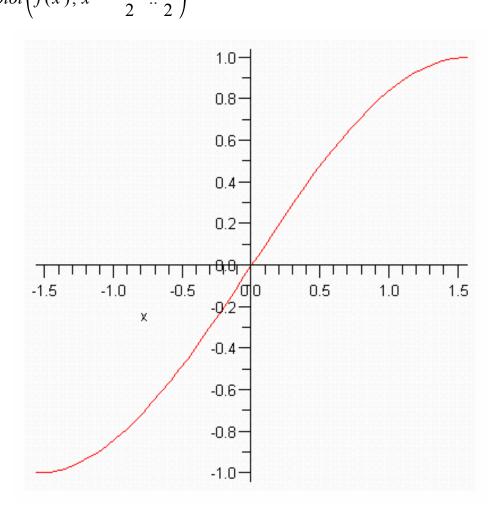
Demo on Linearizations.

f(x) = sin(x), at x=0

>
$$f := x \rightarrow sin(x)$$

> $f := x \rightarrow sin(x)$
> $plot\left(f(x), x = \frac{-Pi}{2} \cdot \frac{Pi}{2}\right)$



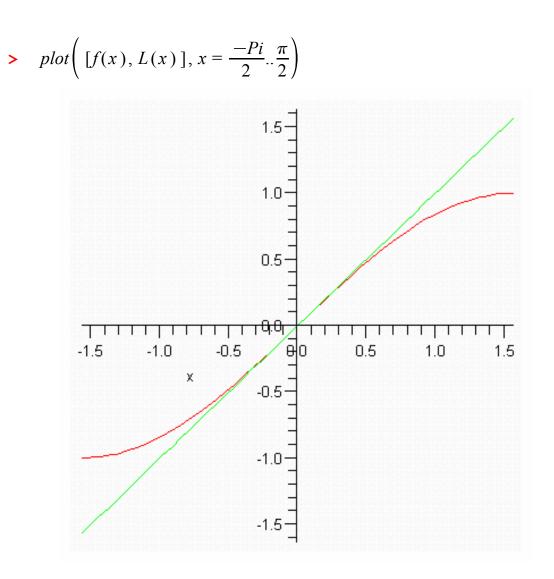
>

Find the linearization.

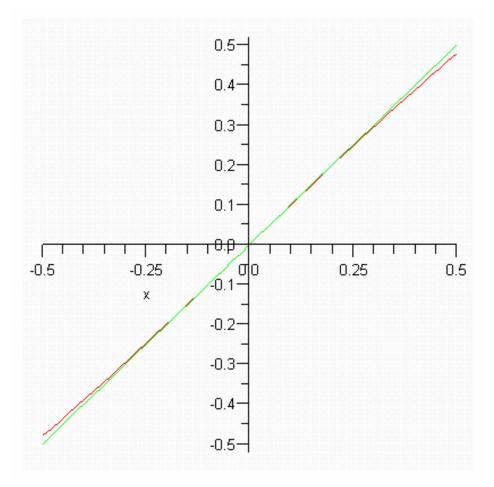
>
$$g := x \rightarrow D(f)(x)$$

x

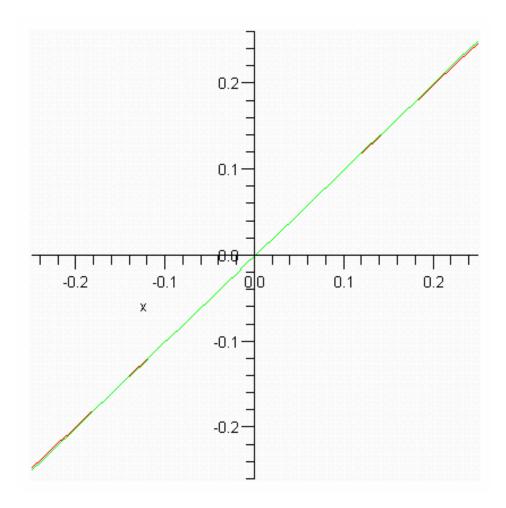
- > eval(g(x))> $L := x \rightarrow f(0)$
- > $L := x \rightarrow f(0)$ + $g(0) \cdot (x - 0)$ $L := x \rightarrow f(0) + g(0) x$
- > eval(L(x))



> plot([f(x), L(x)], x = -.5...5)

