
MATH 316 – HOMEWORK 1
SOLUTIONS TO SELECTED EXERCISES

Section 6.1, Exercise 5.

(a). limk→∞ cos 1
k2 = 1 so by Theorem 6.5,

∞∑

k=1

cos
1

k2
diverges.

(b). limk→∞
(
1− 1

k

)k

= e−1 (apply L’Hopital’s rule) so by Theorem 6.5,
∞∑

k=1

(
1− 1

k

)k

diverges.

(c).
k + 1

k2
≥ k

k2
=

1

k
. Therefore for each n ∈ N,

n∑

k=1

k + 1

k2
≥

n∑

k=1

1

k
. By Exam-

ple 6.4, lim
n→∞

n∑

k=1

1

k
= ∞ and hence

n∑

k=1

k + 1

k2
diverges.

Exercise 7.

(a). Since nb =
n∑

k=1

b, we can write

∣∣∣∣nb−
n∑

k=1

bk

∣∣∣∣ =
∣∣∣∣

n∑

k=1

b−
n∑

k=1

bk

∣∣∣∣

=
∣∣∣∣

n∑

k=1

(b− bk)
∣∣∣∣

≤
n∑

k=1

|b− bk|

=
N∑

k=1

|b− bk|+
n∑

k=N+1

|b− bk|

≤
N∑

k=1

|b− bk|+ M(n− (N + 1) + 1)

=
N∑

k=1

|b− bk|+ M(n−N).

(b). Let ε > 0 and choose N so large that if k ≥ N then |b− bk| < ε/2. Then for
all n > N , applying part (a),

∣∣∣∣b−
b1 + · · ·+ bn

n

∣∣∣∣ =
1

n

∣∣∣∣nb−
n∑

k=1

bk

∣∣∣∣

≤ 1

n

N∑

k=1

|b− bk|+ ε

2

(n−N)

n

≤ 1

n

N∑

k=1

|b− bk|+ ε

2



since (n−N)/n < 1 for all n > N .

Now choose N0 so large that if n ≥ N0 then
1

n

N∑

k=1

|b− bk| < ε

2
. Hence for all

n ≥ N0,
∣∣∣∣b−

b1 + · · ·+ bn

n

∣∣∣∣ < ε.

(c). If bk = (−1)k+1(1/k), then b1 + b2 + · · · + bn = 1 if n is odd and 0 if n

is even. Therefore,
∣∣∣∣
b1 + · · ·+ bn

n

∣∣∣∣ =
1

n
if n is odd and 0 if n is even. Hence

limn→∞
∣∣∣∣
b1 + · · ·+ bn

n

∣∣∣∣ = 0 but limk→∞ bk 6= 0 since the limit does not exist.

Hence the converse of (b) is false.

Exercise 9.

(a). We will prove first that limn→∞(2n) a2n = limn→∞(2n + 1) a2n+1 = 0 from
which it will follow immediately that limn→∞ n an = 0 (This follows from the
definition of convergence of a sequence. I will leave the details to you.)

Since
∑∞

k=1 ak converges, its partial sums satisfy a Cauchy criterion which im-
plies that limn→∞

∑2n
k=n+1 ak = limn→∞

∑2n+1
k=n+1 ak = 0. (I will again leave the

verification of this fact to you.) Now

2n∑

k=n+1

ak = an+1 + an+2 + · · · + a2n ≥ a2n + a2n + · · · + a2n = na2n

since a2n ≤ ak for all k ≥ 2n since {ak} is a decreasing sequence. Similarly,

2n+1∑

k=n+1

ak = an+1 +an+2 + · · · +a2n+1 ≥ a2n+1 +a2n+1 + · · · +a2n+1 = (n+1)a2n+1.

Therefore, since (2n)a2n ≤ 2
∑2n

k=n+1 ak, the Squeeze Theorem (Theorem 2.9)
implies that limn→∞(2n) a2n = 0. Similarly, since (2n+1) a2n+1 ≤ (2n+2) a2n+1 ≤∑2n+1

k=n+1 ak, the Squeeze Theorem implies that limn→∞(2n + 1) a2n+1 = 0. Hence
limk→∞ k ak = 0.

(b). If we let bn = s2n, then

bn+1 − bn = s2n+2 − s2n = (−1)2n+3(1/(2n + 2)) + (−1)2n+2(1/(2n + 1))

= 1/(2n + 1)− 1/(2n + 2) > 0.

Therefore bn+1 > bn and {bn} = {s2n} is strictly increasing. Similarly, if cn =
s2n+1, then

cn+1 − cn = s2n+3 − s2n+1 = (−1)2n+4(1/(2n + 3)) + (−1)2n+1(1/(2n + 2))

= 1/(2n + 3)− 1/(2n + 2) < 0.



