
MATH 316 – SPRING 2009 – MIDTERM EXAM – SOLUTIONS

1. (5 pts. each) Determine whether each of the following series converges. All calcula-
tions must be fully justified and any conclusions you reach must be justified by the correct
application of an appropriate convergence test.

(a)
∞∑

k=0

k2k

(3k2 + k)k
.

(b)
∞∑

k=1

(3)(6) · · · (3k)

(7)(10) · · · (3k + 4)
. (Hint: The Ratio Test does not work.)

Solution:

(a). Use the Root Test. Let ak =
k2k

(3k2 + k)k
. Then

|ak|1/k =

(
k2k

(3k2 + k)k

)1/k

=
k2

3k2 + k
→ 1

3

as k → ∞ by L’Hopital’s Rule. Therefore, lim supk→∞ |ak|1/k = 1/3 < 1 and by
the Root test the series converges.

(b). Use Raabe’s Test. Let ak =
(3)(6) · · · (3k)

(7)(10) · · · (3k + 4)
. Then

ak+1

ak

=
(3)(6) · · · (3k)(3k + 3)

(7)(10) · · · (3k + 4)(3k + 7)
· (7)(10) · · · (3k + 4)

(3)(6) · · · (3k)

=
3k + 3

3k + 7
= 1− 4

3k + 7
= 1− (4/3)

k + (7/3)
.

Since 4/3 > 1, Raabe’s Test implies that the series converges.

2. (10 pts.) Prove that the sequence of functions {xn}∞n=1 converges pointwise but not
uniformly to 0 on the interval (0, 1).

Solution:

Let x0 ∈ (0, 1). Since then |x0| < 1, limn→∞ xn
0 = 0. Hence xn → 0 as n → ∞

pointwise on (0, 1).

To see that the convergence is not uniform note that xn → 0 on (0, 1) uniformly
means that supx∈(0,1) |xn| → 0 as n → ∞. But in fact, since limx→1− xn = 1 for
all n ∈ N, it follows that for all n ∈ N, supx∈(0,1) |xn| = 1 and so it does not go
to zero.

Another way to approach this is the following: xn → 0 on (0, 1) uniformly means
that for all ε > 0 there is an N so that if n ≥ N then |xn| < ε for all x ∈ (0, 1).
However, if ε = 1/2 then since limx→1− xn = 1 for all n ∈ N, then for any n ∈ N,
we can find an x ∈ (0, 1) such that xn > 1/2 (of course this x will depend on n
but that does not matter). Hence the convergence is not uniform.



3. (5 pts. each) Consider the series
∞∑

k=1

cos(kx)

2k
.

(a) Show that the above series converges uniformly on R to a continuous function f(x).

(b) Show that the function f(x) found in part (a) is continuously differentiable on R and
that f ′(x) is bounded on R.

Solution:

(a). Since | cos(kx)| ≤ 1 for all k ∈ N and x ∈ R, letting Mk = 1/2k it follows
that for all k ∈ N and x ∈ R, | cos(kx)/2k| ≤ Mk, and since

∑
k 1/2k is a

convergent geometric series, that
∑

k Mk < ∞. By the Weierstrass M-test, the
series

∑
k cos(kx)/2k converges absolutely and uniformly on R. To see that the

limit function is continuous, note that for each k, cos(kx)/2k is continuous on
R and since the convergence is uniform, the series converges to a continuous
function.

(b). In order to apply the term-by-term differentiation test, we must estab-
lish three things: (1) that for each k, cos(kx)/2k is differentiable, (2) that the
series

∑
k cos(kx)/2k converges at a point in R, and (3) that the series of deriva-

tives,
∑

k d/dx[cos(kx)/2k] converges uniformly on R. To see (1), note that
d/dx[cos(kx)/2k] = (−k sin(kx))/2k by the usual rules of differentiation. To
see (2), note that by part (a) the series

∑
k cos(kx)/2k converges at each point

of R hence at a single point. To see (3), note that for each k ∈ N and x ∈ R,
| sin(kx)| ≤ 1, so that letting Mk = k/2k it follows that for all k ∈ N and
x ∈ R, |k sin(kx)/2k| ≤ Mk. Since the series