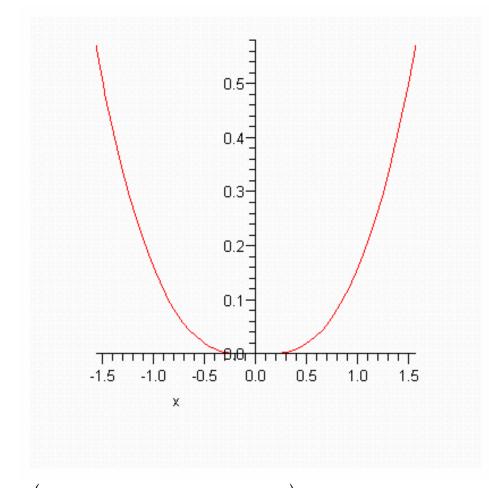


> plot([f(x), L(x)], x = -.25...25)

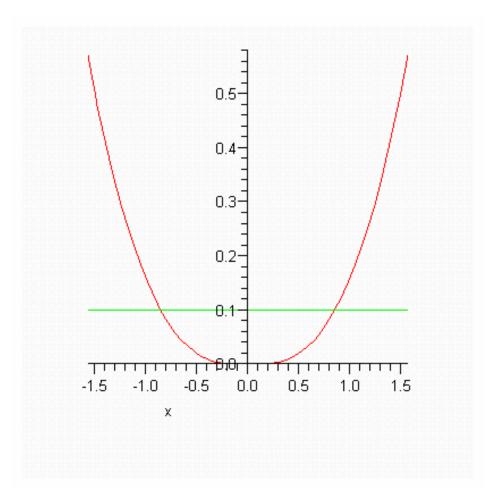


Look at the error.

>
$$plot\left(\left|f(x) - L(x)\right|, x = \frac{-Pi}{2}..\frac{Pi}{2}\right)$$



>
$$plot\left([|f(x) - L(x)|, 1], x = \frac{-Pi}{2} \cdot \frac{\pi}{2}\right)$$



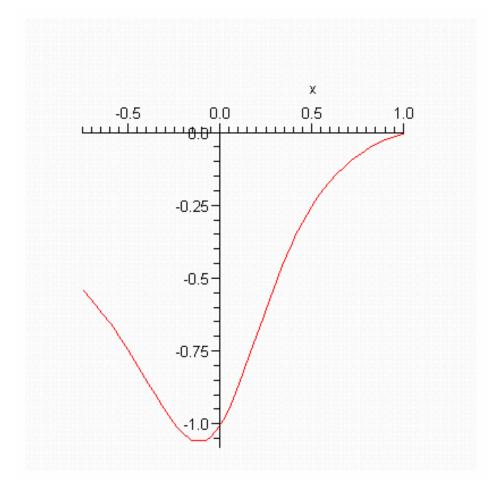
In order to guarantee that the error, |f(x)-L(x)|, is less than 0.1, it is enough that |x-0| < .8

Look at #80, p. 254.

>
$$f:=x \rightarrow \frac{(x-1)}{(4 \cdot x^2 + 1)}$$

 $f:=x \rightarrow \frac{x-1}{4x^2 + 1}$

>
$$plot(f(x), x = -.75..1)$$



Linearize at x=1/2 (also say a=1/2).

>
$$g := x \to D(f)(x)$$

$$g := x \to (D(f))(x)$$

> eval(g(x))

$$\frac{1}{4x^2+1} - \frac{8(x-1)x}{(4x^2+1)^2}$$

>
$$L := x \rightarrow f\left(\frac{1}{2}\right)$$

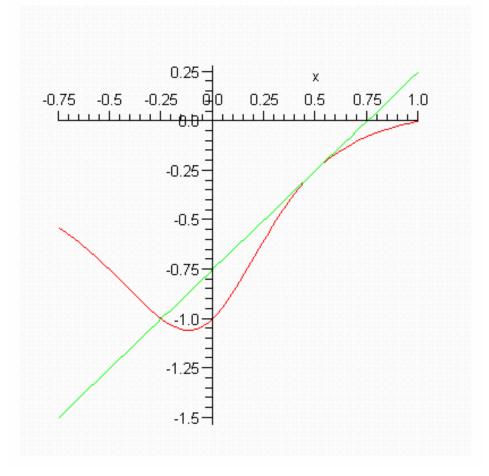
+ $g\left(\frac{1}{2}\right) \cdot \left(x - \frac{1}{2}\right)$

$$L := x \to f\left(\frac{1}{2}\right) + g\left(\frac{1}{2}\right) \left(x - \frac{1}{2}\right)$$