Therefore cn+1 < cn and {cn} = {s2n+1} is strictly decreasing. Finally note that
s2n+1 − s2n = (−1)2n+2(1/(2n + 1)) = 1/(2n + 1) → 0 as n →∞.

(c). Note that in the last part of part (b) we have shown that s2n+1 ≥ s2n for
each n. This means that the sequence {s2n+1} is decreasing and bounded below
and that the sequence {s2n} is increasing and bounded above. Hence each is
convergent (Theorem 2.19). Since limn→∞ s2n+1 − s2n = 0, the two limits must
be the same. Moreover, limn→∞ sn exists and equals this same number. Hence∑∞

k=1(−1)k+1(1/k) converges. But letting ak = (−1)k+1(1/k) we have that
∑

ak

converges, but k ak = (−1)k+1, and limk→∞ k ak does not exist. Therefore part
(a) is false if the sequence {ak} of terms is not decreasing.

Section 6.2, Exercise 1.

(a). Use the Limit Comparison test with the series
∑

1/k2.

(b). Use Limit Comparison or Direct Comparison test with
∑

1/2k.

(c). Use the Integral Test (You need to verify that the sequence of terms is
decreasing. The integral can be evaluated by parts.)

(d). Use Limit Comparison or Direct Comparison test with
∑

1/3k.

(e). Use Limit Comparison test with
∑

10 k−e and observe that e > 1.

(f). Use the Limit Comparison test with the series
∑

1/k2.

Exercise 2.

(a). Use the Limit Comparison test with the series
∑

1/k.

(b). Use the Integral Test or Direct Comparison with
∑

1/k.

(c). Use Direct Comparison with
∑

1/k.

(d). Use the Integral Test, evaluating the integral by the substitution u = logp(x).

Exercise 10.

Suppose that
∑

k ak converges. This means that for every ε > 0, there exists N
such that if m ≥ n ≥ N then |∑m

k=n ak| < ε. Now choose M ≥ N/2 and suppose
that m ≥ n ≥ M . Then

∣∣∣∣
m∑

k=n

(a2k + a2k+1)
∣∣∣∣ =

∣∣∣∣
2m+1∑

k=2n

ak

∣∣∣∣ < ε

since n ≥ M ≥ N/2 implies that 2n ≥ N and m ≥ n implies 2m + 1 ≥ 2n ≥ N .
Hence the series

∑∞
k=1(a2k + a2k+1) satisfies a Cauchy condition hence converges.



Suppose now that
∑

k(a2k + a2k+1) converges. This means that for every ε > 0,
there exists N so that if m ≥ n ≥ N0 then |∑m

k=n(a2k + a2k+1)| = |∑2m+1
k=2n ak| <

ε/3 and ak → 0 as k → ∞ implies that there is an N1 such that if k ≥ N1 then
|ak| < ε/3. Choose N ≥ max(N0, N1). Given m ≥ n ≥ 2N , if m = 2k + 2 is
even and n = 2j + 1 is odd then j = (n− 1)/2 ≥ (2N − 1)/2 ≥ N and similarly
k ≥ N , and

∣∣∣∣
m∑

k=n

ak

∣∣∣∣ =
∣∣∣∣an +

2k+1∑

k=2j

ak + am

∣∣∣∣ ≤ |an|+
∣∣∣∣
2k+1∑

k=2j

ak

∣∣∣∣ + |am|.

If m is odd or n is even then the same identity holds without one or both of the
an or am terms. In any case, then,

∣∣∣∣
m∑

k=n

ak

∣∣∣∣ ≤ |an|+
∣∣∣∣
2k+1∑

k=2j

ak

∣∣∣∣ + |am| < ε/3 + ε/3 + ε/3 = ε.

Section 6.3, Exercise 2.

(a). Use the Root Test, concluding that limk→∞(k2/πk)1/k = limk→∞ k2/k/π =
1/π < 1 and hence that the series converges.

(b). Use the Ratio Test and conclude that the series diverges.

(c). Use the Root Test, concluding that limk→∞

[(
k + 1

2k + 3

)k
]1/k

= lim
k→∞

(
k + 1

2k + 3

)
=

1/2 < 1 and hence that the series converges.

(d). Use the Limit Comparison Test with
∑

k π/k and conclude that the series
diverges.

Exercise 6.

(a). Use the Integral Test to show series converges if and only if p > 1.

(b). Use the Limit Comparison Test to compare the series with
∑

k 1/k and
conclude that the series diverges for all p ∈ R.

(c). Use the Root Test or Ratio Test to conclude that the series converges if and
only if |p| > 1.


