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Abstract. Variable splitting schemes for the function space version of the
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in its primal and pre-dual formulations are considered. In the primal splitting
formulation, while existence of a solution cannot be guaranteed, it is shown
that quasi-minimizers of the penalized problem are asymptotically related to
the solution of the original TV-problem. On the other hand, for the pre-dual
formulation a family of parametrized problems is introduced and a parameter
dependent contraction of an associated fixed point iteration is established.
Moreover, the theory is validated by numerical tests. Additionally, the augmented
Lagrangian approach is studied, details on an implementation on a staggered grid
are provided and numerical tests are shown.
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1. Introduction

Variable splitting and associated alternating algorithms have been recently
successfully applied to discrete models in image reconstruction and denoising based
on total variation (TV) regularization; see for example, [10, 15, 32, 41–43]. The basic
idea consists in the introduction of one or more new variables, a penalized problem
and the resolution of two (or more) minimization problems significantly simpler than
the original one. Algorithmically, this results in a sequence of nested iterations, which,
on the discrete level, may exhibit an (image) resolution dependent convergence. As
the penalty parameter is increased, one nevertheless expects that the solution of the
original problem is approached. While this expectation may be justified in finite
dimensions, in infinite dimensions new difficulties arise which render the existence
of solutions of various sub-problems and the passage to the limit with the pertinent
penalty parameter as delicate matters.

To the best of our knowledge, infinite dimensional analysis of such splitting and
alternating minimization approaches in the appropriate Banach space setting have
not yet been considered in the context of the TV-problem. Typically, rather the
finite dimensional problem is studied in the literature (see [14], for example). The
work by Setzer in [36] comes closest to the aforementioned function space analysis.
However, it is confined to problems in Hilbert space settings only, whereas the TV-
problem requires the non-reflexive space of functions of bounded variations as the
associated solution space. In general, the study of infinite dimensional versions of
variable splitting and other alternating minimization algorithms is motivated (among
other reasons) by the possibility of obtaining mesh-independent numerical solution
schemes upon discretization.

In the present paper, we are interested in studying splitting and associated
alternating direction methods in function space; more precisely in the original non-
reflexive Banach space associated with the TV-problem. In this context we consider
the primal as well as the pre-dual formulations of the problem, and we study associated
splitting techniques. Interestingly, it turns out that the existence of a solution to the
associated penalized primal problem cannot be guaranteed, in general. Rather ε-
minimizers in the sense of Ekeland’s variational principle can be assured only. For
the penalized pre-dual problem, however, solutions do exist. As a consequence, the
Bregman iteration or augmented Lagrangian schemes are not well defined in the primal
context but can be shown to converge when applied to solving the pre-dual problem.
We emphasize that, upon discretization, such distinct features get lost.

The pre-dual problem is posed in the Hilbert space H0(div), which is the space of
L2-vector fields whose divergence is an element of L2(Ω) as well; here Ω represents the
image domain. For this reason we suggest a discretization of the penalized (and
associated) pre-dual problem on staggered grids. It is shown that this approach
compares favorably to energy based discretization techniques such as the one in [9].

In order to understand the difficulties associated when moving from finite
dimensional into infinite dimensional spaces, it is useful to consider the following.
In finite dimensions, the primal formulation of the total variation based denoising
problem reads:

min
∑
i

1

2
|ui − fi|2 + α|(∇hu)i|`2 over u ∈ RN×N , (1)

where ∇h is a discrete gradient, | · |`2 is the `2-norm in R2, α > 0 is the regularization
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parameter, and f ∈ RN×N is a given (possibly noisy) image. In this problem, for the
application of the an alternating minimization scheme, a new variable p = (p1, p2),
with p1, p2 ∈ RN×N , is introduced and the following penalized problem is considered:

min
∑
i

1

2
|ui− fi|2 +α|pi|`2 +

r

2
|(∇hu)i−pi|2`2 over u ∈ RN×N , p ∈ RN×N ×RN×N ,

(2)
where r > 0 denotes the penalty parameter and pi = (p1

i , p
2
i ). For large r > 0, it can

be shown that this problem is related to (1): Let rn →∞ and (un,pn) be a solution
to (2) for r = rn > 0 (note that the existence of solutions for (2) is guaranteed by
standard methods). Since the problem is coercive, we have (un,pn)→ (u∗,p∗), along
a subsequence still denoted by {(un,pn)} , for some (u∗,p∗) and also ∇hun → ∇hu∗
along the previously picked subsequence . Given that (un,pn) is a minimizer for (2),
it follows that rn

∑
i |(∇hun)i − pni |2`2 ≤

∑
i |fi|2 as (u,p) = (0, 0) is feasible for (2),

which implies that ∇hun → p∗ = ∇hu∗ for rn → ∞ . Furthermore, by standard
penalty arguments, one obtains rn

∑
i |(∇hun)i − pni |2`2 → 0 and that (u∗,p∗) is a

minimizer of (1).
The infinite dimensional analogue to the TV-problem is given by

min
1

2

∫
Ω

|u− f |2 + α|Du|(Ω) over u ∈ BV (Ω), (3)

where |Du|(Ω) is the total mass of the Borel measure Du determined by the
distributional derivative of u, and f ∈ L2(Ω) is given. If we follow the same procedure
as in the finite dimensional case, we need to introduce a new variable p in the same
space as Du, that is, p should be a Borel measure. As a consequence, the penalty
term r

2 |Du − p|2L2 appears no longer appropriate, since neither p nor Du need to
belong to L2(Ω) and might have no pointwise description over Ω. Ignoring this fact
and nevertheless adding r

2 |Du−p|2L2 to the objective in (3) with |Du|(Ω) replaced by
|p|L1 significantly changes the nature of the problem. As a consequence, existence of a
solution (u∗r ,p

∗
r) to the resulting penalized problem cannot be guaranteed, in general.

Furthermore, in case the penalty term is taken to be r
2 |Du − p|(Ω), then, although

the problem is now well-defined as we prove in section 2.1, there are no advantages in
the splitting approach over the original TV-formulation. This discussion is continued
in section 2.1 below where a solution to this issue is also proposed. In the case of the
pre-dual formulation, similar (yet more amenable) challenges are faced and solved in
section 3.1.

In section 2 we are concerned with a variable splitting approach for the primal
formulation of the TV-problem. We provide an infinite dimensional penalty framework
based on ε-minimizers in a sufficient regular state space which is amenable to numerical
implementation. Under appropriate conditions it is proven that the sequence of ε-
minimizers converges to the solution of (3). Furthermore, provided regularity and
boundedness assumptions hold true, we show that an augmented Lagrangian-looking
penalty functional exhibits the same behavior than the pure penalty method.

Section 3 is devoted to the variable splitting approach for the Fenchel pre-dual
formulation of the TV-problem. It is proven (Lemma 3.1) that the sequence of
minimizers of the associated penalized problem is well-defined and converges (in a
certain sense) to the solution of the pre-dual problem. Additionally, we show that it is
necessary to analyze the alternating algorithm within a different framework than the
standard backward-backward or forward-backward schemes; see, e.g., [30]. It is also
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shown that an augmented Lagrangian approach is suitable for the infinite dimensional
problem, in the sense that there exists a Lagrange multiplier such that the solution
of the splitting problem for the pre-dual formulation is a global minimizer of the
augmented Lagrangian, without the necessity of a limiting process for the penalty
parameter.

Details of a numerical implementation on a staggered grid for the pre-dual
formulation are provided in Section 4. Our numerical evidence shows that the
finite difference scheme on a staggered grid has advantages with respect to other
existing approaches in the literature; specifically, it is shown to reduce direction
dependent blurriness in reconstructions. We also show compatibility properties of
the discrete divergence and gradient operators and provide details on the numerical
implementation of the algorithms used throughout the paper on a staggered grid.
The section ends with comparative results obtained by the algorithms specified in the
paper and in the existing literature.

Notation. Let Ω ⊂ R2 be a bounded and open domain. We denote by Lp(Ω)
the usual Lebesgue space of real-valued functions on the domain Ω. The space Lp(Ω)
is defined as Lp(Ω) × Lp(Ω) such that f := (f1, f2) : Ω → R2 belongs to Lp(Ω) iff
fi ∈ Lp(Ω) for i = 1, 2. The Sobolev space W 1,1(Ω) contains weakly differentiable
functions in L1(Ω) whose weak derivatives also belong to L1(Ω) (see [1] for a definition
of the Sobolev space). It is endowed with the norm |v|W 1,1 = |v|L1 + |∇v|L1 .
Throughout the paper, strong convergence is denoted by “→” and weak convergence
by “⇀”. For a vector x ∈ R2, the Euclidian norm is denoted either by |x|`2 or |x|.

The Lebesgue measure of a measurable set Ω is denoted as |Ω|, and we say that
a property holds “a.e. in Ω”, if it is true in Ω except for a subset Ω0 ⊂ Ω such that
|Ω0| = 0.

We denote by L (V,W ) the vector space of bounded linear operators between the
normed vector spaces V and W endowed with the norm |G|L (V,W ) = sup|v|V =1 |Gv|W ,
for G ∈ L (V,W ).

The following results can be found in [3], which we also follow closely notation-
wise. We denote the set of R2-valued Borel measures by M(Ω; R2). If B is a Borel set,
then then total mass |µ|(B) for µ ∈M(Ω; R2) is defined as

|µ|(B) := sup

{ ∞∑
i=0

|µ(Bi)| :
∞⋃
i=0

Bi = B

}
, (4)

where the supremum is taken over all partitions of B in its Borel field. Note that
M(Ω; R2) is a Banach space when endowed with the norm µ 7→ |µ|(Ω). Additionally,
if µ ∈M(Ω; R2), then |µ| is a non-negative Borel measure and |µ|(B) =

∫
B

d|µ|.
The space of functions of bounded variation over Ω is denoted as BV (Ω) and it is

defined to be the space of functions u ∈ L1(Ω) with gradient Du (in the distributional
sense) in M(Ω; R2). Endowed with the norm

|u|BV = |u|L1 + |Du|(Ω),

BV (Ω) becomes a Banach space, and we write
∫

Ω
|Du| := |Du|(Ω) (in order to

avoid the notation
∫

Ω
d|Du|). Note that if u ∈ W 1,1(Ω), then u ∈ BV (Ω) and

|Du|(Ω) =
∫

Ω
|∇u|dx, where ∇u refers to the weak gradient of u. It can be proven

that ∫
Ω

|Du| = sup

{∫
Ω

u divvdx
∣∣ v ∈ C1

c (Ω; R2), |v(x)|`2 ≤ 1 a.e. x ∈ Ω

}
,
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where C1
c (Ω; R2) denotes the set of continuously differentiable functions u : Ω → R2

with compact support in Ω.

2. The primal formulation

This section is devoted to the study of a continuous analogue to the splitting
and penalty methods in [41] for the minimization of a discrete TV- problem . Let
Ω ⊂ R2 be an open, bounded image domain with Lipschitz continuous boundary ∂Ω,
and f ∈ L2(Ω) is a given noisy image. The continuous primal formulation of the
TV-problem (also called ROF-problem due to the seminal work by Rudin, Osher and
Fatemi in [35]) is given by

ū = arg min
u∈BV (Ω)

{
Jp(u) :=

1

2

∫
Ω

|u− f |2 + α|Du|(Ω)

}
, (5)

where α is a positive constant.
In many papers (see for instance [10, 32, 35, 41, 42]) finite dimensional versions of

(5) are considered. In this context, splitting techniques introducing a new variable
and penalizing (by means of the `2-norm) deviations of this new variable from
being the gradient of the reconstructed image are proposed. Such a procedure
circumvents the difficulties arising from the nonlinearity and the non-differentiability
of the regularization term. Moreover, the (local) convergence analysis of associated
iteration schemes for the numerical solution benefit from the discrete context, but
may lead to resolution-/mesh-dependent convergence. In the context of (5), however,
a straightforward extension to L2(Ω)-penalization (rather than the discrete `2-penalty)
appears no longer suitable as Du is a measure only. Furthermore, the non-reflexivity
of BV (Ω) challenges the existence of a solution of the reformulation of (5) relevant in
variable splitting approaches.