> eval(L(x))

$$-\frac{3}{4} + x$$

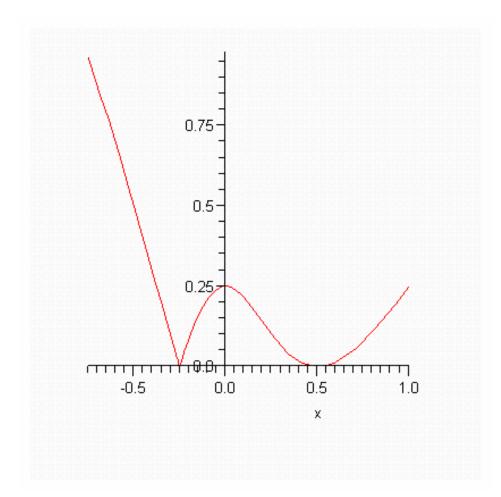
>
$$plot([f(x), L(x)], x = -.75..1)$$



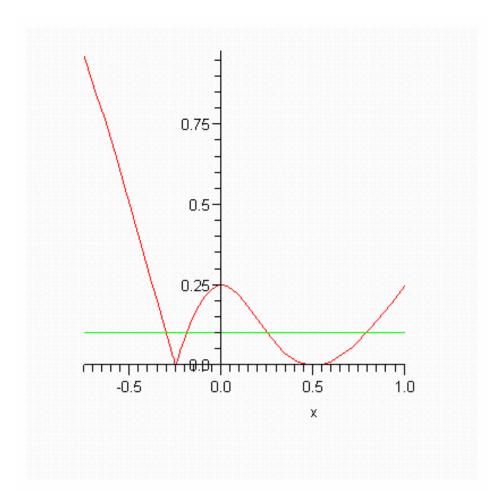
>

Look at error again.

>
$$plot(|f(x) - L(x)|, x = -.75..1)$$



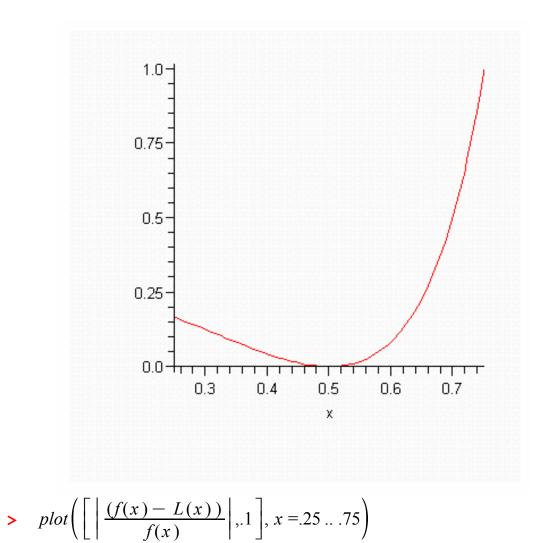
> plot([|f(x) - L(x)|, 1], x = -.75..1)

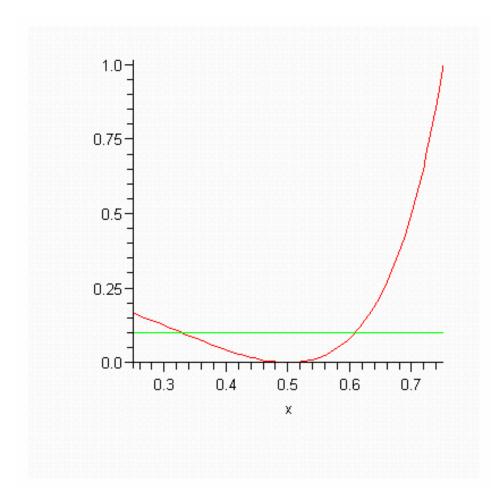


We can get the error |f(x)-L(x)| < .1 whenever |x-.5| < .25.

Can also look at percentage error (or relative error).

>
$$plot\left(\left|\frac{(f(x) - L(x))}{f(x)}\right|, x = .25 \dots .75\right)$$





To guarantee that pct error is less than .1 (or 10%) it is enough that |x-.5|<.1