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Lecture 4: Completion of a Metric Space

Closure vs. Completeness.

Recall the statement of Lemma ??(b): A subspace M of a metric space
X is closed if and only if every convergent sequence {xn} ⊆ X satisfying
{xn} ⊆ M converges to an element of M.

Also recal the statement of Lemma ??: A closed subspace of a complete
metric space is complete.

Lemma ?? sounds a lot like the definition of completeness. Note however
that it does not say that a closed subspace is complete. As Lemma ??
shows, a closed subspace of a complete metric space is complete. It may
not be true that a closed subspace of an incomplete space is complete.

For example, any space is a closed subspace of itself (this is a result of
the tautology that a sequence of elements converging to an element of the
space converges to an element of the space). We have seen examples of
spaces that are not complete. More specifically, the space (Q, | · |) is closed
as a subspace of itself but is not closed as a subspace of (R, | · |). This is
because there are sequences in Q which converge to elements of R\Q, that
is, they converge to irrational numbers.

The point is that the notion of closure is always applied to a subspace of
some larger space. A subspace may be closed as a subspace of one space
but not as the subspace of another. Completeness, on the other hand, is a
property of a metric space regardless of whether or not it is considered as
a subspace of a larger space.

Question: Can every metric space be made complete? That is, can the
“holes” in an incomplete metric space be always be filled in? The answer
is yes. The new space is referred to as the completion of the space. The
procedure is as follows. Given an incomplete metric space M , we must
somehow define a larger complete space in which M sits. Then the closure
of M in this larger space is defined to be its completion.

Completion of a Metric Space.

Example. We have seen that the metric space (Q, |·|) is not complete. That
is, there are Cauchy sequences in Q which do not converge to an element of
Q. However, we know that the real numbers R have the property that: (1)
Q ⊆ R, (2) R is complete, (3) Q is dense in R, that is, any real number
can be written as the limit of a sequence of rational numbers. So what we
really want to do is add to Q all of its “limit points.” For that we need to
define a larger space in which Q sits and which contains its limit points.
How do we construct R from Q? That is, given that we know the
rational numbers, how do we define the real numbers? There are several
approaches.
1. Dedekind cuts. The approach takes advantage of ordering properties of
Q. We will not discuss it in this course.
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2. Cauchy sequences. This approach takes advantage of the topological or
metric properties of Q.

Consider for example our series development for π/4. We know that the
sequence of partial sums of the series {sN}∞N=0 is Cauchy but does not
converge in Q.

We wish to fill in the “hole” in Q to which it “converges.” So we say that
the “hole” is represented by the Cauchy sequence, that is, we say

π

4
∼ {s0, s1, s2, . . .}.

There are several problems with this approach that we must solve. For ex-
ample, if we say that π

4 is equal to the Cauchy sequence {sN}∞N=0 then
we must also say that it is equal to any other Cauchy sequence that
converges to π/4. For example, {sN}∞N=5 or {sN + 1/N}∞N+1, or even
{3/4, 31/40, 314/400, 3141/4000, . . .} all converge to π

4 . So the first step
is to actually identify π

4 with the collection of all Cauchy sequences that
converge to it. This raises another problem: How do we know if two Cauchy
sequences converge to the same “hole” in Q?

There are other problems also: (1) Since Q is supposed to be a subset of
R, can we represent rational numbers as collections of Cauchy sequences
as well? (2) How do we define the distance between two real numbers? Can
we do it in such a way that it is the same as the usual distance? (3) Are
the real numbers defined in this way actually a complete space?

Theorem 2 below gives a general construction based on the approach of
filling in holes in an incomplete space by identifying the hole with a class
of Cauchy sequences converging to that hole. The issues listed above are
dealt with one at a time, making for a rather tedious proof. However, all
details should be verified by the reader.

Definition 1. Let (X , d) be a metric space. A subset B ⊆ X is said to be

dense in X if each element x ∈ X can be written as the limit of a sequence in

B. That is, given x ∈ X , there exists a sequence {bn}∞n=1 ⊆ B such that bn → x

as n →∞ in X .

