>

>

Maple Assignment #2 Solutions

#1 (a)

>
$$f := x \rightarrow \frac{x^3}{sqrt(x^4 + 5)}$$

 $f := x \rightarrow \frac{x^3}{\sqrt{x^4 + 5}}$

>
$$plot(f(x), x = -3..3)$$

> #1 (b)

>
$$g := x \rightarrow D(f)(x);$$

$$g := x \rightarrow (D(f))(x)$$

>
$$plot([f(x), g(x)], x = -3..3)$$

>

#1 (c)

Tangent line at x=1.

>
$$TI := x \to f(1) + g(1) \cdot (x-1)$$

 $TI := x \to f(1) + g(1) (x-1)$

>

Tangent line at x=1.

>
$$T2 := x \to f(-2) + g(-2) \cdot (x + 2)$$

$$T2 := x \to f(-2) + g(-2) (x+2)$$

> plot([f(x), T1(x), T2(x)], x = -3..3)

>

#2 (a)

>
$$s := t \rightarrow 2 \cdot t^3 - 9$$

 $\cdot t^2$
> $v := t \rightarrow D(s)(t);$

 $v := t \rightarrow (\mathbf{D}(s))(t)$

eval(v(t))> $6t^2 - 18t$ $a := t \to D(v)(t);$ > $a := t \rightarrow (\mathbf{D}(v))(t)$ eval(a(t))> 12 t - 18

>

#2 (b)

> plot([s(t), v(t), a(t)], t=0..5)

>

#2 (c)

For 0 <= t <= 1.5, particle is speeding up since velocity is decreasing and negative, hence moving away from zero in a negative direction. Hence the particle is moving left and speeding up. Note that acceleration is negative during these times.

For $1.5 \le t \le 3$, particle is slowing down since velocity is increasing from negative values to zero. Note that acceleration is positive during these times.

For $3 \le t \le 5$, particle is speeding up since velocity is positive and increasing. Note that acceleration is positive during these times.

An easier way to see this (perhaps) is to look at a graph of the particle's speed:

>
$$plot(|v(t)|, t=0..5)$$

For $0 \le t \le 1.5$, speed is increasing, so speeding up. For $1.5 \le t \le 3$, speed is decreasing, so slowing down. For $3 \le t \le 5$, speed is increasing again so speeding up.

>