2.1. A primal variable splitting method

In [41], a primal variable splitting approach in finite dimensions was considered.
In this section we want to understand whether this approach can be related to the
original problem (5) and an associated variable splitting technique relying on L2(Ω)-
penalties. In fact, the function space analogue of the associated subproblem in the
variable splitting approach reads

min Epn(u,p) :=
1

2

∫
Ω

|u− f |2 + α

∫
Ω

|p|+ rn
2
|p−∇u|2L2 , over (u,p) ∈ X, (6)

where f ∈ L2(Ω), and for each n ∈ N we have Epn : X → R ∪ {+∞} with
X := W 1,1(Ω) × L1(Ω), rn > 0 for n ∈ N and rn → +∞ for n → +∞. Since
Epn is not coercive and X is not reflexive, existence of a solution to (6) cannot be
guaranteed for fixed n. As a remedy, we rather study the behavior of a sequence
{(un,pn)} in X associated with rn ↑ +∞. For this purpose, let (un,pn) satisfy

Epn(un,pn) ≤ inf
(u,p)∈X

Epn(u,p) + εn, (7)

for εn > 0, n ∈ N, with εn ↓ 0.
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Let us briefly comment on the choice of X in this context. First of all, W 1,1(Ω)
appears somewhat minimal for (6) and it is continuously embedded in BV (Ω). For
u ∈ W 1,1(Ω) we have ∇u ∈ L1(Ω) and |Du|(Ω) =

∫
Ω
|∇u|dx. We note that other

penalized unconstrained problems are conceivable for the splitting approach. A
particular example of a suitable objective is

BV (Ω)×M(Ω; R2) 3 (u,p) 7→ 1

2

∫
Ω

|u− f |2 + α|p|(Ω) + rn|p−Du|(Ω). (8)

In this case, minimizers do exist but the minimization problem is essentially at least
as complicated as the original TV-problem. Concerning the existence of a solution to
(8), let {(uk,pk)} be an infimizing sequence for (8). Then |pk|(Ω) < ∞, and hence
there exists p∗ ∈M(Ω; R2) such that pk → p∗ (along a subsequence) in the σ(C ′c, Cc)-
topology, where Cc and C ′c stand for Cc(Ω; R2) and its dual, respectively. Therefore,
we have that |p∗|(Ω) ≤ limk→∞ |pk|(Ω). Additionally, {uk} is bounded in L2(Ω) (and
hence in L1(Ω)) and {Duk} is bounded in M(Ω; R2) (by the boundedness of {pk}),
from which we infer that {uk} is bounded in BV (Ω). This implies that there exists
u∗ ∈ BV (Ω) such that uk ⇀ u∗ in L2(Ω) and Duk → Du∗ in the σ(C ′c, Cc)-topology
along a suitable subsequence; see Proposition 10.1.1. in [3] and Theorem 10.1.4., in the
same reference, for a proof of the compact embedding BV (Ω) ↪→ L1(Ω). Therefore,
we have

1

2

∫
Ω

|u∗ − f |2 + α|p∗|(Ω) + rn|p∗ −Du∗|(Ω) ≤

lim
k→∞

[
1

2

∫
Ω

|uk − f |2 + α|pk|(Ω) + rn|pk −Duk|(Ω)

]
,

i.e., {(u∗,p∗)} is a minimizer of (8). Additionally, a similar argument can be used to
show that the sequence of minimizers {(u∗n,p∗n)} of (8) satisfies u∗n ⇀ u∗∗ in L2(Ω),
pn → Du∗∗ in the σ(C ′c, Cc)- topology, both along a subsequence as rn → ∞, where
u∗∗ ∈ BV (Ω) solves the TV-problem. However, as noted before, in this variable
splitting scheme we have no advantages (neither theoretical nor numerical) over the
original TV-formulation as one still needs to handle the TV-seminorm | · |(Ω).

Now, we return to (5) and show that the minimization problem is associated with
asymptotic properties of the functional (6). The proof of the following result is given
in Appendix A.

Theorem 2.1 Let {(un,pn)} be the sequence in X which is defined by (7). Then, we
have

un → ū in L2(Ω) and

∫
Ω

|pn| → |Dū|(Ω), (9)

along a subsequence as n→∞, where ū ∈ BV (Ω) is given by (5).

Note that the penalized problem (6) can be formally related to the constrained
optimization problem

min Jp(u,p) :=
1

2
|u− f |2L2 + α|p|L1 over (u,p) ∈ X, (10)

subject to (s.t.) g(u,p) := ∇u− p = 0. (11)
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In finite dimensions, augmented Lagrangian methods have been applied successfully
for solving image reconstruction problems over the recent years; see for example
[10, 25, 42]. However, in the infinite dimensional context difficulties arise, not only
of theoretical nature but also associated with the numerical implementation of the
algorithm. For example, the functional X 3 (u,p) 7→ Jp(u,p) is not differentiable
and Lagrange multipliers associated with the constraint (11) might not exist. In
order to overcome these issues, the following theorem considers a “pseudo augmented
Lagrangian” setting, where the pseudo-Lagrange multipliers are regular objects.

For this purpose consider the sequences {rn} in R+ with rn+1 ≥ rn and
limn→∞ rn → ∞ and {λn} in L2(Ω) with supn∈N |λn|L2 < ∞. For each n ∈ N,
we define the extended real-valued functional Lprn : X × L2(Ω)→ R ∪ {+∞} as

Lprn(u,p,λn) :=
1

2
|u− f |2L2 + α|p|L1 +

rn
2
|p−∇u|2L2 +

∫
Ω

λn · (p−∇u) . (12)

Similarly as before, we consider a sequence {(un,pn)} in X of ε-minimizers of
(u,p) 7→ Lprn(u,p,λ). Let {εn} satisfy εn > 0 for all n ∈ N and εn ↓ 0. Moreover, for
a fixed n ∈ N let (un,pn) satisfy

Lprn(un,pn,λn) ≤ inf
(u,p)∈X

Lprn(u,p,λn) + εn. (13)

We observe that the sequence {(un,pn)} is well-defined since (u,p) 7→ Lprn(u,p,λn)
is bounded from below and, thus, admits an infimum over X. For the sake of brevity
suppose that rn ≥ 1. Then, completing squares in the last two terms of Lprn , we obtain
Lprn(u,p,λn) ≥ −|λn|L2 ≥ − supn∈N |λn|L2 > −∞. We are now in a position to state
(its proof is deferred to the Appendix A) the analogue to Theorem 2.1 but for the
functional Lprn .

Theorem 2.2 Let {(un,pn)} be the sequence defined by (13). Then the assertion of
Theorem 2.1 holds true.

2.1.1. The Discrete Augmented Lagrangian For the sake of keeping this paper self-
contained, we briefly specify the augmented Lagrangian method for solving a discrete
version of (10)-(11). For details see, e.g., [32, 42]. Given a penalty parameter rn > 0
and an (approximate) multiplier λ, the discrete augmented Lagrangian reads

Lpn,h(u,p,λ) := h2
∑

(i,j)∈Ωh

1

2
|ui,j − fi,j |2 + α|pi,j |+

rn
2
|pi,j − (∇hu)i,j |2

+ λi,j · (pi,j − (∇hu)i,j) ,

(14)

where Lpn,h : Xh → R ∪ {∞} with Xh := RN
2 × R2N2 × R2N2

. Note that for the ease

of exposition we assume that the discrete image domain Ωh consists of N2 = N ×N
pixels denoted by (i, j), which are uniformly distributed. Fixing Ω = (0, 1)2, this
implies that the (equi)distance between two neighbouring pixels is h = 1

N−1 . Further,
∇h denotes a difference approximation of ∇; see, e.g., [8] for a suitable one-sided
difference approximation, which we need to weight by 1/h to be consistent with the
scaling by h. The operator −divh represents the adjoint of ∇h.

In Algorithm 1, an alternating minimization scheme (see [32, 42]) for the
augmented Lagrangian is implemented. For a fixed penalty parameter rn, “suitable
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Algorithm 1 (Discrete primal augmented Lagrangian method)

1: Initialization. Choose (p0
n,h,λ

0
n,h) ∈ R2N2 × R2N2

and set k := 1.
2: Compute

ukn,h ∈ arg min
u

∑
(i,j)∈Ωh

1

2
|ui,j − fi,j |2

+
rn
2

∣∣∣∣(pk−1
n,h

)
i,j
− (∇hu)i,j

∣∣∣∣2 − (λk−1
n,h

)
i,j
· (∇hu)i,j .

3: Compute

pkn,h ∈ arg min
p

∑
(i,j)∈Ωh

α|pi,j |+
rn
2

∣∣∣pi,j − (∇hukn,h)i,j∣∣∣2 +
(
λk−1
n,h

)
i,j
· pi,j .

4: Set (
λkn,h

)
i,j

:=
(
λk−1
n,h

)
i,j

+ rn

((
pkn,h

)
i,j
−
(
∇hukn,h

)
i,j

)
, (i, j) ∈ Ωh.

5: Check stopping criteria. If suitable stopping criteria are met,
(u∗n,h,p

∗
n,h,λ

∗
n,h) = (ukn,h,p

k
n,h,λ

k
n,h); otherwise set k := k + 1 and return to

step 2.

stopping criteria” in step 5 of Algorithm 1 refer to the norm of the residual of the
first-order optimality conditions dropping below a user-specified tolerance. In step 3
of Algorithm 1, a soft-thresholding technique provides an explicit solution which
guarantees the first-order optimality condition of the p-subproblem. Thus, it suffices to
check whether the residual of the first-order optimality condition of the u-subproblem
in step 2, i.e.,

Rk
n,h := rndivh(pkn,h −∇hukn,h) + divhλ

k
n,h + ukn,h − f, (15)

sufficiently small in norm.
It is known (see [42] for a proof) that for any finite positive penalty parameter

rn > 0, a sequence {(ukn,h,pkn,h,λkn,h)}k∈N (generated by Algorithm 1) converges to

a saddle point of Lpn,h(u,p,λ), as k → ∞. Moreover the limit point of {ukn,h} is a
minimizer of the discrete ROF/TV-functional. In addition, the algorithm is equivalent
to the split Bregman method; see [21]. However, it is not clear whether one can obtain
the same convergence results in infinite dimensions. In fact, the update in step 2 of
Algorithm 1 might no longer be appropriate, as the Lagrange multiplier, if it exists
at all, might not allow for pointwise descriptions. A similar issue with respect to the
multiplier is also present in step 3. Moreover, the update rule in step 4 has to be
considered with care in order to reflect the (function space) regularity of the involved
quantities.

This concludes our analysis and numerical development for the primal problem.
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3. The Fenchel pre-dual formulation

It has been observed that a (pre)dual version of the TV-problem (5) are
numerically more amenable than its primal counterpart; see [8, 11, 23, 24]. In this
section, we therefore propose splitting algorithms for finding a solution of the TV-
problem (5) from a solution to its Fenchel pre-dual formulation:

s̄ ∈ arg min
s∈H0(div)

{
Jd(s) :=

1

2
|divs + f |2L2 : |s|`2 ≤ α a.e. in Ω

}
, (16)

where div ∈ L (H0(div), L2(Ω)), with

H0(div) =
{
s ∈ L2(Ω) : divs ∈ L2(Ω), s · ν = 0 on ∂Ω

}
and ν the outward unit normal vector on ∂Ω. For more information on (16) and
associated solvers see [23] and [13]. A solution of the TV-problem (5) is obtained from
s̄ by

ū = divs̄ + f in Ω. (17)

A main feature of the minimization problem (16) is that a minimizer need not be
unique due to the non-trivial kernel of the div-operator. In [23] an orthogonal
projection in L2(Ω) onto {s ∈ H0(div) : divs = 0 a.e. in Ω} is used in order to
obtain a unique solution in (16). In [24] a Tikhonov-type regularization in H1

0 (Ω)
is considered as a remedy against non-uniqueness. In the aforementioned paper it is
shown that the Tikhonov regularization in the pre-dual formulation (16) changes the
TV-regularization in the primal formulation (5) into a local Huber-type regularization.

As announced above, in recent years algorithms operating on the (pre-)dual
formulation of the TV- problem have become popular; see, e.g., [8, 23, 24]. While
in finite dimensions, the dual problem equals the pre-dual, this is not the case in
infinite dimensions as a consequence of the non-reflexivity of BV (Ω).

The primal-dual algorithms in [23, 24] in the infinite dimensional setting exhibit
local superlinear convergence. In order to obtain a solution of the TV- problem , the
Tikhonov-regularization parameters contained in these approaches need to vanish;
otherwise the iterates of the algorithms in [23,24] remain in a space more regular than
BV (Ω).

In finite dimensions, an algorithm for computing a minimizer of a discretized
version of Jd in (16) is proposed in [8], where its conditional convergence is also proved.
Moreover, concerning proper discretization of Jd, in [9] an upwind finite-difference
method is introduced and shown to reduce anisotropy of the reconstruction, when
compared to standard schemes like the ones in [8]. However, it is not straightforward
to extend the algorithms proposed in [8, 9] to infinite dimensional spaces.

3.1. A variable splitting method

In this and the next section we study (pre-)dual variable splitting and augmented
Lagrangian methods in function space, respectively. For this purpose let R ⊂ L2(Ω)
be defined as

R := {t ∈ L2(Ω) : |t(x)| ≤ α a.e. in Ω}, (18)
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and let δR denote the indicator function

δR(t) =

{
0 t ∈ R,
+∞ otherwise.

(19)

Utilizing a variable splitting approach by introducing t and considering

min Edn(s, t) :=
1

2
|divs + f |2L2 +

qn
2
|s− t|2L2 + δR(t) over (s, t) ∈ Y, (20)

where Y := H0(div) × L2(Ω) and Edn : Y → R ∪ {+∞}, for qn > 0 an approximate
version of (16) is obtained. Before we commence our study of (20), its relation to
(16) and its numerical realization, we discuss the current understanding of backward-
backward (BB) and forward-backward (FB) iterations for solving approximate versions
of (16), we then relate those methods to (20) and our proposed iterative scheme, which
is summarized in Algorithm 2 below. As a bottom line, we emphasize already here
that typical (BB)- or (FB)-iterations for solving (16) do not guarantee a function space
analysis, whereas our method does.

3.1.1. Backward-Backward and Forward-Backward schemes In this subsection we
propose a splitting alternating minimization algorithm (Algorithm 2 below) to
approximate solutions of (16). As the scheme can be written as a particular case of
a generalized version of either a backward-backward or forward-backward algorithm
(also called implicit-implicit and explicit-implicit scheme, respectively, see [30]). We
first review such methods in a general setting.

