Example 1

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be the sequence $1,-2,3,-4,5,-6,7,-8,9,-10, \ldots$ so it is given by $x_{n}=(-1)^{n+1} n$.

Example 2

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be the sequence $1,2,3,1,5,6,1,8,9,1,11,12,1,14,15,1,17,18,1, \ldots$

- Roughly speaking, a subsequence of a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is obtained by choosing infinitely many values from the given sequence, where each successive choice is made by taking a larger index (i.e. looking farther out in the sequence).

Exercise.

a) Give a few reasons you know that the sequences in Example 1 and Example 2 are divergent.
b) Write down a few examples of subsequences of the sequence in Example 1.
c) Write down a few examples of subsequence of the sequence in Example 2.
d) Do either of the sequences in Example 1 or Example 2 have the property that it has a convergent subsequence?

Example 3.

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be the sequence $x_{n}=\cos n$.

Exercise.

a) Write out the first several terms of the sequence in Example 3.
b) Can you tell whether or not the sequence converges?
c) Can you tell whether or not the sequence has a convergent subsequence?

Example 4.

Let's define a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ as follows: For each $n \in \mathbb{N}$, let x_{n} be any number at all between 0 and 100 .

Exercise.

a) Is the sequence in Example 4 convergent?
b) If we try to answer the question
"does the sequence in Example 4 have a convergent subsequence?",
why does this question appear to be harder to answer than the same question with Example 1 or with Example 2?

- In this section our interest is in deciding for a given sequence whether or not we can be certain that the sequence has a convergent subsequence.
- We won't be able to decide completely, but
the Bolzano - Weierstrass theorem gives a sufficient condition on a given sequence which will guarantee that it has a convergent subsequence.
- So the theorem will guarantee that if the given sequence satisfies the hypothesis of the Bolzano-Weierstrass theorem, then we know for certain that the sequence has a convergent subsequence, even if we don't know how to explicitly write that subsequence down.

Before we state the theorem, let's first give a formal definition of subsequence of a sequence.

Definition

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence. Let $n_{1}<n_{2}<n_{3}<n_{4}<\ldots$ be a strictly increasing sequence of natural numbers. Let $\left\{y_{k}\right\}_{n=1}^{\infty}$ be the sequence defined by $y_{k}:=x_{n_{k}}$. Then the sequence y_{k} is called a subsequence of the sequence x_{n}.

Alternate Definition

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence. We say that sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ is a subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ if there exists a function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ which is strictly increasing such that $y_{n}=x_{\phi(n)}$ for every n.

Exercise.

Consider the sequence of Example 2: $1,2,3,1,5,6,1,8,9,1,11,12,1,14,15,1,17,18,1, \ldots$.
a) Using the alternate definition, what subsequence do we get if we take $\phi(n)=2 n$?
b) What choice of $\phi(n)$ gives the subsequence $1,1,1,1, \ldots$?

Alternate Definition

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence. We say that sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ is a subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ if there exists a function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ which is strictly increasing such that $y_{n}=x_{\phi(n)}$ for every n.

Exercise.

Suppose $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{y_{n}\right\}_{n=1}^{\infty},\left\{z_{n}\right\}_{n=1}^{\infty}$ are three sequences for which $\left\{y_{n}\right\}_{n=1}^{\infty}$ is a subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{z_{n}\right\}_{n=1}^{\infty}$ is a subsequence of $\left\{y_{n}\right\}_{n=1}^{\infty}$. Prove that $\left\{z_{n}\right\}_{n=1}^{\infty}$ is a subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$

Is it possible that boundedness or unboundedness has something to do with whether or not a sequence has a convergent subsequence?

Exercise.

Write down two sequences with the following properties:

- Both sequences consist entirely of positive numbers.
- Both sequences are unbounded.
- The first sequence does not have a convergent subsequence, but the second sequence does have a convergent subsequence.

Exercise.

So what does the above exercise tell you about what the Bolzano-Weierstrass theorem can definitely not be?

Exercise.

a) Recall that Example 4 had a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ consisting of randomly chosen numbers between 0 and 100. Why is it plausible that this sequence has a convergent subsequence?
b) This example suggests a conjecture as to what might be a sufficient condition to guarantee that a sequence must have a convergent subsequence. What is that condition?

Theorem (Bolzano-Weierstrass)

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be any bounded sequence. Then $\left\{x_{n}\right\}_{n=1}^{\infty}$ has a convergent subsequence.

Comments on the proof

- It is sufficient to show that the sequence has a Cauchy subsequence. The result will then follow from the completeness axiom of \mathbb{R}.
- This is done using the method of interval halving. We show how to construct a nested decreasing sequence of intervals $I_{n}=\left[a_{n}, b_{n}\right]$ such that $\left(b_{n}-a_{n}\right) \rightarrow 0$ and a subsequence y_{n} of the original sequence such that $y_{n} \in I_{n}$ for each n. Then y_{n} is automatically Cauchy.
- Let $I_{1}=\left[a_{1}, b_{1}\right]$ be any closed interval which contains the entire sequence. This is possible since the sequence is bounded. Let $n_{1}:=1$ and $y_{1}:=x_{n_{1}}=x_{1}$.
- The key idea which makes the proof work is the fact that
either the left half or the right half of I_{1} must contain infinitely many terms of the sequence,
so we let I_{2} be the half which does contain infinitely terms of the sequence, and we let y_{2} be a specific term $x_{n_{2}}$ of the sequence which is in I_{2}.
- After that, we apply the same idea on I_{2} to produce an interval I_{3} and a number y_{3}. The rest of the intervals and points are obtained in a similar manner.

Theorem (Bolzano-Weierstrass)

Let x_{n} be any bounded sequence. Then x_{n} has a convergent subsequence.

Exercise.

Use the comments on the previous slide to write the proof of the Bolzano-Weierstrass Theorem

Example

Revisit Examples 3 and 4. Explain how we know that those sequences must have convergent subsequences.

Exercise.

Formulate a theorem like the Bolzano-Weierstrass Theorem which applies to all sequences, including sequences which are unbounded. Thus it should read

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence such that (you fill in the blank).
Then $\left\{x_{n}\right\}_{n=1}^{\infty}$ has a convergent subsequence.

