
A QUICK NOTE ON ÉTALE STACKS

DAVID CARCHEDI

Abstract. These notes start by closely following a talk I gave at the “Higher

Structures Along the Lower Rhine” workshop in Bonn, in January. I then give

a taste of some applications to foliation theory. Finally, I give a brief account
on the general theory of étale stacks.

1. Étale Differentiable Stacks

Disclaimer: Throughout these notes, manifolds will not be assumed paracom-
pact, 2nd-countable, or even Hausdorff.
Idea: Étale stacks are like manifolds whose points posses intrinsic (discrete) auto-
morphism groups.

Examples:

1) G a discrete group, M a smooth manifold, G M a smooth action

;M//G -“the stacky quotient”

There is a (surjective) projection π : M →M//GmakingM into a principal
G-bundle over M//G, and given a point x ∈M,

Aut (π (x)) ∼= Gx - the stabilizer subgroup.

2) X locally of the form M//Gi, for Gi finite groups ⇔ X is an orbifold.
3) (M,F) a foliated manifold,

M//F -the “stacky leaf space.”

L : ∗ →M//F a leaf has

Aut (L) ∼= Hol (L) - holonomy group.

Étale stacks form a bicategory:

Rough Idea: The points of an étale stack X form not just a set, but a groupoid. If

M X ,

ϕ

##

ψ

;;
α
��

with M a manifold and X an étale stack, then for all points x ∈M,

α (x) : ϕ (x)→ ψ (x)
1
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is an arrow in this groupoid. In particular, such an arrow must be invertible ⇒
Hom (M,X ) is a groupoid.

So given an étale stack X , we get a functor

Mfdop
X̂

−−−−−−−→ Gpd

M 7−→ Hom (M,X ) .

This functor completely characterizes X . Instead of describing what an étale stack

is geometrically, we can characterize those functors of the form X̂ . This is the
“functor of points approach.”

What properties must such a functor satisfy?

Need continuity: If U = (Uα) is an open cover of M, morphisms

ϕα : Uα →X

together with coherent isomorphisms

ϕα|Uα∩Uβ ∼= ϕβ |Uα∩Uβ ,

should be the same as morphisms

M →X ,

i.e. X̂ is a stack.

To see what other properties we need to characterize X̂ , lets turn back to our
examples:

1) There is an action groupoid GnM :

objects: M
arrows: G×M, where a pair (g, x) : x→ g · x.

This is a groupoid object in Mfd, and the source and target maps (s, t) are
local diffeomorphisms. ⇒ GnM is an étale Lie groupoid, and

M//G 'M// (GnM)1 .

3) There exists a Lie groupoid Hol (M,F) ⇒ M, whose arrows are given by
holonomy classes of leaf-wise paths. Hol (M,F) is Morita equivalent to an
étale Lie groupoid and

M//F 'M//Hol (M,F)1 .

3) If G M with G finite, then GnM is étale and proper
(Meaning (s, t) : G×M → M ×M is proper) and this is a local property.
Conversely, if G1 ⇒ G0 is étale and proper, G is locally of the form GinMi.
So orbifolds are stacky quotients of the form G0//G1 for étale and proper
Lie groupoids.

Idea: Étale stacks are “quotients” of the form G0//G1 for an étale Lie groupoid G.

More precisely:
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G is a Lie groupoid ; ỹ (G) : Mfdop → Gpd

M 7→ Hom (M,G1) ⇒ Hom (M,G0) .

In general ỹ (G) is not a stack. But the inclusion

St (Mfd) ↪→ GpdMfdop

of stacks into general presheaves of groupoids has left-adjoint a which canonically
associates to a given presheaf of groupoids its stackification.

Definition. Let G0//G1 := a (ỹ (G)) . Stacks of this form are called differentiable stacks.

A smooth functor G → H is a Morita equivalence ⇔ G0//G1 → H0//H1 an
equivalence. G and H are Morita equivalent if and only if there is a diagram of
Morita equivalences

K

��   

G H.

Maps G0//G1 → L0//L1 are the same as diagrams

K

��   

G L

with K → G a Morita equivalence. They may also be described by principal L
bundles over G (Hilsum-Skandalis maps.)