Suppose that A, B and A+B are maximal monotone operators (see for example [4]
for a definition of maximal monotone operator) over a Hilbert space H , respectively,
and C is a linear bounded operator on the same Hilbert space. We are interested in
the following abstract problem:

Find s ∈H , such that 0 ∈ (A+B)(s). (21)

The following algorithmic schemes are intended to solve (21): Given an initial guess
s0 ∈H , the backward-backward algorithm is given by

sk+1 = (I + λA)−1C(I + λB)−1sk, k = 0, 1, 2, . . . (BB)

and the forward-backward method by

sk+1 ∈ (I + λA)−1C(I − λB)sk, k = 0, 1, 2, . . . . (FB)

In the case C = I, (BB) and (FB) determine the classical backward-backward and
forward-backward algorithms, respectively. A general operator theoretic approach for
proving convergence of these algorithms was taken by Lions and Mercier (see [30]).
Specific applications of (FB) to variational inequalities can be found in [5, 6] and of
(BB) in [29]. For applications of (FB) to general convex constrained minimization,
the results trace back to the work of Goldstein (see [20]). Strong convergence of
the sequence of iterates generated by (BB) could be obtained assuming that B is
coercive, and strong linear convergence is implied if B is Lipschitz continuous and
strongly monotone (see [12, 30]). Although weak convergence may be obtained under
weaker conditions, convergence to a zero of A+B can only be guaranteed for weighted
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averages of {sk} if λ ≥ 0 is replaced by a sequence {λk} ∈ `2 \ `1 (see [29] and [33]).
Strong convergence of the sequence of iterates generated by (FB) depends on several
conditions. In fact, one requires Lipschitz continuity of B, with either A or B strongly
monotone and some extra hypothesis on λ (see [12,18] and [16] for a finite dimensional
account of the issue).

In order to anticipate some of the subsequent development we mention already
here, that in the case of our splitting algorithm, if we fit the iteration into either (BB)
and (FB) with C = I, the space H can be taken as H0(div) or L2(Ω). In either
scenario, we show that A and/or B do not satisfy the known conditions to provide
strong convergence. Furthermore, even weak convergence may not be guaranteed as
we show in section 3.1.3. We overcome these drawbacks by choosing C 6= I, providing
different state spaces for each step and by relaxing restrictions on A and B. Eventually,
we prove strong linear convergence of the iteration to an approximate solution of (16)
in Theorem 3.1.

3.1.2. Pre-dual splitting scheme. Now we return to (20) and show that minimizers
of Edn are closely related to problem (16) for n→∞, provided that limn→∞ qn =∞.

Lemma 3.1 For each n ∈ N, there exists a minimizer (sn, tn) of Edn : H0(div) ×
L2(Ω) → R. For qn → ∞ as n → ∞, one further has sn ⇀ s̄ (along a subsequence)
in H0(div) as n→∞, where s̄ is a solution to (16).

Proof. If t /∈ R, then Edn(s, t) = ∞. Hence, it suffices to consider the constrained
minimization problem

min Edn(s, t) over (s, t) ∈ YR, (22)

where YR := H0(div)×R ⊂ Y .
We first note that Edn is convex and prove that it is coercive on YR. For this

purpose, suppose that the sequence {(s`, t`)} in YR = H0(div)×R ⊂ Y , with ` ∈ N,
is unbounded. Since t` ∈ R and R is a bounded subset of L2(Ω) it follows that {t`} is
bounded and, thus, {s`} is unbounded in H0(div), i.e., |s`|L2 →∞ or |divs`|L2 →∞.
The reverse triangle inequality yields

Edn(s, t) ≥ 1

2
(|divs|L2 − |f |L2)2 +

qn
2

(|s|L2 − |t|L2)2, (23)

and hence Edn(s`, t`)→∞ as `→∞ , i.e., Edn is coercive over YR.
It follows directly that Edn is continuous and convex. Moreover, since YR ⊂ Y is

closed, Edn is weakly lower semicontinuous over YR. Since Y is reflexive, the problem
in (22) has a solution and consequently, for each n ∈ N, Edn has minimizers over Y .

For n ∈ N, let (s̄n, t̄n) ∈ Y be a minimizer of Edn. Next we study n → ∞ and
relate limit points to (16).

For the sake of simplicity assume that qn ≤ qn+1 for n ∈ N, otherwise we
can extract an increasing subsequence. Then, as (0, 0) ∈ YR, we infer 1

2 |f |
2
L2 =

Edn(0, 0) ≥ Edn(s̄n, t̄n) and Edn(s̄n, t̄n) ≤ Edn(s̄n+1, t̄n+1) ≤ Edn+1(s̄n+1, t̄n+1) for all
n ∈ N. It follows from standard arguments for penalty functions (see [31]) that
limn→∞

qn
2 |s̄n − t̄n|2L2 = 0.

Since {t̄n} in R is bounded in L2(Ω) and 1
2 |f |

2
L2 ≥ Edn(s̄n, t̄n), from the coercivity

of Edn we obtain that {s̄n} is bounded in H0(div). Thus, since H0(div) × L2(Ω) is a
Hilbert space, there exists a subsequence of {(s̄n, t̄n)} (again denoted by {(s̄n, t̄n)})
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for which (s̄n, t̄n) ⇀ (s̄, t̄) in H0(div) × L2(Ω) as n → ∞. Now, let s ∈ R ∩H0(div)
be arbitrary, but fixed. Then

1

2
|divs + f |2L2 = Edn(s, s) ≥ Edn(s̄n, t̄n) ≥ 1

2
|divs̄n + f |2L2 +

qn
2
|s̄n − t̄n|2L2 .

Using the weakly lower semicontinuity of the norm and limn→∞
qn
2 |s̄n− t̄n|2L2 = 0, we

obtain

1

2
|divs + f |2L2 ≥

1

2
|divs̄ + f |2L2 .

As R is weakly closed, we have that t̄ ∈ R. This fact and limn→∞ |s̄n − t̄n|L2 = 0
yield s̄ ∈ R ∩ H0(div). Finally, as s ∈ R ∩ H0(div) was arbitrary, s̄ is a solution to
(16). �

Remark. The previous theorem can be strengthened. In fact, besides s∗n ⇀ s∗ in
H0(div), one also has divs∗n → divs∗ in L2(Ω). However, whether s∗n → s∗ in H0(div),
remains an open question.

In order to study the convergence of our splitting algorithm, we introduce the
following auxiliary problems: For 0 < η < 1 let Gn,Gηn : H0(div) → R be defined
by Gn(s) := Edn(s, PR(s)) and Gηn(s) := Edn(s, ηPR(s)), where PR(s) is the L2(Ω)-
projection of s onto R, i.e.,

Gn(s) =
1

2
|divs + f |2L2 +

qn
2
|s− PR(s)|2L2 ,

Gηn(s) =
1

2
|divs + f |2L2 +

qn
2
|s− ηPR(s)|2L2 . (24)

We utilize an alternating minimization algorithm (Algorithm 2) for approximating
minimizers of (20). For this purpose and given some tk−1

η ∈ R, we introduce a new
family of problems, which depend on η ∈ (0, 1):

skη = arg min
s∈H0(div)

1

2
|divs + f |2L2 +

q

2
|s− ηtk−1

η |2L2 .

The update for tk−1
η is computed by tkη = PR(skη).

Algorithm 2 (Pre-dual variable splitting with η – approx. solution of (20))

1: Initialization. Choose t0
η ∈ R ⊂ L2(Ω) arbitrary and set k := 1.

2: Find

skη = arg min
s∈H0(div)

1

2
|divs + f |2L2 +

q

2
|s− ηtk−1

η |2L2 .

3: Find
tkη = arg min

t∈L2(Ω)

q

2
|skη − t|2L2 + δR(t).

4: Set k := k + 1 and return to step 2.

A few words on Algorithm 2 are in order. The introduction of the variable t in
the functional Edn(s, t) in (20) helps to handle the pointwise inequality constraint in
the numerical implementation. The alternating direction algorithm with the variable t



Issues in Splitting Methods for Total Variation-based Image Reconstruction 13

divides the minimization problems for Edn(s, t) in Algorithm 2 into two parts. Each
subproblem has a unique solution and their respective numerical implementation
is rather straightforward. In fact, the first-order optimality condition of the s-
subproblem reduces to a linear elliptic partial differential equation of second order,
and a projection provides an explicit solution for the t-subproblem. The parameter
η ∈ (0, 1) is necessary to guarantee convergence (in function space) of the sequence
{skη} to some sη ∈ H0(div) as k → ∞ with sη a minimizer of Gηn; see Theorem 3.1(i)
below. Theorem 3.1(ii) asserts that a sequence {sηi} of minimizers of Gηin (·) converges
to a minimizer of Gn(·) as ηi ↑ 1. A detailed discussion of Algorithm 2 for η = 1 in
view of the shortcomings of classical theory for backward-backward (BB) and forward-
backward (FB) iterations is included in section 3.1.3. Specifically, it is argued that
already weak convergence can only be expected in special cases confined to L2(Ω)
rather than H0(div), and strong convergence appears to be impossible by means of
classical results in the literature.

The following theorem establishes properties of the iteration {skη}∞k=1 in H0(div)
such as the strong convergence of the sequence of iterates and relations to the
minimizers of Gn and Gηn as well as Edn.

Theorem 3.1 Suppose that n ∈ N is fixed, and consider H0(div)× L2(Ω) 3 (s, t) 7→
Edn(s, t), H0(div) 3 s 7→ Gd(s),Gηn(s) as defined in (20) and (24), respectively, and the
sequence {skη}∞k=1 in H0(div) defined by Algorithm 2 with q = qn. Then the following
holds true:

i. For each 0 < η < 1, there exists sη ∈ H0(div) such that skη → sη in H0(div) as
k → ∞, where the convergence is linear. The map (0, 1) 3 η 7→ sη ∈ H0(div) is
locally Lipschitz continuous, and sη is the unique minimizer of Gηn.

ii. If {ηi} is a sequence in (0, 1) with ηi ↑ 1 as i → ∞, then the sequence {sηi} of
minimizers of Gηin satisfies sηi ⇀ s∗ (along a subsequence) with s∗ ∈ H0(div), a
minimizer of Gn.

iii. The pair (s∗, PR(s∗)) ∈ H0(div)×L2(Ω) is a minimizer of Edn, i.e., it is a solution
of (20).

Proof. We start by proving i. Let t ∈ L2(Ω) be fixed, and define Q(s) :=
1
2 |divs + f |2L2 + q

2 |s− ηt|
2
L2 for s ∈ H0(div). Then, Q is clearly continuous on H0(div)

and the inequality

Q(s) ≥ 1

2
(|divs|L2 − |f |L2)2 +

q

2
(|s|L2 − η|t|L2)2

implies that Q is coercive. Also, since the norms in L2(Ω) and L2(Ω) are strictly
convex and weakly lower semi-continuous, s 7→ Q(s) is strictly convex and weakly
lower semicontinuous in H0(div) and, hence, admits a unique global minimizer. Thus,
skη is well-defined in step 2 of Algorithm 2 and we can write skη = T (ηtk−1

η ) (for k ∈ N)
where T (η·) : L2(Ω)→ H0(div) denotes the solution map associated with the problem
in step 2 . Since R is closed, convex and non-empty in L2(Ω), step 3 of Algorithm 2 is
equivalent to the projection of s onto R. As a consequence, tkη = PR(skη) is uniquely

defined . Therefore, we can write skη = T (ηPR(sk−1
η )).

Next, consider |s|2q := |divs|2L2 + q|s|2L2 for s ∈ H0(div), which defines a norm
equivalent to | · |H0(div). We now prove that T (ηPR(·)) is a contraction with respect
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to this norm. As the objective in step 2 of Algorithm 2 is Fréchet differentiable in
H0(div), the first order optimality condition for si = T (ti) for i = 1, 2 reads

(divsi + f, divhi)L2 + q(si − ti,hi)L2 = 0, ∀hi ∈ H0(div). (25)

Taking h1 = h2 = s2 − s1 above, and subtracting the equality for i = 2 from the one
for i = 1, we obtain

|div(s2 − s1)|2L2 + q|s2 − s1|2L2 = q(t2 − t1, s2 − s1)L2 .

This yields |δs|2q ≤ q|δt|L2 |δs|L2 , with δs := s2−s1 and δt := t2−t1. This implies that

|δs|q ≤ q1/2|δt|L2 . Since L2(Ω) is a Hilbert space, we have |PR(u2) − PR(u1)|L2 ≤
|u2 − u1|L2 for all u1,u2 ∈ H0(div) ⊂ L2(Ω). Then, for ti = ηPR(ui) we infer that
|δs|q ≤ ηq1/2|δu|L2 ≤ η|δu|q, i.e.,

|T (ηPR(u2))− T (ηPR(u1))|q ≤ η|u2 − u1|q. (26)

Since 0 < η < 1, by the Banach Contraction Principle, the sequence skη =

T (ηPR(sk−1
η )) converges strongly to sη in the q-norm and hence in the usual norm

for H0(div), as well which is the unique fixed point for H0(div) 3 s 7→ T (ηPR(s)).
This implies that sη is the unique minimizer of H0(div) 3 s 7→ Gηn(s) in (24). In fact,
if there were other minimizers, then these minimizers would also be fixed points of
T (ηPR(·)), which contradict the above argument.

Above, we have shown that |δs|q ≤ q1/2|δt|L2 for si = T (ti), i = 1, 2. Now, let
η1, η2 ∈ (0, 1). Hence there exist sηi ∈ H0(div) such that sηi = T (ηiPR(sηi)). Since
|PR(sηi)|L2 ≤ α by the definition of R and the projection map PR is non-expansive,
we have

|sη2 − sη1 |q ≤ q1/2|η2PR(sη2)− η1PR(sη1)|L2 ≤ q1/2(η2|sη2 − sη1 |L2 + α|η2 − η1|).

