- Recall the triangle inequality on \mathbb{R} :

$$
|x+y| \leq|x|+|y| \quad \text { for all } x, y \in \mathbb{R} .
$$

- How would this generalize to \mathbb{R}^{2} ?
- Let's view points of \mathbb{R}^{2} as vectors: $\vec{x}=\left(x_{1}, x_{2}\right), \vec{y}=\left(y_{1}, y_{2}\right)$ be vectors in \mathbb{R}^{2}. We define their "norms" as

$$
\|\vec{x}\|:=\sqrt{x_{1}^{2}+x_{2}^{2}}, \quad\|\vec{y}\|:=\sqrt{y_{1}^{2}+y_{2}^{2}}
$$

- The norm of the vector measures the length of the arrow representing the vector.
- Then the triangle inequality says:

$$
\left\|\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right\| \leq\left\|\left(x_{1}, x_{2}\right)\right\|+\left\|\left(y_{1}, y_{2}\right)\right\| .
$$

Exercise.

Explain by means of a sketch why you should believe the triangle inequality is true, and also explain where the name "triangle inequality" comes from.

- The triangle inequality says $\left\|\left(x_{1}+y_{1}, x_{2}+y_{2}\right)\right\| \leq\left\|\left(x_{1}, x_{2}\right)\right\|+\left\|\left(y_{1}, y_{2}\right)\right\|$.
- This says $\sqrt{\left(x_{1}+y_{1}\right)^{2}+\left(x_{2}+y_{2}\right)^{2}} \leq \sqrt{x_{1}^{2}+x_{2}^{2}}+\sqrt{y_{1}^{2}+y_{2}^{2}}$.
- Squaring both sides, this is equivalent to

$$
\left(x_{1}+y_{1}\right)^{2}+\left(x_{2}+y_{2}\right)^{2} \leq\left(x_{1}^{2}+x_{2}^{2}\right)+\left(y_{1}^{2}+y_{2}^{2}\right)+2 \sqrt{x_{1}^{2}+x_{2}^{2}} \sqrt{y_{1}^{2}+y_{2}^{2}}
$$

- Opening the left side and canceling off the common square terms gives $2\left(x_{1} y_{1}+x_{2} y_{2}\right) \leq 2 \sqrt{x_{1}^{2}+x_{2}^{2}} \sqrt{y_{1}^{2}+y_{2}^{2}}$. Using "dot product notation" this gives us the Cauchy-Schwarz inequality:

Cauchy-Schwarz Inequality for vectors in \mathbb{R}^{2}

$$
\vec{x} \cdot \vec{y} \leq\|\vec{x}\|\|\vec{y}\|
$$

- So working backwards, we see that we would have the triangle inequality for vectors in \mathbb{R}^{2} if we could prove the above Cauchy-Schwarz Inequality.
- These things have obvious higher dimensional analogues. For vectors $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\vec{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ their norm and dot products are defined by:

Norm and dot products in \mathbb{R}^{n}

$$
\begin{gathered}
\|\vec{x}\|:=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots x_{n}^{2}}, \quad\|\vec{y}\|:=\sqrt{y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}}, \\
\vec{x} \cdot \vec{y}:=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} .
\end{gathered}
$$

- Then we claim that the Cauchy-Schwarz Inequality holds and one can use it to deduce the triangle inequality in \mathbb{R}^{n} :

Cauchy-Schwarz inequality in $\mathbb{R}^{n}:|\vec{x} \cdot \vec{y}| \leq\|\vec{x}\|\|\vec{y}\|$
Triangle Inequality in $\mathbb{R}^{n}:\|\vec{x}+\vec{y}\| \leq\|\vec{x}\|+\|\vec{y}\|$.

- We will show a proof that works in any \mathbb{R}^{n}. But we will do more. We'll will prove it for an "infinite dimensional" generalization of \mathbb{R}^{n}, the so-called L^{2} space.
- Let $f, g:[a, b] \rightarrow \mathbb{R}$. We think of a vector \vec{x} as having components $x_{1}, x_{2}, \ldots, x_{n}$. We can think of f as also being a vector, except that it has infinitely many components:

For each $x \in[a, b]$, think of $f(x)$ as representing the " x-th" component of f.

- Then we can define a new norm $\|f\|_{2}$ and a new dot product $<f, g>$ where the sums in the above box go over into integrals:

$$
\begin{gathered}
\frac{\text { Norm and inner products for } f, g:[a, b] \rightarrow \mathbb{R}}{\|f\|_{2}:=\sqrt{\int_{a}^{b}(f(x))^{2} d x}, \quad\|g\|_{2}:=\sqrt{\int_{a}^{b}(g(x))^{2} d x}} \\
<f, g>:=\int_{a}^{b} f(x) g(x) d x
\end{gathered}
$$

- Note that this new norm is determined by the inner product:

$$
\|f\|_{2}^{2}=<f, f>
$$

- Note also that the inner product is symmetric:

$$
<f, g>=<g, f>
$$

and also linear in the first variable:

$$
\left\langle f_{1}+f_{2}, g\right\rangle=\left\langle f_{1}, g\right\rangle+\left\langle f_{2}, g\right\rangle, \quad<c f, g>=c<f, g>
$$

Cauchy-Schwarz and Triangle Inequalities for $f, g:[a, b] \rightarrow \mathbb{R}$

Theorem

Let $f, g:[a, b] \rightarrow \mathbb{R}$. Suppose that $f, g \in \mathscr{R}[a, b]$. Then the following are true.
(i) We necessarily have that $f g$ is also Riemann integrable on $[a, b]$.
(ii) (Cauchy-Schwarz Inequality) $|<f, g>| \leq\|f\|_{2}\|g\|_{2}$.
(iii) (Triangle Inequality for $\left.L^{2}[a, b]\right)\|f+g\|_{2} \leq\|f\|_{2}+\|g\|_{2}$.

Exercise.

a) Let $a, b, c \in \mathbb{R}$ with $a>0$. Say we know that for all $t \in \mathbb{R}$ we have

$$
a t^{2}+b t+c \geq 0
$$

What can we say about a, b and c ?
b) Write a proof of the theorem. You will find the first part of this exercise useful in doing the proof.
c) Use the ideas of this proof to write a proof of the triangle inequality in \mathbb{R}^{n}.

Definition

The set $L^{2}[a, b]$ is defined to be the set of functions $f:[a, b] \rightarrow \mathbb{R}$ such that $(f(x))^{2}$ is Riemann integrable on $[a, b]$, that is $\int_{a}^{b}(f(x))^{2} d x$ exists and is finite.

- For functions $f \in L^{2}[a, b]$, the quantity $\|f\|_{2}=\sqrt{\int_{a}^{b}(f(x))^{2}} d x$ is called the L^{2}-norm of f.
- Note that it is almost a "norm" in the sense we have defined earlier in the course; do you see which property of a norm it fails to satisfy?
- The norm is defined by means of the "inner product" $<f, g>:=\int_{a}^{b} f(x) g(x) d x$, since $\|f\|_{2}^{2}=<f, f>$.
- Thus we can view $L^{2}[a, b]$ as being a normed space (actually an "inner product space").
- But it turns out that it is not a Banach space, i.e. not all Cauchy sequences converge.
- However, if we replace the Riemann integral by the Lebesgue integral, then the corresponding $L^{2}[a, b]$ becomes a complete space, so it is a Banach space. In fact it is then a "complete inner product space" and that is known as a Hilbert space.