Theorem 2. Let X = (X , d) be an incomplete metric space. Then there exists

a metric space X̃ = (X̃ , d̃) which is complete and such that X is sometric to a

dense subset of X̃ .

Proof: Consider the collection of all Cauchy sequences in X and define the
following relation between such sequences: {xn} ∼ {yn} if limn→∞ d(xn, yn) =
0.
Claim 1. The above defined relation is an equivalence relation on the set
of all Cauchy sequences in X .

Define the set X̃ to be the set of all equivalence classes of Cauchy se-
quences in X . Denote an element of X̃ by x̃ = [{xn}], where [{xn}] denotes
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the equivalence class containing {xn}. Define the metric d̃ by

d̃(x̃, ỹ) = d([{xn}], [{yn}]) = lim
n→∞

d(xn, yn).

We must show that this definition makes sense.
Claim 2. The limit defining d̃ exists.
Proof of Claim 2: Let {xn} and {yn} be Cauchy in X . We will show that
the sequence {d(xn, yn)} is a Cauchy sequence of real numbers. By the
triangle inequality,

|d(xn, yn)− d(xm, ym)| ≤ |d(xn, yn)− d(xn, ym)|+ |d(xn, ym)− d(xm, ym)|
≤ d(yn, ym) + d(xn, xm).

Since each of the sequences {xn} and {yn} is Cauchy, it is clear that for
n, m large enough, the right side of the above can be made arbitrarily
small. Claim 2 is proved.
Claim 3. The definition of d̃ is independent of the choice of representa-
tive, that is, if {x1

n} ∼ {x2
n} and {y1

n} ∼ {y2
n} then limn→∞ d(x1

n, y1
n) =

limn→∞ d(x2
n, y2

n).
Proof of Claim 3: By the triangle inequality,

|d(x1
n, y1

n)− d(x2
n, y2

n)| ≤ |d(x1
n, y1

n)− d(x1
n, y2

n)|+ |d(x1
n, y2

n)− d(x2
n, y2

n)|
≤ d(y1

n, y2
n) + d(x1

n, x2
n).

The right side goes to zero by the definition of the equivalence relation.
Claim 3 is proved.
Claim 4. d̃ defines a metric on the set X̃ .
Claim 5. X̃ is a complete metric space.
Proof of Claim 5: Let {x̃k}∞k=1 be Cauchy in X̃ with x̃k = [{xk

n}] for each k.
{x̃k} Cauchy means that given ε > 0, there exists N such that if k, j ≥ N ,
then

d̃(x̃k, x̃j) = lim
n→∞

d(xk
n, xj

n) < ε.

We must show that {x̃k} in fact converges. The first step is to define a
candidate, x̃, for the limit of {x̃k}. For this we will use a modification of
the type of diagonal argument we have already seen.

Define x̃1 = x1
1. Since {x2

n} is Cauchy, choose an integer N(2) > 1 such
that d(x2

N(2), x
2
m) < 1/2 whenever m ≥ N(2). Continue in this fashion,

choosing for each integer k an integer N(k) such that (1) N(k)¿N(k-1), and
(2) d(xk

N(k), x
k
m) < 1/k whenever m ≥ N(k). Define x̃ = [{xn

N(n)}].
We must first verify that {xn

N(n)} is Cauchy so that x̃ is actually an
equivalence class of Cauchy sequences and hence is in X̃ . To do this, we
must verify that

lim
n,m→∞

d(xn
N(n), x

m
N(m)) = 0.
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To this end, note that for any j,

d(xn
N(n), x

m
N(m)) ≤ d(xn

N(n), x
n
j ) + d(xn

j , xm
j ) + d(xm

j , xm
N(m)).

Letting j →∞ on both sides (and noting that the left side does not depend
on j) we have that

d(xn
N(n), x

m
N(m)) ≤ lim sup(d(xn

N(n), x
n
j ) + d(xn

j , xm
j ) + d(xm

j , xm
N(m)))

≤ 1/n + 1/m.