From this it is straightforward to conclude

|sη2 − sη1 |L2 ≤ α

1− η2
|η2 − η1| and |div(sη2 − sη1)|L2 ≤ αq1/2

1− η2
|η2 − η1|.

Hence, η 7→ sη is locally Lipschitz continuous on (0, 1). This concludes the proof of i.
We now proceed with the proof of ii. Take a sequence {ηi} in (0, 1) such that

ηi ↑ 1 as i→∞ and consider the sequence {sηi} of fixed points sηi = T (ηPR(sηi)) =
arg mins∈H0(div) Gηin (s). Then

1

2
|f |2L2 = Gηin (0) ≥ min

s∈H0(div)
Gηin (s) = Gηin (sηi)

≥ 1

2
(|divsηi |L2 − |f |L2)2 +

q

2
(|sηi |L2 − ηi|PR(sηi)|L2)2.

Since |PR(sηi)|L2 ≤ α for all i, the sequences {|divsηi |L2} and {|sηi |L2} are uniformly
bounded. Hence, {sηi} is bounded in H0(div), and since the latter is a reflexive space,
there exists a subsequence of {sηi} (again denoted by {sηi}) such that sηi ⇀ s∗ for
some s∗ ∈ H0(div) as i→∞.

We now prove that s∗ is a minimizer of s 7→ Gn(s). For this purpose, we
note that the sequence {PR(sηi)} ⊂ R is bounded in L2(Ω). Hence, there exists
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a subsequence of {PR(sηi)} (also denoted by {PR(sηi)}) for which PR(sηi) ⇀ z for
some z ∈ R ⊂ L2(Ω). Since sηi ⇀ s∗, we have (sηi − ηiPR(sηi)) ⇀ (s∗ − z) in
L2(Ω) as i → ∞. Here we use the fact that H0(div) ↪→ L2(Ω) as well as L2(Ω)∗ ≡
L2(Ω) ↪→ H0(div)∗ are continuous, dense embeddings. Hence, if {zn} ⊂ H0(div) such
that (l, zn)H0(div)∗,H0(div) → (l, z)H0(div)∗,H0(div) for all l ∈ H0(div)∗, then the same
holds for l ∈ L2(Ω). Thus, since z ∈ R, by the weak lower semicontinuity of the norm
we have

|s∗ − PR(s∗)|L2 ≤ |s∗ − z|L2 ≤ lim
i→∞

|sηi − ηiPR(sηi)|L2 ,

where we utilize the minimum distance property of the projection PR. Let s ∈ H0(div)
be arbitrary. Then

1

2
|divs∗ + f |2L2 +

qn
2
|s∗ − PR(s∗)|2L2 ≤

1

2
|divs∗ + f |2L2 +

qn
2
|s∗ − z|2L2

≤
(

lim
i→∞

1

2
|divsηi + f |2L2

)
+

(
lim
i→∞

qn
2
|sηi − ηiPR(sηi)|2L2

)
≤ lim
i→∞

(
1

2
|divsηi + f |2L2 +

qn
2
|sηi − ηiPR(sηi)|2L2

)
= lim
i→∞

Gηin (sηi) ≤ lim
i→∞

Gηin (s)

= lim
i→∞

(
1

2
|divs + f |2L2 +

qn
2
|s− ηiPR(s)|2L2

)
=

1

2
|divs + f |2L2 +

qn
2
|s− PR(s)|2L2 ,

i.e., Gn(s∗) = infs∈H0(div) Gn(s).
Finally, we consider iii. Let (s, t) ∈ H0(div)×L2(Ω) be arbitrary. Since we have

proven that s∗ is a minimizer of s 7→ Gn(s), from the minimum distance property of
PR we get

Edn(s∗, PR(s∗)) = Gn(s∗) ≤ Gn(s) =
1

2
|divs + f |2L2 +

qn
2
|s− PR(s)|2L2

≤ 1

2
|divs + f |2L2 +

qn
2
|s− t|2L2 + δR(t)

= Edn(s, t).

Henceforth, taking the infimum over (s, t) ∈ H0(div) × L2(Ω) we obtain
Edn(s∗, PR(s∗)) ≤ inf(s,t)∈H0(div)×L2(Ω) Edn(s, t), i.e., (s∗, PR(s∗)) is a minimizer of Edn.
�

Remark on the role of η ∈ (0, 1). As we have proven in Theorem 3.1, the value of
η is the Lipschitz constant of the nonlinear operator that determines the sequence {skη}
via a fixed point iteration. Hence, based on the proof of the aforementioned theorem,
η ∈ (0, 1) is required to obtain strong convergence in H0(div) of the sequence {skη}.
Furthermore, numerical evidence of the necessity of η ∈ (0, 1) is provided in section
3.3.1.

One might be tempted to derive the contraction result of the proof in Theorem
3.1 by other more direct means using maximal monotone operator theory: In fact,
Algorithm 2 can be written as an iteration of the type (FB) where C = η, λ = 1/q,
s 7→ As = (div)∗(divs + f) and B = q(I − PR) (see item (i) and (iv) in section
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3.1.3). Note, however, that the contractivity of (I +λA)−1C(I −λB) in H0(div) with
η ∈ (0, 1) cannot be obtained simply from non-expansivity of (I + λA)−1 as (I − λB)
is non-expansive only in L2(Ω).

3.1.3. The role of η in Algorithm 2 and the limitation of classical splitting approaches
applied to Algorithm 2. In this section we further substantiate the need of η ∈ (0, 1)
in Algorithm 2 and of the results in Theorem 3.1. For this purpose we suppose that
η = 1 and analyse the scope of existing results for (FB) and (BB) (with C = I).
In what follows we point to the shortcomings of these results for classical splitting
algorithms when applied with H = H0(div) or H = L2(Ω).

Since our main interest is the behaviour of the sequence {sk}∞k=1, we focus
(without loss of generality) on the fixed point iteration in sk generated by Algorithm
2.

(i) (BB) with H = H0(div). Step 2 in Algorithm 2 can be written as (I+ 1
qA)sk =

tk−1 with H0(div) 3 s 7→ As = (div)∗(divs + f) ∈ H0(div) (via the Riesz map)
and step 3 is simply given by tk = PR(sk) where PR is the L2(Ω)-projection
operator onto the closed convex set R. It is known that for any λ > 0 one has
PR = (I + λ∂δR)−1 where ∂δR is the subdifferential (in L2(Ω)) of the indicator
function δR of the set R. It is well known that ∂δR is maximal monotone (see,
e.g., Rockafellar’s theorem [34]). Then, in particular for λ = 1

q , we have that

sk = (I + 1
qA)−1(I + 1

qB)−1sk−1 with B = ∂δR. Structurally, this iteration

is of the form (BB). However, ∂δR is in general not maximal monotone on
H0(div). Additionally, B is neither Lipschitz continuous nor strongly monotone
over H and neither A nor B are coercive. Hence, as mentioned in the paragraph
following the definition of (BB) and regarding on classical convergence results
for splitting methods, no guarantees concerning the strong convergence of the
sequence of iterates generated by (BB) can be given. Furthermore, in case a
subsequence of iterates is weakly convergent, it does not converge to a zero of
A+B (see [12,29,30]). Our approach, however, guarantees strong convergence of
skη to s∗η in H0(div) as k →∞ and weak convergence of s∗ηi in H0(div) to s∗ such
that the pair (s∗, PR(s∗)) ∈ H0(div)× L2(Ω) is a solution to (20).
As a final comment, consider the following: The set R̃ := R ∩H0(div) is closed,
convex and non-empty in H0(div). The minimization problem in step 3 could be
considered in H0(div) (with R exchanged by R̃). Then, this step is equivalent
to tk = P̃R̃(sk). However, P̃R̃ is now the projection in H0(div), which is
unfortunately more complicated to compute than the projection in L2(Ω). Indeed,
the latter can be obtained explicitly as

PR(s)(x) =

{
s(x) |s(x)| ≤ α,
s(x)
|s(x)| otherwise.

(27)

The projection P̃R̃(s), on the other hand, requires to solve

min
1

2
|divs− divt|2L2 +

1

2
|s− t|2L2 , over t ∈ R̃.

(ii) (BB) with H = L2(Ω). The map s 7→ F (s) := 1
2 |divs + f |2L2 is convex, proper

and lower semi-continuous on L2(Ω) with effective domain dom(F ) = H(div) :=
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{v ∈ L2(Ω) : divs ∈ L2(Ω)}. Its subdifferential ∂F is maximal monotone and
step 2 can, thus, be written as sk = (I + 1

qA)−1tk−1 with A = ∂F . As in

the previous paragraph, tk = PRsk = (I + 1
qB)−1sk with B = ∂δR. Hence,

Algorithm 2 is equivalent to the (BB) iteration with λ = 1/q. As in the previous
paragraph, note that B is neither Lipschitz continuous nor strongly monotone
over H and neither A nor B are coercive. As a consequence, strong convergence
of the iteration cannot be obtained by standard theoretic arguments, to the best
of our knowledge. Again as before, weak cluster points of the iteration are not
related to the original problem.

(iii) (FB) with H = H0(div). In order to pose the problem as an (FB)-iteration, it
is necessary to consider (I−λB) = PR, where PR is the L2(Ω)-projector onto the
closed convex set R. But now, it follows that B is no longer maximal monotone
over H . Hence, standard theory for splitting methods does not apply to this
setting .

(iv) (FB) with H = L2(Ω). From the previous paragraph, we observe that
B = (I − PR)/λ and since PR = (I + λ∂δR)−1, B is the Fréchet derivative
of the Moreau-Yosida regularization ϕλ(·) of δR, which is given by ϕλ(s) :=
mint∈L2(Ω)

1
2λ |s − t|2L2 + δR(t) (see [37]). Since ϕλ is convex, we can write the

iteration in the form of (FB), with λ = 1/q, B = ϕ′1/q and A = ∂F (where F

is as in item ii). Although in some cases it can be proven that the generated
sequence converges weakly to a zero of A + B (see for example [20]), it is not
clear that this statement is true in general. In fact, general results that guarantee
weak convergence require the update of λ in each step leading to a sequence
{λk} ∈ `2 \ `1. Then, convergence is restricted to ergodic means of the iteration
(see [33]). Note also that Bruck’s paper [5], which is cited in [30] related to
weak convergence of this iteration, has been corrected in [6] where the conditions
necessary for proving convergence have been strengthened considerably.
Furthermore, to the best of our knowledge, known sufficient conditions for the
strong convergence of this iteration involve the strong monotonicity of at least
one of the operators A and B (see Chapter 4 in [12] for a list of these conditions)
or the strong monotonicity of the operator B−1 . Such conditions, however, do
not hold true in our case.

(v) All the aforementioned issues persist if one now considers the fixed-point iteration
in tk (rather than in sk) generated in Algorithm 2 and performs the analogous
analysis as in items (i)− (iv).

Above we have comprehensively argued that the existing function space results
in the literature concerning convergence of splitting methods of the form (FB) and
(BB) (with C = I, i.e., η = 1) are even in the best case scenario not suitable to
yield convergence properties of Algorithm 2. In contrast, Theorem 3.1, yields strong
convergence of the aforementioned algorithm in H0(div). It should also be noted that
the requirement of η ∈ (0, 1) cannot be relaxed to η ∈ (0, 1] as our numerical evidence
in Figure 1 demonstrates.

We further emphasize the significance of H0(div)-convergence. In fact, according
to (17), given a sequence sk converging to s̄ in H0(div) the corresponding sequence of
images is given by

uk = divsk + f.
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The H0(div)-convergence of sk yields L2-convergence of divsk to divs̄ and thus uk → ū
in L2(Ω) as k →∞. Moreover, when s̄ solves the Fenchel pre-dual problem (16), then
Fenchel duality arguments yield ū ∈ BV(Ω).

3.2. Augmented Lagrangian method for the pre-dual problem

In order to avoid a limiting process of the penalty parameter qn in (20), we prove
that an approach based on the augmented Lagrangian method is suitable for the
problem in this respect. For this purpose, let Y := H0(div) × H0(div) and consider
the following family of problems with regularization parameter ε ≥ 0:

min J εd (s) :=
1

2
|divs + f |2L2 +

ε

2
|s|2L2 over (s, t) ∈ Y, (28a)

s.t. t ∈ R̃ and g(s, t) := s− t = 0, (28b)

with J εd : H0(div) → R, g : Y → H0(div) and R̃ = R ∩H0(div) . We note that the
the ε-term is for the sake of generality only, with the advantage of the existence of a
unique solution to (28) for ε > 0. For the choice ε = 0, on the other hand, (28) is
equivalent to the pre-dual problem (16).

Concerning existence of a solution, we note that the objective J εd is coercive,
convex (strictly convex if ε > 0) and continuous (and hence lower semicontinuous)
and R̃ is closed, convex and non-empty. Therefore there exists a solution s∗ which is
unique if ε > 0 that solves the minimization problem (28) and satisfies s∗ ∈ R̃.

Next, we consider the Lagrangian Ld : Y ×H0(div)∗ → R∪{+∞} associated with
(28) and the pertinent augmented Lagrangian LdAug : Y ×H0(div)∗×R+ → R∪{+∞}
defined as

Ld(s, t,λ) :=
1

2
|divs + f |2L2 +

ε

2
|s|2L2 + δR̃(t) + 〈λ, s− t〉, (29)

LdAug(s, t,λ, q) :=
1

2
|divs + f |2L2 +

ε

2
|s|2L2 + δR̃(t) + 〈λ, s− t〉+

q

2
|s− t|2H0(div), (30)

for q > 0. Here and below, “〈·, ·〉” denotes the duality pairing between H0(div)∗ and
H0(div).

