MATH 316 – HOMEWORK 1 SOLUTIONS TO SELECTED EXERCISES

Section 6.1, Exercise 5.

(a).
$$\lim_{k\to\infty} \cos\frac{1}{k^2} = 1$$
 so by Theorem 6.5, $\sum_{k=1}^{\infty} \cos\frac{1}{k^2}$ diverges.
(b). $\lim_{k\to\infty} \left(1 - \frac{1}{k}\right)^k = e^{-1}$ (apply L'Hopital's rule) so by Theorem 6.5, $\sum_{k=1}^{\infty} \left(1 - \frac{1}{k}\right)^k$ diverges.

(c).
$$\frac{k+1}{k^2} \ge \frac{k}{k^2} = \frac{1}{k}$$
. Therefore for each $n \in \mathbb{N}$, $\sum_{k=1}^n \frac{k+1}{k^2} \ge \sum_{k=1}^n \frac{1}{k}$. By Example 6.4, $\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k} = \infty$ and hence $\sum_{k=1}^n \frac{k+1}{k^2}$ diverges.

Exercise 7.

(a). Since
$$nb = \sum_{k=1}^{n} b$$
, we can write
 $\left| nb - \sum_{k=1}^{n} b_k \right| = \left| \sum_{k=1}^{n} b - \sum_{k=1}^{n} b_k \right|$
 $= \left| \sum_{k=1}^{n} (b - b_k) \right|$
 $\leq \sum_{k=1}^{n} |b - b_k|$
 $= \sum_{k=1}^{N} |b - b_k| + \sum_{k=N+1}^{n} |b - b_k|$
 $\leq \sum_{k=1}^{N} |b - b_k| + M(n - (N + 1) + 1)$
 $= \sum_{k=1}^{N} |b - b_k| + M(n - N).$

(b). Let $\epsilon > 0$ and choose N so large that if $k \ge N$ then $|b - b_k| < \epsilon/2$. Then for all n > N, applying part (a),

$$\begin{aligned} \left| b - \frac{b_1 + \dots + b_n}{n} \right| &= \frac{1}{n} \left| nb - \sum_{k=1}^n b_k \right| \\ &\leq \frac{1}{n} \sum_{k=1}^N |b - b_k| + \frac{\epsilon}{2} \frac{(n-N)}{n} \\ &\leq \frac{1}{n} \sum_{k=1}^N |b - b_k| + \frac{\epsilon}{2} \end{aligned}$$

since (n - N)/n < 1 for all n > N.

Now choose N_0 so large that if $n \ge N_0$ then $\frac{1}{n} \sum_{k=1}^{N} |b - b_k| < \frac{\epsilon}{2}$. Hence for all $n \ge N_0$, $\left| b - \frac{b_1 + \dots + b_n}{n} \right| < \epsilon$. (c). If $b_k = (-1)^{k+1} (1/k)$, then $b_1 + b_2 + \dots + b_n = 1$ if n is odd and 0 if n is even. Therefore, $\left| \frac{b_1 + \dots + b_n}{n} \right| = \frac{1}{n}$ if n is odd and 0 if n is even. Hence $\lim_{n \to \infty} \left| \frac{b_1 + \dots + b_n}{n} \right| = 0$ but $\lim_{k \to \infty} b_k \neq 0$ since the limit does not exist. Hence the converse of (b) is false.

Exercise 9.

(a). We will prove first that $\lim_{n\to\infty} (2n) a_{2n} = \lim_{n\to\infty} (2n+1) a_{2n+1} = 0$ from which it will follow immediately that $\lim_{n\to\infty} n a_n = 0$ (This follows from the definition of convergence of a sequence. I will leave the details to you.)

Since $\sum_{k=1}^{\infty} a_k$ converges, its partial sums satisfy a Cauchy criterion which implies that $\lim_{n\to\infty} \sum_{k=n+1}^{2n} a_k = \lim_{n\to\infty} \sum_{k=n+1}^{2n+1} a_k = 0$. (I will again leave the verification of this fact to you.) Now

$$\sum_{n=n+1}^{2^n} a_k = a_{n+1} + a_{n+2} + \dots + a_{2n} \ge a_{2n} + a_{2n} + \dots + a_{2n} = na_{2n}$$

since $a_{2n} \leq a_k$ for all $k \geq 2n$ since $\{a_k\}$ is a decreasing sequence. Similarly,

$$\sum_{k=n+1}^{2n+1} a_k = a_{n+1} + a_{n+2} + \dots + a_{2n+1} \ge a_{2n+1} + a_{2n+1} + \dots + a_{2n+1} = (n+1)a_{2n+1}.$$

Therefore, since $(2n)a_{2n} \leq 2 \sum_{k=n+1}^{2n} a_k$, the Squeeze Theorem (Theorem 2.9) implies that $\lim_{n\to\infty} (2n) a_{2n} = 0$. Similarly, since $(2n+1) a_{2n+1} \leq (2n+2) a_{2n+1} \leq \sum_{k=n+1}^{2n+1} a_k$, the Squeeze Theorem implies that $\lim_{n\to\infty} (2n+1) a_{2n+1} = 0$. Hence $\lim_{k\to\infty} k a_k = 0$.

(b). If we let $b_n = s_{2n}$, then

2~

k

$$b_{n+1} - b_n = s_{2n+2} - s_{2n} = (-1)^{2n+3} (1/(2n+2)) + (-1)^{2n+2} (1/(2n+1))$$

= $1/(2n+1) - 1/(2n+2) > 0.$

Therefore $b_{n+1} > b_n$ and $\{b_n\} = \{s_{2n}\}$ is strictly increasing. Similarly, if $c_n = s_{2n+1}$, then

$$c_{n+1} - c_n = s_{2n+3} - s_{2n+1} = (-1)^{2n+4} (1/(2n+3)) + (-1)^{2n+1} (1/(2n+2))$$

= 1/(2n+3) - 1/(2n+2) < 0.