Definition. X ∈ St (Mfd) is an étale stack⇔X ' G0//G1, with G Morita equiv-
alent to an étale Lie groupoid.

1.1. Sheaf Theory. Recall: If M is a manifold, and F ∈ Sh (M) a sheaf, there
exists an étalé space

L (F )
L(F )

−−−−−−−→M,

which is a local diffeomorphism such that sections of L (F ) over an open subset

U ⊂M 1:1←→ elements of F (U)(
L (F ) =

∐
x∈M

Fx,

)
and we have an adjoint equivalence

Sh (M)
L
//Et/M

Γoo ,

with L a Γ, where Et/M is the category of local diffeomorphisms over M.
We will generalize this for étale stacks:
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Definition. A morphism G0//G1 → H0//H1 with G and H étale is a local diffeo-
morphism if and only if it corresponds to a diagram

K

Mor .∼

��

ϕ

��

G H

with ϕ0 a local diffeomorphism.

Given an étale Lie groupoid, the canonical projection G0 → G0//G1 is always a
local diffeomorphism.

Define a category Site (G) :

objects O (G0) open subsets.
arrows

U � p

  

f
// VnN

~~

G0

$$

α

8@

G0

zz

G0//G1

.

Sh (Site (G)) ' BG - the category of equivariant sheaves on G0. (The classifying
topos of G.) If G and H are Morita equivalent, BG ' BH, so if X ' G0//G1,
one may define its category of sheaves to be sheaves over Site (G) , and this is well
defined. Even more, one may define the 2-category of stacks of groupoids over X ,
by

St (X ) ' St (Site (G)) .

Theorem (D.C). For an étale differentiable stack X ' G0//G1, there is an adjoint
equivalence

St (X )
L
//Et/X

Γoo ,

where Et/X is the bicategory of local diffeomorphisms Y → X , with Y an étale
differentiable stack. Moreover, for each Z ∈ St (X ) , and U ⊂ G0 open, Z (U) is
equivalent to the groupoid of sections

L (Z )

L(Z )

��

U �
�

//

σ

99

G0
//

α
19

X .

L (Z ) is called the étalé realization of Z . Notice that even when X = M is a
manifold, this gives something new, as it says any stack of groupoids on a manifold
comes from sections of a local diffeomorphism Y →M from an étale differentiable
stack.
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1.2. Haefliger Groupoids and Effectivity.

Definition. Let M be a manifold, H (M) is the étale Lie groupoid, called the
Haefliger groupoid of M, whose objects are M and whose arrows are germs of
locally defined diffeomorphisms.

Given G étale and x
g→ y in G, choose a neighborhood U 3 g over which s and t

are injective

; t ◦ (s|U )
−1

is a local diffeomorphism x 7→ y

; G→ H (G0) (which is a local diffeomorphism).

Definition. G is effective ⇔ G→ H (G0) is faithful.

In fact, we can construct an étale Lie groupoid out of these germs to produce
Eff (G) , the effective part of G, and G is effective ⇔ G→ Eff (G) is an isomorphism.
Effectivity is Morita invariant, therefore we can make the following definition:

Definition. An étale differentiable stack X is effective if X ' G0//G1 for G an
effective étale Lie groupoid.

Geometric meaning: For an étale stack X ' G0//G1, with π : G0 → X the
canonical quotient map, and a point x ∈ G0, the automorphism group Aut (π (x))
acts on the germ of G0 around x. X is effective if and only if each of these actions
are faithful.

Proposition. For M and N connected manifolds,

H (M) 'Mor . H (N)⇔ dim (M) = dim (N) .

Definition. Let

H :=

∞∐
n=0

(Rn//H (Rn)1) '

( ∞∐
n=0

Rn
)
//H

( ∞∐
n=0

Rn
)

1

.

H is the universal étale stack.

Given an étale stack X ' G0//G1, with dim (G0) = n, we have the composite

X ' G0//G1 → G0//H (G0)1 ' Rn//H (Rn)1 ↪→ H,
denoted by efX . It is a local diffeomorphism, hence corresponds to a stack of
groupoids Ef X over H.

Theorem (D.C). X is effective ⇔ Ef X is in fact a sheaf (of sets) over H.