Since the mapping g in (28b) is Fréchet differentiable and Dg(s, t) ∈
L (Y,H0(div)), given by Dg(s, t)(h1,h2) = h1 − h2, we observe that for any (s, t)

0 ∈ int{Dg(s, t)((r1, r2)− (s, t)) + g(s, t) : r1 ∈ H0(div), r2 ∈ R̃} ≡
int{r1 − r2 : r1 ∈ H0(div), r2 ∈ R̃},

where the interior is taken in H0(div). As a consequence, by standard surjectivity
techniques (see [27, 44]) there exists a Lagrange multiplier λ∗ ∈ H0(div)∗ such that
〈λ∗, s∗ − t∗〉 = 0 and

DJ εd (s∗) + λ∗ ◦Dg(s∗, t∗) ∈ −R(s∗, t∗)+, (31)

where R(s∗, t∗)+ is the polar cone of the conical hull of R \ (s∗, t∗), i.e.,

−R(s∗, t∗)+ = {F ∈ Y ∗ : (F, (s∗, t∗))Y ∗,Y ≤ (F, (r1, r2))Y ∗,Y ,∀r1 ∈ H0(div), r2 ∈ R̃}.

Hence (31) is equivalent to

(divs∗ + f, divs∗)L2 + ε(s∗, s∗)L2 + 〈λ∗, s∗ − t∗〉 ≤
(divs∗ + f, divr1)L2 + ε(s∗, r1)L2 + 〈λ∗, r1 − r2〉, ∀r1 ∈ H0(div), r2 ∈ R̃.
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Here we use DJ εd (s)(h1,h2) = (divs + f, divh1)L2 + ε(s,h1)L2 for all (s, t), (h1,h2) ∈
Y . This implies that

〈λ∗, s∗ − t∗〉 ≤ 〈λ∗, r1 − r2〉+DJ εd (s∗)(r1 − s∗) ∀r1 ∈ H0(div), r2 ∈ R̃. (32)

Theorem 3.2 Let (s∗, t∗) ∈ Y be a solution ( which is unique for ε > 0) to (28),
and let λ∗ be the associated Lagrange multiplier. Then, for q > 0, (s∗, t∗) is a global
minimizer (unique for ε > 0) of the map

Y 3 (s, t) 7→ LdAug(s, t,λ∗, q).

Proof. Let s ∈ H0(div). Then, it is straightforward to observe that D2J εd (s) ∈
L (H0(div)×H0(div),R) is given by

D2J εd (s)(h1,h2) = (divh2,divh1)L2 + ε(h2,h1)L2 , ∀h1,h2 ∈ H0(div).

Consequently, D3J εd (s) = 0. Assuming that 0 < ε < 1, we have D2J εd (s)(h,h) =
|divh|2L2 + ε|h|2L2 ≥ ε|h|2H0(div). We also have the following representation based on a
Taylor series expansion:

J εd (s + h) = J εd (s) +DJ εd (s)(h) +
1

2
D2J εd (s)(h,h), ∀h ∈ H0(div).

Since LdAug(s, t,λ∗, q) = +∞ if t /∈ R̃, it is enough to consider (s, t) ∈ H0(div)×R̃.
Since (s∗, t∗) ∈ Y is a solution to (28), we have that |s∗ − t∗|H0(div) = 0. Then, by
the previous paragraph and (32), we have the following chain of inequalities:

LdAug(s∗, t∗,λ∗, q) = J εd (s∗) + δR̃(t∗) + 〈λ∗, s∗ − t∗〉
≤ J εd (s∗) + δR̃(t∗) + 〈λ∗, s− t〉+DJ εd (s∗)(s− s∗)

= J εd (s∗) + δR̃(t) + 〈λ∗, s− t〉+DJ εd (s∗)(s− s∗)

= J εd (s)− 1

2
D2J εd (s∗)(s− s∗, s− s∗) + δR̃(t) + 〈λ∗, s− t〉

= LdAug(s, t,λ∗, q)− 1

2
D2J εd (s∗)(s− s∗, s− s∗)− q

2
|s− t|2H0(div).

For ε > 0, we obtain

LdAug(s∗, t∗,λ∗, q) ≤ LdAug(s, t,λ∗, q)− ε

2
|s− s∗|2H0(div) −

q

2
|s− t|2H0(div),

and for ε = 0, we find

LdAug(s∗, t∗,λ∗, q) ≤ LdAug(s, t,λ∗, q)− 1

2
|div(s− s∗)|2L2 −

q

2
|s− t|2H0(div).

Therefore, LdAug(s∗, t∗,λ∗, q) ≤ LdAug(s, t,λ∗, q) for any (s, t) ∈ Y , i.e., (s∗, t∗) is a
global minimizer.

For ε > 0, if the equality LdAug(s∗, t∗,λ∗, q) = LdAug(s, t,λ∗, q) holds true, then
s = s∗ = t. Additionally, since (s∗, t∗) is the unique solution to (28), we have that
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g(s∗, t∗) = s∗ − t∗ = 0 by (28b). Hence, (s, t) = (s∗, t∗) and the uniqueness of the
global minimizer follows. �

Remark. If q
2 |s − t|2H0(div) in the definition of LdAug is replaced by q

2 |s − t|2L2(Ω),
then the assertion of Theorem 3.2 still hold true. However, as we see in what follows,
such a change restricts the scope of the resulting augmented-Lagrangian-type method.

The augmented Lagrangian method for solving problem (28) operates as follows:
Given some λ0 ∈ H0(div)∗, iterate for k = 1, 2, . . .:

compute (sk, tk) ∈ arg min
(s,t)∈H0(div)×R̃

Ldc(s, t,λk−1, q), (33a)

update λk = λk−1 + q
(
sk − tk

)
, (33b)

with

Ldc(s, t,λ, q) :=
1

2
|divs + f |2L2 +

ε

2
|s|2L2 + 〈λ, s− t〉+

q

2
|s− t|2H0(div).

Although the study of the convergence of (33) is beyond the scope of the present
paper (in particular the convergence of inexact variants like the one highlighted in the
discrete setting in Algorithm 4 below), several subtleties of the algorithm owing to
the function space context should be pointed out. If λ0 ∈ H0(div) ⊂ H0(div)∗, then
λk ∈ H0(div) for all k ∈ N given the fact that (sk, tk) ∈ Y . In this case, the resolution
of (33a) is similar to the one of (20) and a splitting scheme like the one of Algorithm
2 can be utilized. In fact, provided η ∈ (0, 1), for every k ∈ N we may consider

sk,j+1
η = arg min

s∈H0(div)

1

2
|divs + f |2L2 +

ε

2
|s|2L2 + 〈λk−1, s〉+

q

2
|s− ηtk,jη |2H0(div), (34a)

tk,j+1
η = arg min

t∈H0(div)

q

2
|sk,jη − t|2H0(div) − 〈λ

k−1, t〉+ δR̃(t). (34b)

A slight modification of the arguments in the proof of Theorem 3.1 yields that
(sk,jη , tk,jη ) → (skη, t

k
η) as j →∞ and (skη, t

k
η) ⇀ (sk, tk) as η ↑ 1 in Y , respectively. In

the general case where λ0 ∈ H0(div)∗ but λ0 /∈ H0(div), the resolution of (34) requires
the inverse of the Riesz map in order to replace λk−1 by its H0(div)-representation.

If q
2 |s− t|2H0(div) in the definition of Ldc is replaced by q

2 |s− t|2L2(Ω), then (33a) is

defined over H0(div)×R, provided that λk−1 ∈ L2(Ω) and consequently λ0 ∈ L2(Ω),
as well. Hence, if λ0 ∈ L2(Ω), then λk ∈ L2(Ω) for all k ∈ N. In this case, in order
to approximate (33a) we may consider the analogue of (34) with the obvious changes:
H0(div)-norms are replaced by L2(Ω)-norms, R̃ is replaced by R and problem (34b)
is posed in L2(Ω). Finally, a similar argument as above yields (sk,jη , tk,jη )→ (skη, t

k
η) as

j → ∞ and (skη, t
k
η) ⇀ (sk, tk) as η ↑ 1 in H0(div) × L2(Ω), respectively. In general,

however, one should not expect that {λk} is bounded in L2(Ω), as only λ∗ ∈ H0(div)
is guaranteed.

It should further be noticed that upon discretization (and whenever mesh
independence properties are not indispensable), the term |s − t|2H0(div) in Ldc and

consequently in (34) may be replaced by the squared discrete L2(Ω)-norm of the
difference of the discrete counterparts of s and t. This simplifies the realization of
(34b) considerably (even in function space), but the overall scheme does not admit
a function space counterpart with convergence guarantees, in general. Such a finite
dimensional approach with inexact subproblem solutions is considered in section 3.3.2
below.
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3.3. Discrete pre-dual approaches

In this section we study the methods of the previous solvers for the pre-dual
problem (pre-dual splitting and augmented Lagrangian methods) in a discrete setting.

3.3.1. Discrete pre-dual splitting. For a given N × N image f ∈ RN
2

, we denote
by Ωh = {1, . . . , N} × {1, . . . , N} the discretization of Ω = (0, 1) × (0, 1) with mesh
size h = 1

N−1 . The necessary modifications in case of Ωh = {1, . . . ,M} × {1, . . . , N}
with M 6= N are obvious. The discrete optimization problem associated to (20) is as
follows:

min Edn,h(s, t) over (s, t) ∈ Yh = R2N2

× R2N2

,

Edn,h(s, t) := h2
∑

(i,j)∈Ωh

1

2
|(divhs)i,j + fi,j |2 +

qn
2
|si,j − ti,j |2 + δRh

(t),
(35)

where Rh = {t ∈ R2N2 | |ti,j | ≤ α, (i, j) ∈ Ωh}, and the discrete indicator function is
defined by

δRh
(t) =

{
0 t ∈ Rh,
+∞ otherwise.

(36)

The discrete version of Algorithm 2 with q = qn > 0 is summarised in Algorithm 3
which generates a sequence {(skn,h, tkn,h)}k∈N with a fixed positive penalty parameter
qn and 0 < η < 1.

Algorithm 3 (Discrete pre-dual variable splitting with η – approx. discrete solution
of (20))

1: Initialization. Choose t0
n,h ∈ Rh arbitrary and set k := 1.

2: Compute

skn,h ∈ arg min
s

∑
(i,j)∈Ωh

1

2
|(divhs)i,j + fi,j |2 +

qn
2
|si,j − η(tk−1

n,h )i,j |2.

3: Compute

tkn,h ∈ arg min
t

∑
(i,j)∈Ωh

qn
2
|(skn,h)i,j − ti,j |2 + δRh

(t).

4: Check stopping criteria. If suitable stopping criteria are met, set (s∗n,h, t
∗
n,h) =

(skn,h, t
k
n,h); otherwise set k := k + 1 are return to step 2.

For a fixed qn, suitable stopping criterion in step 4 of Algorithm 3 is considered
satisfied when the norm of the residual of the first-order optimality conditions drops
below a user-specified tolerance. The projection (27) provides an explicit formula
for tkn,h in step 3, which satisfies the first-order condition of the t-subproblem exactly.
Thus, it is enough to check the residual of the first-order condition of the s-subproblem.
For this purpose, we compute

Rk
n,h := −∇h

(
divhs

k
n,h + f

)
+ qn

(
skn,h − ηtkn,h

)
(37)
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and R̃k
n,h such that −∆hR̃

k
n,h = Rk

n,h with homogeneous Dirichlet boundary
conditions on ∂Ωh, where ∆h denotes the discrete Laplacian on the underlying mesh.
Then, the discrete L2(Ω)-norm of∇hR̃k

n,h provides the discrete H−1(Ω)-norm of Rk
n,h.

The value of s∗n,h in step 4 of Algorithm 3 is skn,h for the smallest k that satisfies

|∇hR̃k
n,h|L2 ≤ εd, (38)

where εd > 0 is some prescribed tolerance. The aforementioned index k > 0 is the
number of iterations of the algorithm and it is denoted as Kn,h, as it depends on the
penalty parameter qn and the mesh size h > 0. Starting with q0 > 0, and increasing
the penalty parameter up to qn, the total number of iterations is the sum of the
iterations corresponding to each penalty parameter, i.e.,

Kh :=

n∑
i=0

Ki,h. (39)

Finally, the approximated solution of the discrete TV-problem is determined as

u∗n,h = divhs
∗
n,h + f. (40)

As in [41] we use qn+1 = 2qn to increase the penalty parameters.
We also would like to emphasize the fact that our goal here is not to display the

best possible reconstruction result, i.e., selecting optimal regularization parameters,
but rather to focus on the algorithm and its behavior.

We start our numerical study by showing that the practical behavior of η in (3) is
consistent with Theorem 3.1. For this purpose, we use the image shown in Figure 1(a)
which contains white Gaussian noise with zero mean and a standard deviation equal
to 30. The parameters used in our algorithm are α = 0.2, εd = 10−6 and the
reconstruction is provided in Figure 1(b). Starting with a penalty parameter q0 = 2−5,
we numerically compute u∗n,h for n ∈ {0, 1, . . . , 24} with h = 1/128. Since u∗n,h and

Kh depend on η, we stop our computations at q25 = 220 for all η-values and denote
these as uη and Kη, respectively. In order to measure more detailed features when η
approaches 1, we choose ηm according to

ηm =

m∑
i=1

9 · 10−i. (41)

Figure 1(c) shows the behavior of |uη − uη∞ |L2 with respect to η ∈ [0.1, 1), where η∞
denotes the maximum η-value used which is η9 = 1− 10−10, in this case. As we are in
finite dimensions upon discretization, convergence of uη in the discrete L2(Ω)-norm of
the approximated solution to the TV-problem in (40) is observed when η → 1. This
behavior is guaranteed by Theorem 3.1(ii.) considered in finite dimensions. Local
Lipschitz behavior of η 7→ uη is observed for η < 1 and a non-Lipschitz behavior
appears at η = 1, as expected by Theorem 3.1(i.).

