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Lecture 2: Topology of Metric Spaces

Definition 1. Let (X , d) be a metric space and let M ⊆ X . Then the pair

(M, d) is a metric space in its own right and is called a subspace of (X , d).

Definition 2. Let (X , d) be a metric space. The open ball of radius r > 0

about x ∈ X is the set B(x; r) = {y: d(x, y) < r}. The closed ball is the set

B(x; r) = {y: d(x, y) ≤ r}.
A subset U ⊆ X is open if for each x ∈ U , there is an ε > 0 such that

B(x; ε) ⊆ U . A set F ⊆ X is closed if its complement F c is open.

Given x ∈ X , a set N ⊆ X is a neighborhood of x if there is an open ball

B(x; r) ⊆ N .

Theorem 3. (Theorem 3, p. 49, Theorem 5, p. 50, Kolmogorov)

(a) Let {Uα} be a system (finite, countable or uncountable) of open sets in a

metric space X. Then ∪αUα is open.

(b) Let {Un}N
n=1 be a finite system of open sets in X . Then ∩N

n=1Un is open.

Proof: (a) Let x ∈ ∪αUα, then for some fixed α0, x ∈ Uα0 . Since Uα0 is
open, there exists ε > 0 such that B(x; ε) ⊆ Uα0 . Thus also, B(x; ε) ⊆ ∪αUα

and ∪αUα is open.
(b) Let x ∈ ∩N

n=1Un. Then x ∈ Un for all n and for each n there is an
εn > 0 such that B(x; εn) ⊆ Un. Let ε be the smallest of the εn. Then
B(x; ε) ⊆ B(x; εn) ⊆ Un for all n and hence B(x; ε) ⊆ ∩N

n=1Un. Therefore
∩N

n=1Un is open.

Corollary 4.

(a) Let {Fα} be a system (finite, countable or uncountable) of closed sets in a

metric space X. Then ∩αFα is closed.

(b) Let {Fn}N
n=1 be a finite system of closed sets in X . Then ∪N

n=1Fn is closed.

Example 5. (a) The set (0, 1) ⊆ R is open in R with the usual absolute value

metric. The set [0, 1] is closed in R because its complement, the union of two

open intervals, is an open set. The sets ∅ and R are both open and closed as

subsets of R. The set (0, 1] is neither open nor closed in R.

(b) Any singleton (that is, a set consisting of only one point) in R is closed. The

set [0, 1] ∪ {2} is closed in R as it is the union of two closed sets.

(c) Any subset M of a metric space (X , d) where d is the discrete topology is

closed.

(d) Let Fn = [1/n, 1− 1/n]. Then each Fn is closed but ∪∞n=1Fn = (0, 1) which

is not closed.
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(e) Let Un = (−1/n, 1 + 1/n). Then each Un is open but ∩∞n=1Un = [0, 1] which

is not open.

Definition 6. The point x ∈ X is a closure point of M⊆ X if for every ε > 0

B(x; ε) contains a point of M. (Kolmogorov calls such a point a contact point.)

The point x ∈ X is a limit point or an accumulation point of M if for every

ε > 0, B(x; ε) contains infinitely many points of M. Equivalently, x ∈ X is a

limit point of M if for all ε > 0, B(x : ε) contains a point of M\ {x}.
A closure point of M which is not a limit point of M is called an isolated

point.

Lemma 7.

(a) A point x is a closure point of M if and only if there is a sequence of points

{xn} of M converging to x.

(b) A point x is a limit point of M if and only if there is a sequence of distinct

points {xn} of M converging to x.

(c) An isolated point of M must be in M.

Proof: (a) For each n, let ε = 1/n and choose xn ∈ B(x; 1/n) ∩M. Then
xn ∈M for each n and xn → x.

(b) Use the same procedure as in (a) to choose the xn but since x is an
accumulation point, we can guarantee that xn is not equal to x nor to any
of the (finitely many) previously chosen points.