Theorem (D.C). H is a terminal object in the bicategory EtStet of étale differen-
tiable stacks and local diffeomorphisms, and hence

EtStet ' EtStet/H ' Et/H ' St (H) .

Theorem (D.C). Let Mfdet denote the category of smooth manifolds and local
diffeomorphisms. Then there is a canonical equivalence

ω : St (H)
∼−→ St

(
Mfdet

)
.

Moreover, the induced equivalence

EtStet ' St
(
Mfdet

)
sends a manifold M to its representable sheaf.
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What this last theorem basically says is, if you have any stack Z ∈ St
(
Mfdet

)
,

that is some moduli problem which is functorial with respect to local diffeomor-
phisms, then there exists a unique étale differentiable stack Z̃ , such that for a
given manifold M , the groupoid Z (M) is equivalent to the groupoid of local dif-

feomorphisms from M to Z̃ . Conversely, given any étale differentiable stack X , it
determines a stack on manifolds and local diffeomorphisms by assigning a manifold
M the groupoid of local diffeomorphisms from M to X . These operations are in-
verse to each other.

As an example: Let R :
(
Mfdet

)op → Set be the functor which assigns a manifold
M its set of Riemannian metrics. This is not even a functor on Mfd, but it is
functorial with respect to local diffeomorphisms, and in fact is a sheaf. So there
exists an étale differentiable stack R, such that local diffeomorphisms

M → R

are the same as Riemannian metrics on M. We call R the classifying stack for
Riemannian metrics (In fact, the proof of the equivalence tells you not only the
existence of such an R, but also an explicit étale Lie groupoid model.)

Corollary. There is a canonical equivalence EtSteteff ' Sh
(
Mfdet

)
, between effec-

tive étale differentiable stacks and local diffeomorphisms, and sheaves on Mfdet .

Given any stack Z of groupoids, one can always take isomorphism classes object-
wise to get a presheaf of sets, and then sheafify the result to get a sheaf, denoted
by π0 (Z ) . This produces a left adjoint π0 to the inclusion of sheaves (of sets) into
stacks (of groupoids).

Theorem (D.C). Under the equivalences

EtStet ' St
(
Mfdet

)
and

EtSteteff ' Sh
(
Mfdet

)
,

the left adjoint π0 : St
(
Mfdet

)
→ Sh (Mfd)

et
corresponds to the functor sending an

étale stack X to its effective part Eff (X ) .

Let j : Mfdet → Mfd be the canonical inclusion. Given any stack Y ∈ St (Mfd) ,
one may restrict it to Mfdet to get a stack j∗Z , hence producing a restriction
functor

j∗ : St (Mfd)→ St
(
Mfdet

)
.

This functor actually has a left adjoint,

j! : St
(
Mfdet

)
→ St (Mfd)

called the prolongation functor.

Theorem (D.C). A stack X ∈ St (Mfd) is an étale differentiable stack if and
only if it is in the essential image of j!.
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1.3. Applications to Foliation Theory. Étale differentiable stacks are also enjoy
an intimate connection with foliation theory. For example, after recasting into the
language of étale stacks, one has the following theorem:

Theorem. (Haefliger, Moerdijk, Kock) For M a smooth manifold, equivalence
classes of submersions

M → H
are in bijection with regular foliations on M .

(If it factors through Rq//H (Rq)1 , then it is a q-codimensional foliation.)

Fact: Given any submersion X → Y between étale stacks, if factors uniquely as

X → Y ′ → Y

with X → Y ′ a submersion with connected fibers, and Y ′ → Y and local diffeo-
morphism which encodes a sheaf. (Not all local diffeomorphisms encode a sheaf, as
the sections could form a groupoid rather than a set.) Moreover, if F : M → H is
a submersion classifying a foliation on M , the factorization is given by

M →M//Hol (M,F)1 → H,

where Hol (M,F) is the holonomy groupoid of the foliation, and the map

M//Hol (M,F)1 → H

is the unique local diffeomorphism (since H is terminal). We denote

M//F := M//Hol (M,F)

and call it the stacky leaf space. When the leaf space happens to be a manifold, it
agrees.