Figure 1(d) shows the behavior of m 7→ |uηm − uη∞−c|L2 with respect to m as
in (41) and with c = 10−3. This is consistent with the non-Lipschitz behavior of
η 7→ uη at η = 1 expected from Theorem 3.1(i). The total number of iterations
Kηm with respect to m as in (41) is shown in Figure 1(e). The behavior of the
map m 7→ Kηm appears to contain two distinct features that are explained by the
contraction of the map s 7→ T (ηPR(s)), as noted in the proof of Theorem 3.1, and
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(a) (b)

(c) (d) (e)

Figure 1: In figures (a) and (b) we depict the test image with white Gaussian
noise of zero mean and standard deviation equal to 30 and its reconstruction with
α = 0.2, respectively. In figure (c) we observe the behavior of the map (0.1, 1) 3 η 7→
|uη − uη∞ |L2 , where η∞ = η9 = 1 − 10−10. The x-axis in figures 1(d), 1(e) indicates
the value m in (41). In figure 1(d), we observe m 7→ |uηm−uηm−c|L2 , where c = 10−3,
and in Figure 1(e), the map m 7→ Kηm (the total number of iterations associated with
the parameter ηm) is shown.

the fact we are working in finite dimensions upon discretization. In fact, as noted
before, step 2 of Algorithm 2 is equivalent to skη = T (ηPR(sk−1

η )). This iteration is
at least linearly convergent since s 7→ T (ηPR(s)) is a contraction in the q-norm for
H0(div), as observed in (26). For this purpose, recall that the q-norm is equivalent to
the usual norm in H0(div). Since the Lipschitz constant is equal to η, it is expected
that the increase of η increases the number of iterations Kη necessary to satisfy the
small residual condition (38). This is indeed observed in Figure 1(e) for 1 ≤ m ≤ 5. In
infinite dimensions one would expect that this behavior continues for m > 5. In finite
dimensions, the weak convergence in Theorem 3.1(ii.) becomes strong convergence in
the discrete L2(Ω)-norm, which appears to take place for m > 5. This is the reason
for the stabilization of the number of iterations necessary for the termination of the
algorithm. An analogous reasoning applies to the behaviour of m 7→ |uηm − uηm−c|L2

for m > 5 in Figure 1(d).
It should be noted that the L2-penalty term associated with the constraint

s = t in (20) does not increase the regularity of the solution as it happens with
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the penalization of the constraint p = ∇u in (6). This enables the restoration of
discontinuous features in images, as motivated by the total variation regularization.

3.3.2. Discrete augmented Lagrangian method for the pre-dual problem. We continue
our investigation of the (pre-)dual problem by considering the discrete augmented
Lagrangian associated with (30) given by

Ldq,h(s, t;µ) := h2
∑

(i,j)∈Ωh

1

2
|(divhs)i,j + fi,j |2 +

q

2
|si,j − ti,j |2 (42)

+ µi,j · (si,j − ti,j) + δRh
(t).

For a fixed positive penalty parameter q ≥ 0 we use an alternating direction
minimization algorithm to generate a sequence {(skq,h, tkq,h,µkq,h)}k∈N by Algorithm
4; see [32,40] for details. Compared to (28a), we use here ε = 0.

Algorithm 4 (Discrete pre-dual augmented Lagrangian method)

1: Initialization. Choose (t0
q,h,µ

0
q,h) and set k := 1.

2: Compute

skq,h ∈ arg min
s

∑
(i,j)∈Ωh

1

2
|(divhs)i,j + fi,j |2 +

q

2
|si,j − (tk−1

q,h )i,j |2 + µk−1
i,j · si,j .

3: Compute

tkq,h ∈ arg min
t

∑
(i,j)∈Ωh

q

2
|(skq,h)i,j − ti,j |2 − µk−1

i,j · ti,j + δRh
(t).

4: Set (
µkq,h

)
i,j

:=
(
µk−1
q,h

)
i,j

+ q
((

skq,h
)
i,j
−
(
tkq,h

)
i,j

)
, (i, j) ∈ Ωh.

5: Check stopping criteria. If suitable stopping criteria are met, set
(s∗q,h, t

∗
q,h,µ

∗
q,h) := (skq,h, t

k
q,h,µ

k
q,h); otherwise set k := k + 1 are return to step

2.

For a fixed q, as for the previous algorithms, suitable stopping criteria in step
5 of Algorithm 4 are based on the norm of the residuals of the first-order optimality
conditions dropping below a user-specified tolerance. As observed before, a projection-
like technique gives an explicit formula for tkq,h in step 3. Hence, tkq,h satisfies the
first-order condition for the t-subproblem exactly. Thus, it is enough to check the
residual of the first-order condition of the s-subproblem in the discrete analogue of
H−1(Ω). As before, we compute

Rk
q,h := −∇h

(
divhs

k
q,h + f

)
+ q

(
skq,h − tkq,h

)
+ µkq,h, (43)

find the solution of −∆hR̃
k
q,h = Rk

q,h with homogeneous Dirichlet boundary conditions
on ∂Ω and otherwise proceed as in the previous subsection with some prescribed εd > 0
for the termination condition (38).
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Utilizing duality, an approximate solution to the discrete TV-problem is given by

u∗q,h = divhs
∗
q,h + f. (44)

(a) (b)

Figure 2: Figures (a) and (b) show the HSV-color-map, with V = 1, for the vector
fields µ∗ and ∇hu∗, respectively, as obtained by Algorithm 4. The original image is
as in Figure 1(a)

A few words on the asymptotic behaviour of Algorithm 4 are in order; we specially
concentrate on properties of µ∗q,h. Suppose {(skq,h, tkq,h,µkq,h)}k∈N is a sequence
generated by Algorithm 4 and that it converges to (s∗, t∗,µ∗) := (s∗q,h, t

∗
q,h,µ

∗
q,h)

with a fixed q > 0 and h. Then the first-order optimality conditions associated with
the steps of Algorithm 4 are given by

−∇h(divhs
∗ + f) + q(s∗ − t∗) + µ∗ = 0, (45a)

max

{
α,

∣∣∣∣µ∗q + s∗
∣∣∣∣} t∗ = α

(
µ∗

q
+ s∗

)
, (45b)

t∗ = s∗. (45c)

Since u∗ = divhs
∗ + f , we have

µ∗ = ∇hu∗, (46)

and further

max

{
α,

∣∣∣∣s∗ +
∇hu∗

q

∣∣∣∣} s∗ = α

(
s∗ +

∇hu∗

q

)
. (47)

It can be shown that u∗ and s∗ satisfy the first-order optimality conditions (in finite
dimensions) associated with the (pre-)dual formulation of the TV-problem (5). In the
left plot of Figure 2 we depict the numerical solution µ∗, which was obtained with
a very large penalty parameter (q = 225) and the same continuation technique as
described in subsection 3.3.1. The regularization parameter was α = 0.2, εd = 10−6

and we used the example in Figure 1(a). For the visualization we utilize an HSV-color
space with V = 1 to represent the vector fields of µ∗ and ∇hu∗ = ∇h(divhs

∗ + f) in
Figure 2(a) and Figure 2(b), respectively. This color map allows to represent vectors
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in an RGB color model, i.e., matching colors between the two plots correspond to
matching vector orientations. From these plots we observe that µ∗ obtained from
Algorithm 4 numerically converges indeed to ∇hu∗.

Unlike the penalty method in subsection 3.3.1 (which required certain limiting
properties on qn and subsequently on η), the proposed algorithm in Algorithm 4
obtains an approximation to the solution of (16) without the need of driving the
penalty q > 0 parameter to infinity. Moreover, we numerically observe that
Algorithm 4 achieves the stopping condition |∇hR̃k

n,h|L2 ≤ εd earlier than Algorithm 3
when the same penalty parameter is fixed in both algorithms . Note, however, that
the previous assertions hold only in this finite dimensional setting and little is known
about the infinite dimensional analogue of Algorithm 4 and its convergence behaviour.

4. Staggered grid discretization for the pre-dual problem and numerical
results

In this section, we provide details of our discretization of the first-order optimality
system associated with (20) or (30) on a staggered grid. Moreover, we include
numerical evidence of the advantages of using such a staggered grid to solve the
proposed systems and we compare with results obtained by other algorithms.

Considering the finite element method, Raviart-Thomas elements on a rectangular
mesh are an appropriate choice for discretizing the spaces for minimizing the objectives
in (20) and (30); see [17] for a specification of the Raviart-Thomas finite element
space. This is due to the resulting discrete space being a finite dimensional subspace
ofH0(div). Here, we propose to use finite difference operators on a staggered grid. This
is inspired by the fact that the lowest order Raviart-Thomas space on a rectangular
mesh is equivalent to the “marker and cell” scheme (see [22]) which is a stable finite
difference scheme for incompressible flow problems (see [26]).

4.1. Finite difference operators on a staggered grid

We consider the domain Ω = (0, 1) × (0, 1) and the mesh size h = 1/N for a
positive integer N ≥ 2. Figure 3(a) depicts an example for a grid associated with a
4× 4 pixel image, i.e., N = 4. The outermost boundary is the boundary of the image
∂Ω. For the subsequent discretization of the involved operators we define the index
sets

Ω
(a,b)
h := {(i, j) ∈ N× N | 1 ≤ i ≤ N − a, 1 ≤ j ≤ N − b} ,

with (a, b) ∈ {(1, 0), (0, 0), (0, 1)},

Ω̄
(0,0)
h := Ω

(0,0)
h ∪ {(i, 0) or (i,N + 1) | 1 ≤ i ≤ N } ∪ {(0, j) or (N + 1, j) | 1 ≤ j ≤ N } ,

Ω̄
(1,0)
h := Ω

(1,0)
h ∪ {(0, j) or (N, j) | 1 ≤ j ≤ N } ,

Ω̄
(0,1)
h := Ω

(0,1)
h ∪ {(i, 0) or (i,N) | 1 ≤ i ≤ N } .

The sets Ω
(0,0)
h , Ω

(1,0)
h and Ω

(0,1)
h are identified with the set of •-nodes, ◦-nodes,

and �-nodes in Figure 3, respectively. The set Ω̄
(0,0)
h is identified with the •-nodes

together with all the boundary nodes, Ω̄
(1,0)
h with the ◦-nodes in addition to the nodes
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on the vertical boundary and Ω̄
(0,1)
h with the �-nodes and the nodes on the horizontal

boundary, again depicted in Figure 3.

(a) (b)

Figure 3: An example of a staggered grid for an image of size is 4 × 4. In (a) we
depict Ω = (0, 1) × (0, 1) with a discrete grid of mesh size h = 1/4. Note that the
Green nodes are exactly placed on the boundary ∂Ω of the domain Ω. In (b) a rule
of indexing for different variables in (20) and (29) is depicted.

We define sets of real-valued functions on a discrete domain by

F(Ω
(a,b)
h ) := {f |f : Ω

(a,b)
h → R}. (48)

Since the mesh size h is fixed, we simply write

F (a,b) := F(Ω
(a,b)
h ) and F̄ (a,b) := F(Ω̄

(a,b)
h ). (49)

Note that following the identification of the sets Ω
(a,b)
h and Ω̄

(a,b)
h with their

corresponding nodes, we identify F (0,0), F (1,0), and F (0,1) with the set of real-valued
functions defined on the •-nodes, the ◦-nodes, and the �-nodes, respectively. Similar
and analogous identifications are considered on the sets F̄ (a,b).

Now, we define two finite difference operators on a staggered grid: the discrete
divergence

divh : F̄ (1,0) × F̄ (0,1) → F (0,0) by divhs := ∂−1 s1 + ∂−2 s2 ∈ F (0,0), (50)

and the discrete gradient

∇h : F (0,0) → F (1,0) ×F (0,1) by ∇hu := (∂+
1 u, ∂

+
2 u) ∈ F (1,0) ×F (0,1). (51)

The above definitions include the standard finite forward and backward difference
operators defined by

(∂±1 f)i,j = ±fi±1,j − fi,j
h

and (∂±2 f)i,j = ±fi,j±1 − fi,j
h

. (52)

The standard finite central difference operators are defined by

(∂1f)i,j =
fi+1,j − fi−1,j

2h
and (∂2f)i,j =

fi,j+1 − fi,j−1

2h
. (53)
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Even though the discrete divergence divh and gradient ∇h are defined by standard
finite forward and backward operators, they can be interpreted as a central difference
scheme because of the structure of the node distribution on the staggered grid.

4.2. Compatibility of adjoint operators and boundary condition

We recall that the solution space of the Fenchel pre-dual problem (16) is H0(div).
On a staggered grid the discrete version of H0(div) becomes

HF0 (div) :=

{
(s1, s2) ∈ F̄ (1,0) × F̄ (0,1)

∣∣∣∣∣ (s1)i,j = 0, (i, j) ∈ Ω̄
(1,0)
h \ Ω

(1,0)
h ,

(s2)i,j = 0, (i, j) ∈ Ω̄
(0,1)
h \ Ω

(0,1)
h

}
.