∑
k Mk =

∑
k(k/2k) converges by

the Ratio Test (|ak+1/ak| = (k + 1)/2k+1 · 2k/k = [(k + 1)/k](1/2) → 1/2 < 1
as k → ∞ by L’Hoptial’s Rule) the Weierstrass M-test implies that the series∑

k d/dx[cos(kx)/2k] = −∑
k k sin(kx)/2k converges absolutely and uniformly on

R. Hence the function f(x) =
∑

k cos(kx)/2k is differentiable term-by-term and
f ′(x) = −∑

k k sin(kx)/2k.

To see that in fact f ′(x) is continuous, note that the series converges uni-
formly on R and that each term k sin(kx)/2k is continuous on R. Hence so
is f ′(x). To see that f ′(x) is bounded, note that |f ′(x)| = |∑k k sin(kx)/2k| ≤∑

k k| sin(kx)|/2k ≤ ∑
k k/2k < ∞.

4. (10 pts.) Find the interval of convergence of the power series
∞∑

k=0

[(−1)k + 2]kxk.

Solution:

To find the radius of convergence we compute

lim sup
k→∞

|([(−1)k + 2]k)|1/k = lim sup
k→∞

|(−1)k + 2| = lim sup
k→∞

((−1)k + 2).



Now, ((−1)k + 2) = 1 if k is odd and 3 if k is even, so lim supk→∞((−1)k +
2) = 3 and the radius of convergence is 1/3. Hence the power series converges
absolutely on (−1/3, 1/3) and diverges outside [−1/3, 1/3]. What remains is to
check convergence at x = −1/3 and x = 1/3. When x = 1/3,

[(−1)k + 2]kxk = [(−1)k + 2]k(
1

3
)k =

(
(−1)k + 2

3

)k

.

This term equals 1/3k if k is odd and 1 if k is even. Hence the sequence of terms
does not converge to zero and the series diverges. When x = −1/3,

[(−1)k + 2]kxk = [(−1)k + 2]k(−1

3
)k =

(
(−1)k+1 − 2

3

)k

.

This term equals (−1/3)k if k is odd and (−1)k if k is even. Hence the sequence
of terms does not converge to zero and the series diverges. Therefore the interval
of convergence is (−1/3, 1/3).

5. (10 pts.) Assume that
∞∑

k=0

(−1)k x2k+1

2k + 1
= arctan(x) for x ∈ (−1, 1). Prove that

∞∑

k=0

(−1)k

2k + 1
=

π

4
.

Each step in your proof must be fully justified as in the instructions to this exam.

Solution:

When x = 1,
∞∑

k=0

(−1)k x2k+1

2k + 1
=

∞∑

k=0

(−1)k

2k + 1
. Since the sequence 1/(2k + 1) de-

creases to 0 as k → ∞, the Alternating Series Test implies that the series (−1)k

2k+1

converges.

By Abel’s Theorem, since the power series
∞∑

k=0

(−1)k x2k+1

2k + 1
converges at x = 0 and

at x = 1 (the latter by the Alternating Series Test, see above), the series converges
uniformly on the interval [0, 1]. Since each term in the series is continuous on
[0, 1] (being a multiple of a monomial), the limit function is continuous on [0, 1].
Hence the left-hand limit at x = 1 of this function can be computed by simply
evaluating the function at x = 1. That is,

lim
x→1−

∞∑

k=0

(−1)k x2k+1

2k + 1
=

∞∑

k=0

(−1)k

2k + 1
.



But since
∑∞

k=0(−1)k x2k+1

2k+1
= arctan(x) on [0, 1), arctan(1) = π/4, and since

arctan(x) is continuous on R,

π

4
= arctan(1) = lim

x→1−
arctan(x) = lim

x→1−

∞∑

k=0

(−1)k x2k+1

2k + 1
=

∞∑

k=0

(−1)k

2k + 1

as desired.


