) + Zakb
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converges since the sum of two convergent series converges.

Exercise 8.

Let M be such that | > F_, bx| < M for all n > m > 1. Such an M exists by the
same argument used to prove Dirichlet’s Test. By Summation by Parts, we have
that
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Given € > 0 choose N so large that if n > m > N then |a,| < €/2M and
Sl lag — ar] < €/2M. The former inequality comes from the fact that
lima, = 0 and the latter from the fact that Y32 |ag+1 — ax| < co. Then for all
such n and m,
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Section 6.6, Exercise 1.



(a). If ap = 1/(log(k))"8®) then |az|'/* = 1/(log(k))e*)/k and in order to eval-
uate limyg, |ax|'/* we need to use L’'Hopital’s Rule to evaluate limy(log(k))e®)/k,
Since this evaluates to the indeterminate form oo® we take the logarithm and
evaluate using L’Hopital’s Rule,
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Hence, limy, (log(k))°8®)/F = €0 = 1 and also limy, |a;|'/* = limy, 1/(log(k))'s®)/F =
1. Hence the Root Test fails.

Using the Logarithmic Test, we note that log(1/|ax|) = log[(log(k))s®)] =
log(k) log(log(k)). Hence
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as k — oo. Since co > 1 the Logarithmic Test implies that the original series
converges.
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(b). Applying the Ratio Test we get
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as k — oo. Hence the Ratio Test fails.

However,
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This satisfies Raabe’s Test with p = 3/2 > 1 and we conclude that the series
converges.