For this space, it can be shown that the discrete divergence (50) and gradient (51)
are adjoint to each other under appropriate conditions. Indeed, for s ∈ HF0 (div) and
u ∈ F (0,0) we have

〈u,−divhs〉F(0,0) =
∑

(i,j)∈Ω
(0,0)
h

ui,j(−divhs)i,j

=
∑

(i,j)∈Ω
(1,0)
h

(s1)i,j(∂
+
1 u)i,j +

∑
(i,j)∈Ω

(0,1)
h

(s2)i,j(∂
+
2 u)i,j

= 〈s,∇hu〉F(1,0)×F(0,1) ,

(54)

where the last equality considers s restricted to Ω
(1,0)
h × Ω

(0,1)
h . Note that (54) might

not hold for arbitrary s ∈ F̄ (1,0) × F̄ (0,1) \HF0 (div).
The discrete divergence and gradient oprerators introduced by Chambolle in [8]

are formally of the same form as the ones in (50) and (51), respectively. However, it
should be noted that for the discrete operators in [8], evaluations for all variables are
computed on the same nodes. Hence, in order to obtain that the discrete gradient is
the adjoint of the negative discrete divergence, additional boundary conditions for the
primal variable are required.

4.3. Numerical realization of our algorithms

We now provide details on the numerical implementation of Algorithm 2 on a
staggered grid (the extension of the method for the minimization of (30) with R̃ and
| · |H0(div) replaced by R and | · |L2 , respectively, is straightforward). Note that, in these
settings, the discrete functionals in (35) and (42) are typical discretizations of (20)
and (30), respectively, when all variables are evaluated on the •-nodes; see Figure 3.

The variables ū, f, s, t and λ in (17), (35) and (42) associated to discrete spaces
are as follows:

ū, f ∈ F (0,0), s ∈ HF0 (div), t, λ ∈ F (1,0) ×F (0,1). (55)

Since the first and second components of a vector field on a staggered grid are evaluated
at different locations, we need an interpolation operator whenever a function value is
needed at an alternative location. Here, we use a simple linear interpolation. In fact,
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for given s ∈ F (1,0) ×F (0,1), the following averaging operators are used:

A(s2)i,j =
(s2)i,j + (s2)i+1,j + (s2)i,j−1 + (s2)i+1,j−1

4
, for (i, j) ∈ Ω

(1,0)
h , s2 ∈ F̄ (0,1),

(56)

A(s1)i,j =
(s1)i,j + (s1)i,j+1 + (s1)i−1,j + (s1)i−1,j+1

4
, for (i, j) ∈ Ω

(0,1)
h , s1 ∈ F̄ (1,0).

(57)

Consequently and depending on the nodes, the absolute values of s ∈ F (1,0) × F (0,1)

are defined by

|si,j |2 = (s1)2
i,j +A(s2)2

i,j , for (i, j) ∈ Ω
(1,0)
h , (58)

|si,j |2 = A(s1)2
i,j + (s2)2

i,j , for (i, j) ∈ Ω
(0,1)
h , (59)

|si,j |2 =

(
(s1)i,j + (s1)i−1,j

2

)2

+

(
(s2)i,j + (s2)i,j−1

2

)2

, for (i, j) ∈ Ω
(0,0)
h . (60)

It should be noted that the above definitions are consistent as the mesh size
tends to zero under a continuity assumption: In fact, for (i, j) ∈ Ω

(a,b)
h with

(a, b) ∈ {(1, 0), (0, 0), (0, 1)} let s1, s2 ∈ C(Ω̄; R) and (sk)i,j correspond to the pointwise
evaluation of sk on the corresponding node. Then the relations (58)-(60) hold as h ↓ 0.
This yields the desired inequality |s(x)| ≤ α for all x ∈ Ω.

Suppose qn > 0 and 0 < η < 1 are fixed and t0
η is given. Denote by {(skn, tkn)}k∈N

the sequence generated by Algorithm 2. According to first-order optimality, skn solves
the system

−∇(divs + f) + qn(s− ηtk−1
n ) = 0 in Ω,

s · ν = 0 on ∂Ω,
(61)

where ν denotes the outward unit normal on ∂Ω, and tkn is obtained in closed form by

tkn(x) =

{
skn(x), if |skn(x)| ≤ α, x ∈ Ω,
skn(x)
|skn(x)| , if |skn(x)| > α, x ∈ Ω.

(62)

Considering the staggered grid in Figure 3, we solve the two subproblems in
Algorithm 2 by using the discrete operators (50) and (51). For a fixed mesh size
h, the solution skn,h ∈ HF0 (div) of the discrete s-subproblem is obtained by solving

−∂+
1 ((∂−1 s1)i,j + (∂−2 s2)i,j) + qn(s1)i,j = (∂+

1 f)i,j + qnη((t1)k−1
n,h )i,j , (i, j) ∈ Ω

(1,0)
h ,

−∂+
2 ((∂−1 s1)i,j + (∂−2 s2)i,j) + qn(s2)i,j = (∂+

2 f)i,j + qnη((t2)k−1
n,h )i,j , (i, j) ∈ Ω

(0,1)
h ,

(s1)i,j = 0, (i, j) ∈ Ω̄
(1,0)
h \ Ω

(1,0)
h ,

(s2)i,j = 0, (i, j) ∈ Ω̄
(0,1)
h \ Ω

(0,1)
h .

(63)
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Further, tkn,h ∈ F (1,0) ×F (0,1) is computed as

((t1)kn,h)i,j =

((s1)kn,h)i,j , if |skn,h|i,j ≤ α, (i, j) ∈ Ω
(1,0)
h ,

((s1)kn)i,j
|skn,h|i,j

, if |skn,h|i,j > α, (i, j) ∈ Ω
(1,0)
h ,

((t2)kn,h)i,j =

((s2)kn,h)i,j , if |skn,h|i,j ≤ α, (i, j) ∈ Ω
(0,1)
h ,

((s2)kn,h)i,j

|skn,h|i,j
, if |skn,h|i,j > α, (i, j) ∈ Ω

(0,1)
h .

(64)

As the solution in t is exact, the iteration along k is stopped when the discrete residual
of the optimality condition for the s-subproblem is sufficiently small. In fact, since the
equation in the first line of (61) holds in H−1(Ω), a special step is require to measure
the residual. For this purpose, after we extend tkn,h ∈ F (1,0) × F (0,1) to HF0 (div)

and f ∈ F (0,0) to F̄ (0,0) by homogeneous Neumann boundary conditions on ∂Ω, we
compute the vector field

Rk
n,h := −∇h

(
divhs

k
n,h + f

)
+ qn

(
skn,h − ηtkn,h

)
∈ F̄ (1,0) × F̄ (0,1), (65)

and find R̃k
n,h = ((R̃1)kn,h, (R̃2)kn,h) ∈ F̄ (0,0) × F̄ (0,0) as the solution of

−((∂+
1 ∂
−
1 + ∂+

2 ∂
−
2 )(R̃l)

k
n,h)i,j =

1

2

(
((Rl)

k
n,h)i,j + ((Rl)

k
n,h)i−(2−l),j−(l−1)

)
, (i, j) ∈ Ω

(0,0)
h ,

(66)

((R̃l)
k
n,h)i,j = 0, (i, j) ∈ Ω̄

(0,0)
h \ Ω

(0,0)
h , (67)

for l ∈ {1, 2}. The numerical solution, s∗n,h := skn,h, is obtained for the smallest k ≥ 1
such that

|∇hR̃k
n,h|L2 ≈

(
h2

∑
l∈{1,2}

(i,j)∈Ω
(0,0)
h

|(∂1(R̃l)
k
n,h)i,j |2 + |(∂2(R̃l)

k
n,h)i,j |2

) 1
2 ≤ εd, (68)

for a prescribed stopping tolerance εd > 0.
The approximate solution of the discrete TV-problem is then given by

(u∗n,h)i,j = (divhs
∗
n,h)i,j + fi,j , (i, j) ∈ Ω

(0,0)
h . (69)

For increasing qn, we use the same continuation scheme as described before.

4.4. Numerical Results

Next we compare our results numerically with those obtained from different
algorithms. In all examples below the respective image intensity is scaled to [0, 1].
For simplicity we use the following abbreviations for the methods of Sections 2 and 3:

• PALM : Primal augmented Lagrangian method of subsection 2.1.1.

• DALM : The augmented Lagrangian method of the Fenchel pre-dual formulation
in subsection 3.3.2.
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(a) (b) (c)

(d) (e) (f)

Figure 4: A qualitative comparison between PALM and DALM : (a) The 128 × 128
image f for the TV-problem . The results from PALM and DALM are shown in (b)
and (c), respectively. The color table to change a gray-scale image into a color image
is shown in (d). In (e) and (f), we show the correspondingly colored versions of the
images in (b) and (c), respectively. It is easy to observe that DALM generates an
almost piecewise constant image.

Note that we use the same discretization as in [42] for PALM . Unless otherwise
specified, we use the previously described discretization on the staggered grid of
subsection 4.1 for DALM .

First, we provide a qualitative comparison between PALM and DALM in Figure 4.
In order to ensure a fair comparison, we choose an example with

f = χC , C := {x ∈ (0, 1)× (0, 1) : |x− (0.5, 0.5)| ≤ 0.3}, (70)

with known exact solution; see [38] or [39]. Figure 4(a) shows the 128 × 128 image
f in the TV- problem . For PALM , εp = 10−2, r0 = 2−10 and rn+1 = 2rn are used.
Figure 4(b) displays the numerical solution obtained by PALM with penalty parameter
r22 = 212. For DALM , εd = 10−6, q0 = 210 and qn+1 = 2qn are used. Figure 4(c)
shows the numerical solution obtained by DALM with penalty parameter q15 = 225.
We use the same idea as proposed in [9] to change a gray-scale image into a color
image based on the color table in Figure 4(d). Figure 4(e) and Figure 4(f) are the
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color images corresponding to Figure 4(b) and Figure 4(c), respectively, based on the
aforementioned color table.

(a) (b) (c)

(d) (e) (f)

Figure 5: A qualitative comparison between PALM and DALM : (a) The 128 × 128
image f in the TV- problem . The results for PALM and DALM can be seen in (b)
and (c), respectively. Figures (d), (e), and (f) are the corresponding color images to
(a), (b) and (c), respectively, based on a color table in Figure 4(d).

We readily observe that the results of PALM in Figures 4(b) and 4(e) suffer
from blurriness depending on radial directions from the center of the circle. The
direction dependent error is caused by the one-sided discretization scheme in [42].
It is significantly reduced by using the upwind finite-difference method in [9]. The
errors responsible for blurry regions in the reconstruction cannot be overcome by the
algorithms in Section 2 as the solution space in case of a finite penalty parameter is
W 1,1(Ω). The latter does not admit edge structures. On the other hand, the Fenchel
pre-dual formulation is crucially different in this respect. The numerical result from
DALM seems to approximate a piece-wise constant function with the exception of a
small number of pixels (compare, for example, with the results obtained in [9, Figure
5.1]). We also note that the one-sided discretization scheme of [42] for the algorithms
in Section 3 generate a result similar to Figure 4(b).

For a further detailed and exhaustive study on the anisotropy induced by
discretization methods and their connection with infinite dimensional models we refer
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to [28].
In Figure 5, the original image is degraded by Gaussian white noise with a

standard deviation of 20. Figure 5(a) shows the 128× 128 noisy image f in the TV-
problem. A relatively large regularization parameter α = 1 is used, as we primarily
want to study discretization aspects. In this respect, recovering “too” many detailed
features in Figure 5(c) would render the comparison of effects at boundaries between
constant image features impossible. For PALM , εp = 10−2, r0 = 2−10 and rn+1 = 2rn
are used. Figure 5(b) depicts the numerical solution obtained by PALM when the
penalty parameter is r30 = 220. For DALM , εd = 10−6, q0 = 210 and qn+1 = 2qn
are used. Figure 5(c) depicts the numerical solution obtained by DALM when the
penalty parameter reaches q15 = 225. Figures 5(d), 5(e), and 5(f) are the color
images corresponding to 5(a), 5(b), and 5(c), respectively, based on the color table in
Figure 4(d). We observe a similar behavior as in Figure 4. The numerical result from
DALM is piecewise constant which is supposed to be a solution of the TV-problem,
whereas the non-staggered grid is responsible for blurring effects at boundaries between
contour pieces.

5. Conclusion

While variable splitting methods have been used successfully in image processing
over the recent years, usually with the understanding that they solve a discrete version
of, e.g., the TV-problem, the situation for the original, genuinely infinite dimensional
TV-problem is different.

Primal variable splitting techniques are in general not well-defined as the existence
of a solution of the associated penalty problem cannot be guaranteed. Rather it can be
shown that for increasing penalty parameters, ε-minimizers (in the sense of Ekeland’s
variational principle) converge to the solution of the TV-problem. Nevertheless,
the alternating iteration schemes, often utilized for solving the penalty problem,
appear functional, as the associated subproblems admit (unique) solutions. Their
convergence, obviously, is jeopardized by the possible non-existence of solutions of the
associated minimization problem.

The situation for the pre-dual problem (note that the dual would lead to a
problem in the dual of the non-reflexive space of functions of bounded variation)
is entirely different: (i) Variable splitting techniques are well-defined in the sense
that associated penalty or augmented Lagrangian based problems admit solutions in
function space; (ii) the pre-dual is posed in Hilbert space; and (iii) the associated
alternating minimization, Bregman splitting or augmented Lagrangian methods
exhibit guaranteed convergence properties and perform better than their primal
counterparts (upon discretization).

Finally, as the pre-dual is posed in H0(div), staggered grids are appropriate
for discretization as they provided stable (and numerically significantly less diffusive
and somewhat isotropic) finite difference schemes. In this paper this was validated
numerically including a comparison with other specialized discretization schemes for
dual formulations of the discrete TV-problem.