Letting now n, m →∞ gives us the result.
Finally, we must show that x̃k → x̃. Recall that d̃(x̃k, x̃) = limn→∞ d(xk

n, xn
N(n))

Let ε > 0 and choose K so large that 1/K < ε/2 and if n, m ≥ K then
d(xn

N(n), x
m
N(m)) < ε/2. Now, if k ≥ K, then

d̃(x̃k, x̃) = lim
n→∞

d(xk
n, xn

N(n))

≤ lim sup
n→∞

d(xk
n, xk

N(k)) + lim sup
n→∞

d(xk
N(k), x

n
N(n))

≤ 1/k + ε/2 ≤ 1/K + ε/2 < ε.

Hence, M̃ is a complete metric space.
Claim 6. X is isometric to a dense subset of X̃ .
Outline of proof of Claim 6: Define the function h:X −→ X̃ by h(x) =
[{xn}] where xn = x for all n. It is easy to verify that for x, y ∈ X ,
d̃(h(x), h(y)) = d(x, y). To see that h(X ) is dense in X̃ , let s = [{yn}] ∈ M̃ .
For each k, define sk = h(yk) = [{xk

n}] where xk
n = yk for all n. It is easy

to verify that limk→∞ sk = s.
The significance of Claim 6 is that it gives us a precise way of making

the statement that the incomplete metric space X is actually a subspace
of its completion X̃ . That is, we can with confidence think of X̃ as being
identical with X except that the “holes” in M have been filled in.

Contraction Mappings and Fixed Points.

Definition 3. Let (X , d) be as metric space, and let A:X −→ X be a mapping

from X to itself. The point x ∈ X is a fixed point for A if Ax = x. The mapping

A is a contraction mapping on X if there exists a constant α < 1 such that

d(Ax, Ay) ≤ αd(x, y) for all x, y ∈ X .

Theorem 4. Let (X , d) be a complete metric space and let A be a contraction

mapping on X . Then A has a unique fixed point.

Proof: Let x0 be an arbitrary point in X . Define the sequence {xn}∞n=1

by xn = Axn−1. Since A is a contraction mapping, there is a constant
α < 1 such that d(xn, xn+1) ≤ α d(xn−1, xn) for all n. A simple induc-
tion argument shows that in fact d(xn, xn+1) ≤ αn d(x0, x1). Since α < 1,
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∑∞
n=1 αn < ∞. Therefore, {xn} is Cauchy (see Exercise 12) and since X is

complete, converges to some x ∈ X . Since A is continuous,

Ax = lim
n→∞

Axn = lim
n→∞

xn+1 = x,

so that x is a fixed point for A.
To see that x is unique note that if y were also a fixed point, then

d(x, y) = d(Ax, Ay) ≤ α d(x, y),

which implies that d(x, y) = 0 or x = y.

The above theorem gives us not only a proof of the existence of a fixed
point, but a scheme for finding the fixed point via the sequence {xn}. This
scheme is called generally successive iteration or successive approxi-
mation. This is a useful starting point for numerical schemes for solving
certain types of equations.

The theorem also gives us an estimate for the error in our iteration
scheme. That is, we can estimate how far we are from the solution at each
step and halt our numerical algorithm accordingly.

Theorem 5. Given a contraction mapping A on a complete metric space

(X , d), and an arbitrary point x0 ∈ X , define the sequence {xn} as in the proof

of Theorem 4. Then

d(xn, x) ≤ αn d(x0, x1)

1− α
.

Proof: Fix n and let m > n. Since for any n, d(xn, xn+1) ≤ αn d(x0, x1),

d(xn, x) ≤ d(xn, xm) + d(xm, x)

≤ d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xm−1, xm) + d(xm, x)

≤ d(x0, x1)
(m−1∑

j=n

αj

)
+ d(xm, x).

Letting now m →∞ on the right side, we have that

d(xn, x) ≤ d(x0, x1) lim
m→∞

(m−1∑

j=n

αj

)
+ lim

m→∞
d(xm, x)

= d(x0, x1)
∞∑

j=n

αj

= αn d(x0, x1)
1− α

.