(c) Suppose that x is an isolated point of M which is not in M. Let
ε1 = 1 and let x1 be any point in B(x; ε1) ∩M. Note that x1 6= x. Let
ε2 = min{1/2, d(x, x1)} and choose x2 to be any point in B(x; ε2) ∩M.
Continue in this fashion, letting εn = min{1/n, d(x, xn−1)}, and choosing
xn to be any point in B(x; εn) ∩M. Since εn ≤ 1/n, xn → x, and since
d(x, xn) < d(x, xn−1), xn is not equal to any of the previously chosen
xm. Thus {xn} is a sequence of distinct points in M converging to x. By
definition then x is a limit point of M and hence cannot be an isolated
point.

Definition 8. The closure of M is the set of all closure points of M, and is

denoted [M]. Note that the closure of M consists of M together with all of its

limit points. A subspace (M, d) is closed provided that M is closed.

Example 9. (a) The set M = (0, 1) ⊆ R is not closed in R because 1 is a

closure point of M but is not in M.

(b) The point 2 is a closure point of the set M = [0, 1] ∪ {2}. In fact it is an

isolated point of M.
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(c) Any subset M of a metric space (X , d) where d is the discrete topology is

closed.

Lemma 10. Let M be a subspace of a metric space X . Then the following are

equivalent.

(a) M is closed.

(b) [M] = M.

(c) Every convergent sequence {xn} ⊆ X satisfying {xn} ⊆ M converges to an

element of M.

Proof: (a)⇐⇒(b). Assume that M is closed. Since [M] consists of M
together with its limit points, always M⊆ [M]. Suppose x /∈M. Since M
is closed its complement is open and since x is in that complement there is
an ε > 0 such that B(x; ε) ∩M = ∅. But by definition, this means that x
is not a closure point of M so that x /∈ [M].

Now assume that [M] = M. It will be sufficient to show that [M] is
closed. If x /∈ [M] then x is not a closure point of M so that there is an
ε > 0 such that B(x; ε) ∩M = ∅. But since M = [M], B(x; ε) ∩ [M] = ∅
also. Therefore the complement of [M ] is open and [M ] is closed.
(b)⇐⇒(c). Assume that [M] = M and that and let {xn} be a sequence in
M converging to the point x. By the definition of convergence, for every
ε > 0 there is at least one of the xn in B(x; ε). Hence x is a closure point
of M and so is in [M]. But since [M] = M, x ∈M.

Now suppose that (b) does not hold and that there is a point x ∈ [M]
which is not in M. But by Lemma 7(a) there is a sequence {xn} in M
converging to x. But this means that (c) also does not hold.

Theorem 11. (Properties of Closure.)

(a) If M⊆ N then [M] ⊆ [N ].

(b) [[M]] = [M].

(c) [M∪N ] = [M] ∪ [N ].

Proof: (a) Let x ∈ [M]. Then for every ε > 0, B(x; ε) ∩M 6= ∅. Since
M⊆ N , B(x; ε) ∩N 6= ∅ also. Hence x ∈ [N ].
(b) This follows immediately from Lemma 10 and the fact that [M] is
closed.
(c) By part (a), and since both M and N are subsets of M∪N , [M] ∪
[N ] ⊆ [M∪N ]. By definition of closure, M ⊆ [M] and N ⊆ [N ], so that
M∪N ⊆ [M] ∪ [N ]. By part (a), [M∪N ] ⊆ [[M] ∪ [N ]] = [M] ∪ [N ] by
Lemma 10 and the fact that the union of two closed sets is closed.
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Lemma 12. A closed subspace of a complete metric space is complete.

Proof: Let M be a subspace of the complete metric space X , and let {xn}
be a Cauchy sequence in M. Then also, {xn} is a Cauchy sequence in X
and hence converges to some x ∈ X . Therefore, x is a closure point of M
but since M is closed, x ∈M. Hence M is complete.