Appendix A. Appendix : Proofs of Theorems 2.1 and 2.2

Proof. [Theorem 2.1] We split the proof into several steps.
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Step 1: The sequence {un} is bounded in BV (Ω). By the definition of {(un,pn)}
in (7) we have Epn(un,pn) ≤ Epn(0, 0) + εn = 1

2

∫
Ω
|f |2 + εn. Thus, { rn2 |pn−∇un|

2
L2(Ω)}

is bounded. Also, rn ↑ ∞ and hence |pn−∇un|L2(Ω) → 0 as n→∞ and, by Hölder’s
and the triangle inequalities, δn := α

∫
Ω
|pn| − α

∫
Ω
|∇un| satisfies limn→∞ δn = 0.

From the definition of δn and (un,pn), we obtain

−δn +
1

2

∫
Ω

|f |2 = α

(∫
Ω

|∇un| −
∫

Ω

|pn|
)

+
1

2

∫
Ω

|f |2 (A.1)

≥ α
(∫

Ω

|∇un| −
∫

Ω

|pn|
)

+ Epn (un,pn)− εn (A.2)

= α

∫
Ω

|∇un|+
1

2

∫
Ω

|un − f |2 +
rn
2
|pn −∇un|2L2 − εn (A.3)

≥ α
∫

Ω

|∇un|+
1

2|Ω|

(∫
Ω

|un − f |
)2

+
rn
2
|pn −∇un|2L2 − εn (A.4)

≥ α
∫

Ω

|∇un|+
1

2|Ω|

(∫
Ω

|un| −
∫

Ω

|f |
)2

+
rn
2
|pn −∇un|2L2 − εn,

(A.5)

where Hölder’s inequality yields (A.4) and the reverse triangle inequality (A.5).
Since δn → 0 and εn ↓ 0, we find that the sequences{∫

Ω

|un|
}

and

{∫
Ω

|Dun|
}
, (A.6)

are bounded (note that
∫

Ω
|Dun| =

∫
Ω
|∇un| for each n, since un ∈ W 1,1(Ω)), i.e.,

{un} is bounded in BV (Ω).
Step 2: limn→∞ rn|pn−∇un|2L2 = 0. From the definition of {(un,pn)} in (7), we

have that Epn(un,pn) ≤ Epn(u,∇u) + εn for any u ∈W 1,1(Ω), i.e.,

1

2

∫
Ω

|un − f |2 +α

∫
Ω

|pn|+
rn
2
|pn −∇un|2L2 ≤

1

2

∫
Ω

|u− f |2 +α

∫
Ω

|∇u|+ εn. (A.7)

From the definition of δn, we get α
∫

Ω
|pn| = δn + α

∫
Ω
|∇un|. Since {un} is

bounded in BV (Ω) and, thus, in L2(Ω) (recall that BV (Ω) ↪→ L2(Ω); see [2])
there is ū ∈ BV (Ω) for which un ⇀ ū in L2(Ω), along a subsequence. Since the
embedding BV (Ω) ↪→ L1(Ω) is compact (see [19]), we observe that un → ū in
L1(Ω) (along a subsequence of {un} which we also denote by {un}). This implies∫

Ω
|Dū| ≤ limn→∞

∫
Ω
|∇un|. Thus, we have

∫
Ω
|Dū| ≤ limn→∞

∫
Ω
|pn| and therefore

1

2

∫
Ω

|ū− f |2 + α

∫
Ω

|Dū|+ a ≤ (A.8)

lim
n→∞

(
1

2

∫
Ω

|un − f |2 + α

∫
Ω

|pn|+
rn
2
|pn −∇un|2L2

)
,

where a = limn→∞
rn
2 |pn−∇un|

2
L2 . Here we have used the weak lower semicontinuity

of the norm and elementary properties of lim. Therefore, from (A.7), we infer

0 ≤ 1

2

∫
Ω

|ū− f |2 + α

∫
Ω

|Dū|+ a ≤ 1

2

∫
Ω

|u− f |2 + α

∫
Ω

|∇u|, (A.9)
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for all u ∈W 1,1(Ω).
Since ū ∈ BV (Ω) ∩ L2(Ω), one can argue the existence of {vk} ⊂ C∞(Ω̄) ⊂

W 1,1(Ω) such that limk→∞ |vk − ū|L2 = 0 and limk→∞
∫

Ω
|∇vk| =

∫
Ω
|Dū| (see for

example [7]). We choose u = vk in the inequality (A.9) and take the limit as k →∞
to obtain a = limn→∞

rn
2 |pn −∇un|

2
L2(Ω) = 0.

Step 3: ū ∈ BV (Ω) is the minimizer. Finally, since a = 0 in (A.9), we have that

1

2

∫
Ω

|ū− f |2 + α

∫
Ω

|Dū| ≤ 1

2

∫
Ω

|w − f |2 + α

∫
Ω

|Dw|

for all w ∈ BV (Ω) by using the same density argument as in the preceding paragraph,
i.e., ū is a minimizer of the TV- problem .

Step 4: un → ū in the L2(Ω)-sense and
∫

Ω
|pn| →

∫
Ω
|Dū| (along subsequences).

Using a = limn→∞
rn
2 |pn − ∇un|

2
L2 = 0 and the inequalities in (A.7) and (A.8), we

obtain that

lim
n→∞

(
1

2

∫
Ω

|un − f |2 + α

∫
Ω

|pn|
)

=
1

2

∫
Ω

|ū− f |2 + α

∫
Ω

|Dū|, (A.10)

where the density argument of Step 3 has been used. Then, we consider a subsequence
of {(un,pn)} (again denoted by {(un,pn)}) for which the previous relation holds
when “lim” is replaced by “lim”. From the previous steps, we know that

∫
Ω
|ū−f |2 ≤

limn→∞
∫

Ω
|un−f |2, due to un ⇀ ū in the L2(Ω)-sense, and

∫
Ω
|Dū| ≤ limn→∞

∫
Ω
|pn|.

Hence, we have − limn→∞
∫

Ω
|pn| ≤ −

∫
Ω
|Dū| and equivalently limn→∞

∫
Ω

(−|pn|) ≤
−
∫

Ω
|Dū|. Therefore, we obtain

1

2

∫
Ω

|ū− f |2 ≤ lim
n→∞

1

2

∫
Ω

|un − f |2 (A.11)

= lim
n→∞

(
1

2

∫
Ω

|un − f |2 + α

∫
Ω

|pn| − α
∫

Ω

|pn|
)

(A.12)

≤ lim
n→∞

(
1

2

∫
Ω

|un − f |2 + α

∫
Ω

|pn| − α
∫

Ω

|pn|
)

(A.13)

≤ 1

2

∫
Ω

|ū− f |2 + α

∫
Ω

|Dū|+ lim
n→∞

(
−α

∫
Ω

|pn|
)

(A.14)

≤ 1

2

∫
Ω

|ū− f |2 + α

∫
Ω

|Dū| − α
∫

Ω

|Dū| (A.15)

=
1

2

∫
Ω

|ū− f |2. (A.16)

Hence, limn→∞
∫

Ω
|un − f |2 =

∫
Ω
|ū − f |2, and along a subsequence of {un} we have∫

Ω
|un − f |2 →

∫
Ω
|ū − f |2. We also have (un − f) ⇀ (ū − f) in L2(Ω). Therefore,

as L2(Ω) is a locally uniformly convex space, (un − f)→ (ū− f) in L2(Ω) and hence
|un − ū|L2 → 0 along a subsequence.

Finally, since we have

lim
n→∞

(
1

2

∫
Ω

|un − f |2 + α

∫
Ω

|pn|
)

=
1

2

∫
Ω

|ū− f |2 + α

∫
Ω

|Dū|, (A.17)

and (un − f) → (ū − f) in L2(Ω) along a subsequence of {(un,pn)}, we have that
limn→∞

∫
Ω
|pn| =

∫
Ω
|Dū|. �
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Proof. [Theorem 2.2] The proof is split into two steps.
Step 1: The sequence {un} is bounded in BV (Ω). By the definition of {(un,pn)}

we have Lprn(un,pn,λn) ≤ Lprn(0, 0,λn)+εn. Then, upon completing squares, we find
that rn|pn −∇un|2L2 is bounded by (12). This implies limn→∞ |pn −∇un|L2 = 0 and
limn→∞〈λn,pn − ∇un〉L2 = 0. Then, arguing as in Step 1 of the proof of Theorem
2.1, we obtain

− δn +
1

2

∫
Ω

|f |2 ≥

α

∫
Ω

|∇un|+
1

2|Ω|

(∫
Ω

|un| −
∫

Ω

|f |
)2

+
rn
2
|pn −∇un|2L2(Ω) + 〈λn,pn −∇un〉L2 − εn,

where δn = α(
∫

Ω
|pn|−

∫
Ω
|∇un|). The latter expression tends to zero as n→∞ since

limn→∞ |pn −∇un|L2 = 0. Hence, as εn ↓ 0 we have that the sequences{∫
Ω

|un|
}

and

{∫
Ω

|Dun|
}
, (A.18)

are bounded. Thus, we conclude that {un} in W 1,1(Ω) is bounded in BV (Ω).
Step 2: limn→∞ rn|pn − ∇un|2L2 = 0, existence of a minimizer and appropriate

convergence. From the definition of {(un,pn)}, we infer Lprn(un,pn,λn) ≤
Lprn(u,∇u,λn) + εn for any u ∈ W 1,1(Ω). Since we know that limn→∞〈λn,pn −
∇un〉L2 = 0, we argue as in the Step 2 of the proof of Theorem 2.1 and obtain a
subsequence of {un} ( also denoted by {un}) and ū ∈ BV (Ω) such that un ⇀ ū
in L2(Ω) and

∫
Ω
|Du| ≤ limn→∞

∫
Ω
|∇un|. Then,

∫
Ω
|Du| ≤ limn→∞

∫
Ω
|pn| due to

δn = α(
∫

Ω
|pn| −

∫
Ω
|∇un|) going to 0 as n→∞, and we observe

0 ≤ 1

2

∫
Ω

|ū− f |2 + α

∫
Ω

|Dū|+ a ≤ 1

2

∫
Ω

|u− f |2 + α

∫
Ω

|∇u|, (A.19)

where a = limn→∞
rn
2 |pn − ∇un|

2
L2(Ω). A density argument analogous to the one at

the end of Step 2 and Step 3 of the proof of Theorem 2.1 implies that a = 0 and
consequently that ū is a minimizer of the TV- problem . Finally, Step 4 in the proof
of Theorem 2.1 is valid here and the assertion follows. �
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[5] R. E. Bruck, Jr. An iterative solution of a variational inequality for certain monotone operators
in Hilbert space. Bull. Amer. Math. Soc., 81(5):890–892, 1975.

[6] R. E. Bruck, Jr. Corrigendum: “An iterative solution of a variational inequality for certain
monotone operators in Hilbert space” (Bull. Amer. Math. Soc. 81 (1975), no. 5, 890–892).
Bull. Amer. Math. Soc., 82(2):353, 1976.

[7] E. Casas, K. Kunisch, and C. Pola. Regularization by functions of bounded variation and
applications to image enhancement. Applied Mathematics and Optimization, 40:229–257,
1999.



Issues in Splitting Methods for Total Variation-based Image Reconstruction 37

[8] A. Chambolle. An algorithm for total variational minimization and applications. J. Math.
Imaging Vis., 20:89–97, 2004.

[9] A. Chambolle, S.E. Levine, and B.J. Lucier. An upwind finite-difference method for total
variation-based image smoothing. SIAM J. Imaging Sci., 4:277–299, 2011.

[10] R. Chan, M. Tao, and X. Yuan. Constrained total variation deblurring models and fast
algorithms based on alternating direction method of multipliers. SIAM Journal on Imaging
Sciences, 6(1):680–697, 2013.

[11] T.F. Chan, G.H. Golub, and P. Mulet. A nonlinear primal-dual method for total variation-based
image restoration. SIAM J. Sci. Comput., 20:1964–1977, 1999.

[12] G. Hong-Gang Chen. Forward-backward splitting techniques: Theory and applications.
ProQuest LLC, Ann Arbor, MI, 1994. Thesis (Ph.D.)–University of Washington.

[13] K. Chen, Y. Dong, and M. Hintermüller. A nonlinear multigrid solver with line Gauss-
Seidel-semismooth-Newton smoother for the Fenchel pre-dual in total variation based image
restoration. Inverse Problems and Imaging, 5(2):323–339, 2011.

[14] P. Chen, J. Huang, and X. Zhang. A primal–dual fixed point algorithm for convex separable
minimization with applications to image restoration. Inverse Problems, 29(2):025011, 2013.

[15] Y. Chen, W. Hager, F. Huang, D. Phan, X. Ye, and W. Yin. Fast algorithms for image
reconstruction with application to partially parallel mr imaging. SIAM Journal on Imaging
Sciences, 5(1):90–118, 2012.

[16] J. Eckstein. Splitting methods for monotone operators with applications to parallel optimization.
PhD thesis, Massachusetts Institute of Technology. Dept. of Civil Engineering., 1989.

[17] A. Ern and J.L. Guermond. Theory and Practice of Finite Elements. Number v. 159 in Applied
Mathematical Sciences. Springer, 2004.

[18] D. Gabay. Applications of the method of multipliers to variational inequalities. In M. Fortin
and R. Glowinski, editors, Augmented Lagrange Methods: Applications to the Solution of
Boundary-valued Problems. North-Holland, Amsterdam, Netherlands, 1983.

[19] E. Giusti. Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, 1984.
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