Lecture 2: Topology of Metric Spaces

Definition 1. Let (X,d) be a metric space and let M C X. Then the pair
(M, d) is a metric space in its own right and is called a subspace of (X,d).

Definition 2. Let (X,d) be a metric space. The open ball of radius r > 0
about x € X is the set B(x;r) = {y:d(z,y) < r}. The closed ball is the set
B(z;r) = {y:d(z,y) < r}.

A subset U C X is open if for each x € U, there is an € > 0 such that
B(z;e) CU. A set F C X is closed if its complement F¢ is open.

Given x € X, a set N C X is a neighborhood of x if there is an open ball
B(z;r) CN.

Theorem 3. (Theorem 3, p. 49, Theorem 5, p. 50, Kolmogorov)

(a) Let {Ua} be a system (finite, countable or uncountable) of open sets in a
metric space X. Then UsUy is open.

(b) Let {U,}_, be a finite system of open sets in X. Then NA_U, is open.

Proof: (a) Let € Ualdy,, then for some fixed ag, © € Uy,. Since Uy, is
open, there exists e > 0 such that B(z;€) C U,,. Thus also, B(x;€) C Ugly,
and U,U, is open.

(b) Let * € NY_;U,,. Then = € U, for all n and for each n there is an
€, > 0 such that B(z;e,) C U,. Let ¢ be the smallest of the ¢,. Then
B(z;€) C B(w;€,) C U, for all n and hence B(z;€) € NY_,U,,. Therefore
NY_ U, is open. [ ]

Corollary 4.

(a) Let {Fa} be a system (finite, countable or uncountable) of closed sets in a
metric space X. Then NoFa is closed.

(b) Let {Fn} 1 be a finite system of closed sets in X. Then UN_, Fy, is closed.

Example 5. (a) Theset (0,1) C R is open in R with the usual absolute value
metric. The set [0,1] is closed in R because its complement, the union of two
open intervals, is an open set. The sets ) and R are both open and closed as
subsets of R. The set (0, 1] is neither open nor closed in R.

(b) Any singleton (that is, a set consisting of only one point) in R is closed. The
set [0,1] U {2} is closed in R as it is the union of two closed sets.

(c) Any subset M of a metric space (X,d) where d is the discrete topology is
closed.

(d) Let Fr = [1/n,1 — 1/n]. Then each F, is closed but UpZ;F, = (0,1) which
is not closed.



(e) Let U = (—1/n,1+ 1/n). Then each U, is open but N5Z,U, = [0, 1] which

is not open.

Definition 6. The point x € X is a closure point of M C X if for every e > 0
B(xz;€) contains a point of M. (Kolmogorov calls such a point a contact point.)
The point x € X is a limit point or an accumulation point of M if for every
e > 0, B(z;€) contains infinitely many points of M. Equivalently, © € X is a
limit point of M if for all e > 0, B(z : €) contains a point of M\ {z}.
A closure point of M which is not a limit point of M is called an isolated
point.

Lemma 7.

(a) A point x is a closure point of M if and only if there is a sequence of points
{zn} of M converging to x.

(b) A point x is a limit point of M if and only if there is a sequence of distinct
points {xn} of M converging to x.

(c) An isolated point of M must be in M.

Proof: (a) For each n, let e = 1/n and choose z,, € B(x;1/n) N M. Then
x, € M for each n and z,, — .

(b) Use the same procedure as in (a) to choose the x,, but since z is an
accumulation point, we can guarantee that x,, is not equal to z nor to any
of the (finitely many) previously chosen points.

(c) Suppose that x is an isolated point of M which is not in M. Let
€1 = 1 and let 21 be any point in B(z;e;) N M. Note that 21 # z. Let
e = min{1/2,d(z,z1)} and choose z2 to be any point in B(z;e) N M.
Continue in this fashion, letting €, = min{1/n,d(z, z,—1)}, and choosing
Zn to be any point in B(z;e,) N M. Since ¢, < 1/n, z, — z, and since
d(z,z,) < d(xz,xn—1), T, is not equal to any of the previously chosen
Zpm. Thus {x,} is a sequence of distinct points in M converging to z. By
definition then z is a limit point of M and hence cannot be an isolated

point. [ |

Definition 8. The closure of M is the set of all closure points of M, and is
denoted [M)]. Note that the closure of M consists of M together with all of its
limit points. A subspace (M,d) is closed provided that M 1is closed.

Example 9. (a) The set M = (0,1) C R is not closed in R because 1 is a
closure point of M but is not in M.

(b) The point 2 is a closure point of the set M = [0,1] U {2}. In fact it is an
isolated point of M.



(c) Any subset M of a metric space (X,d) where d is the discrete topology is
closed.

Lemma 10. Let M be a subspace of a metric space X. Then the following are
equivalent.

(a) M is closed.
(b) M] =M.

(¢) Ewery convergent sequence {xn} C X satisfying {x»} C M converges to an
element of M.

Proof: (a)<=-(b). Assume that M is closed. Since [M] consists of M
together with its limit points, always M C [M]. Suppose x ¢ M. Since M
is closed its complement is open and since x is in that complement there is
an € > 0 such that B(x;e) N M = (. But by definition, this means that x
is not a closure point of M so that = ¢ [M].

Now assume that [M] = M. It will be sufficient to show that [M] is
closed. If « ¢ [M] then z is not a closure point of M so that there is an
€ > 0 such that B(z;e) N M = (). But since M = [M], B(z;e)N[M] =0
also. Therefore the complement of [M] is open and [M] is closed.
(b)<=>(c). Assume that [M] = M and that and let {z,,} be a sequence in
M converging to the point z. By the definition of convergence, for every
€ > 0 there is at least one of the x,, in B(x;€). Hence z is a closure point
of M and so is in [M]. But since [M] = M, z € M.

Now suppose that (b) does not hold and that there is a point z € [M]
which is not in M. But by Lemma 7(a) there is a sequence {x,} in M
converging to x. But this means that (c) also does not hold. [ |

Theorem 11. (Properties of Closure.)

(a) If M C N then [M] C [N].

(©) IMUN] = [M]JUN].

Proof: (a) Let € [M]. Then for every ¢ > 0, B(z;¢) N M # (. Since
M C N, B(z;e) NN # 0 also. Hence z € [N].

(b) This follows immediately from Lemma 10 and the fact that [M] is
closed.

(¢) By part (a), and since both M and A are subsets of M UN, [M]U
[N] C [MUN]. By definition of closure, M C [M] and N C [N], so that
MUN C [MJUI[N]. By part (a), [MUN] C [[M]U[N]] = [M]U[N] by
Lemma 10 and the fact that the union of two closed sets is closed. [ |



Lemma 12. A closed subspace of a complete metric space is complete.

Proof: Let M be a subspace of the complete metric space X, and let {z,}
be a Cauchy sequence in M. Then also, {z,} is a Cauchy sequence in X
and hence converges to some z € X. Therefore, x is a closure point of M
but since M is closed, x € M. Hence M is complete. [ |