Therefore $c_{n+1} < c_n$ and $\{c_n\} = \{s_{2n+1}\}$ is strictly decreasing. Finally note that $s_{2n+1} - s_{2n} = (-1)^{2n+2} (1/(2n+1)) = 1/(2n+1) \to 0$ as $n \to \infty$.

(c). Note that in the last part of part (b) we have shown that $s_{2n+1} \ge s_{2n}$ for each *n*. This means that the sequence $\{s_{2n+1}\}$ is decreasing and bounded below and that the sequence $\{s_{2n}\}$ is increasing and bounded above. Hence each is convergent (Theorem 2.19). Since $\lim_{n\to\infty} s_{2n+1} - s_{2n} = 0$, the two limits must be the same. Moreover, $\lim_{n\to\infty} s_n$ exists and equals this same number. Hence $\sum_{k=1}^{\infty} (-1)^{k+1} (1/k)$ converges. But letting $a_k = (-1)^{k+1} (1/k)$ we have that $\sum a_k$ converges, but $k a_k = (-1)^{k+1}$, and $\lim_{k\to\infty} k a_k$ does not exist. Therefore part (a) is false if the sequence $\{a_k\}$ of terms is not decreasing.

Section 6.2, Exercise 1.

- (a). Use the Limit Comparison test with the series $\sum 1/k^2$.
- (b). Use Limit Comparison or Direct Comparison test with $\sum 1/2^k$.

(c). Use the Integral Test (You need to verify that the sequence of terms is decreasing. The integral can be evaluated by parts.)

- (d). Use Limit Comparison or Direct Comparison test with $\sum 1/3^k$.
- (e). Use Limit Comparison test with $\sum 10 k^{-e}$ and observe that e > 1.
- (f). Use the Limit Comparison test with the series $\sum 1/k^2$.

Exercise 2.

- (a). Use the Limit Comparison test with the series $\sum 1/k$.
- (b). Use the Integral Test or Direct Comparison with $\sum 1/k$.
- (c). Use Direct Comparison with $\sum 1/k$.
- (d). Use the Integral Test, evaluating the integral by the substitution $u = \log^p(x)$.

Exercise 10.

Suppose that $\sum_k a_k$ converges. This means that for every $\epsilon > 0$, there exists N such that if $m \ge n \ge N$ then $|\sum_{k=n}^m a_k| < \epsilon$. Now choose $M \ge N/2$ and suppose that $m \ge n \ge M$. Then

$$\left|\sum_{k=n}^{m} (a_{2k} + a_{2k+1})\right| = \left|\sum_{k=2n}^{2m+1} a_k\right| < \epsilon$$

since $n \ge M \ge N/2$ implies that $2n \ge N$ and $m \ge n$ implies $2m + 1 \ge 2n \ge N$. Hence the series $\sum_{k=1}^{\infty} (a_{2k} + a_{2k+1})$ satisfies a Cauchy condition hence converges. Suppose now that $\sum_{k} (a_{2k} + a_{2k+1})$ converges. This means that for every $\epsilon > 0$, there exists N so that if $m \ge n \ge N_0$ then $|\sum_{k=n}^{m} (a_{2k} + a_{2k+1})| = |\sum_{k=2n}^{2m+1} a_k| < \epsilon/3$ and $a_k \to 0$ as $k \to \infty$ implies that there is an N_1 such that if $k \ge N_1$ then $|a_k| < \epsilon/3$. Choose $N \ge \max(N_0, N_1)$. Given $m \ge n \ge 2N$, if m = 2k + 2 is even and n = 2j + 1 is odd then $j = (n - 1)/2 \ge (2N - 1)/2 \ge N$ and similarly $k \ge N$, and

$$\left|\sum_{k=n}^{m} a_{k}\right| = \left|a_{n} + \sum_{k=2j}^{2k+1} a_{k} + a_{m}\right| \le |a_{n}| + \left|\sum_{k=2j}^{2k+1} a_{k}\right| + |a_{m}|.$$

If m is odd or n is even then the same identity holds without one or both of the a_n or a_m terms. In any case, then,

$$\left|\sum_{k=n}^{m} a_{k}\right| \le |a_{n}| + \left|\sum_{k=2j}^{2k+1} a_{k}\right| + |a_{m}| < \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon.$$

Section 6.3, Exercise 2.

(a). Use the Root Test, concluding that $\lim_{k\to\infty} (k^2/\pi^k)^{1/k} = \lim_{k\to\infty} k^{2/k}/\pi = 1/\pi < 1$ and hence that the series converges.

(b). Use the Ratio Test and conclude that the series diverges.

(c). Use the Root Test, concluding that $\lim_{k\to\infty} \left[\left(\frac{k+1}{2k+3} \right)^k \right]^{1/k} = \lim_{k\to\infty} \left(\frac{k+1}{2k+3} \right) = 1/2 < 1$ and hence that the series converges.

(d). Use the Limit Comparison Test with $\sum_k \pi/k$ and conclude that the series diverges.

Exercise 6.

(a). Use the Integral Test to show series converges if and only if p > 1.

(b). Use the Limit Comparison Test to compare the series with $\sum_k 1/k$ and conclude that the series diverges for all $p \in \mathbf{R}$.

(c). Use the Root Test or Ratio Test to conclude that the series converges if and only if |p| > 1.