Example 1. Let R be the classifying stack for Riemannian metrics. Suppose that

M → R

is a submersion. Then it factors uniquely as M → R′ → R, with M → R′ a
submersion with connected fibers, and R′ → R a sheaf. However, one can also
consider the composite

M → R→ H
by the unique local diffeomorphism R→ H. This is a submersion F : M → H so it
classifies a foliation. Moreover, it can be factored as the submersion with connected
fibers M → R′ follows by the sheaf R′ → R→ H (this uses that Riemannian metrics
form a sheaf not just a stack). By uniqueness, one has that R′ = M//F, so that
one gets a local diffeomorphism

M//F → R

between the stacky leaf space and the classifying stack for Riemannian metrics. So
this corresponds to a Riemannian metric on the stacky leaf space. One can show in
fact that such Riemannian metrics on M//F are the same as transverse metrics on
M with respect to the foliation F. (I had Camilo Angulo prove this while coadvising
his master class thesis.) Hence, one has that submersions into the classifying stack
for Riemannian metrics, classify Riemannian foliations.
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There is nothing too special about the sheaf assigning Riemannian metrics, other
than that it is a sheaf, so this is quite a general phenomenon. For example, one
could equally as well work with sheaf of symplectic forms, and classify foliations
with transverse symplectic structure. This general machinery establishes a kind of
correspondence between effective étale stacks, and classifying objects for foliations
with transverse structure. It’s worth mentioning that there is a way to bring leaf-
wise structures into the game as well, but I haven’t fully worked out the theory
yet.

2. Beyond Differential Geometry

After discovering these nice facts about étale differentiable stacks, I started won-
dering if this was really just a special case of a more general theory. For example,
can one make similar statements about the Deligne-Mumford stacks in algebraic
geometry? How about derived such gadgets, such as the spectral schemes of Lurie?
The answer is quite wonderfully YES! This has to do with the beautiful theory of
structured ∞-topoi. I know the word topos can be a bit off-putting, even with-
out the ∞-symbol, so let me just say a few words about why this is not nearly as
complicated as it sounds.

The basic idea is that for each n, there is the concept of an n-topos, which
is basically sheaves of (n− 1)-groupoids on some site (where I mean homotopy
sheaves, e.g., a sheaf of 1-groupoids is what I have been calling a stack). With
a bit of “negative thinking” one sees that the concept of n-groupoid makes sense
for n = −1, so one can define 0-topoi. 0-topoi are basically the same thing as
a topological space! (To be honest, they are actually locales, but this is a minor
point). In this way, one sees that n-topoi for various n are just categorifications of
the concept of a topological space.

Now suppose that one considers all smooth manifolds of the form Rn as locally
ringed spaces. In particular, they are locally ringed topoi. One can then look at
all locally ringed topoi which can be covered by open subsets of Rn (regarded as
a locally ringed topoi). This is basically how we define n-manifolds. In fact, a
topological space M is a smooth n-manifold, if and only if Sh (M) can be made
into a locally ringed topos with this property. But when you do this with all 1-topoi
instead of just spaces (0-topoi), then you get more than manifolds. The full sub-
category of locally ringed topoi you get by gluing Rn’s for various n’s is equivalent
to the bicategory of étale differentiable stacks. Moreover, one can start considering
higher topoi. If we allow 2-topoi in the picture, we get something equivalent to
stacks of 2-groupoids on Mfd coming from étale Lie 2-groupoids etc. If you go
all the way to infinity topoi, you get a full-fledged theory for étale differentiable
∞-stacks.

This is a very general procedure. For example, if instead of starting with Rn’s,
one starts with the collection Sh (Spec (A)et) of the étale topos of each affine scheme
(with their appropriate structure sheaf), one arrives at a bicategory equivalent
to Deligne-Mumford stacks (with no separation conditions). Similarly for various
types of derived schemes. It follows that there should be a general theory of étale
stacks, which is about building structured ∞-topoi out of local models. Most of
the theorems in these notes generalize to this setting, with the important exception
of universal stacks. To have a universal étale stack like H, the local models have to
form a set. Even for building ordinary schemes, one cannot get away with any set
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of affine schemes. However, one can still show e.g. that Deligne-Mumford stacks
are characterized by prolongations of stacks on the site of affine schemes and étale
maps (with some appropriate size-theoretic conditions). All this seems to be new,
and is the subject of a paper I am currently working on.
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