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Chapter 1

Hamiltonian Functions

The aim of this chapter is to quickly acquaint the reader with the most basic elements of symplectic geometry.
These ideas are among the most important in the course.

Key Points:

1. A symplectic manifold (M,ω) is a smooth manifold M equipped with a closed and nondegenerate
2-form ω.

2. Every smooth function f ∈ C∞(M) induces a vector field Xf ∈ X(M) which preserves the symplectic
structure ω.

3. The interaction between functions and symmetries endows C∞(M) with the structure of a Lie algebra.

4. The symplectic sphere (S2,dθ ∧ dh) is an example of nearly every concept in this course.

Remark. Be advised when consulting the literature: Some sources present definitions which differ by a factor
of −1 from our own.

1.1 The Category of Symplectic Manifolds

Definition 1. A symplectic manifold is a smooth manifold M equipped with a closed and nondegenerate
2-form ω ∈ Ω2(M). By nondegenerate, we mean that the interior product ιXω is nonzero for all nonzero
X ∈ TM .

Definition 2. Let (M,ω) and (M ′, ω′) be two manifolds. A function φ : M → M ′ is called a symplectic
map if ω = φ∗ω′. If φ is additionally a diffeomorphism, then we say that φ is a symplectomorphism between
(M,ω) and (M ′, ω′).

category: smooth symplectic

smooth map symplectic map
diffeomorphism symplectomorphism

Definition 3. We say that X ∈ X(M) is a symplectic vector field if LXω = 0.

If the symplectic vector field X ∈ X(M) is integrable, then for the time-t flow φt : M → M of X is a
symplectic transformation of (M,ω).
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1.2 Hamiltonian Functions and Hamiltonian Vector Fields

The nondegeneracy of ω implies that, for each x ∈M , the map

TxM
∼−→ T ∗xM

X 7−→ ιXω

is a linear isomorphism. Extending this map to every fiber of TM →M yields a linear isomorphism

X(M)
∼−→ Ω1(M)

X 7−→ ιXω

Definition 4. The Hamiltonian vector field X ∈ X(M) associated to a function f ∈ C∞(M) is defined by

ιXω = df.

In this case, we also say that f is a Hamiltonian function associated to X.

We will frequently denote the Hamiltonian function associated to f ∈ C∞(M) by Xf . Another common
notation is Hf .

Note that

C∞(M)
d−→ Ω1(M)

∼−→ X(M)
f df Xf

where the isomorphism is induced by ω.
The most important property of Hamiltonian vector fields, for our purposes in these notes, is the following:

Proposition 5. If X ∈ X(M) is a Hamiltonian vector field, then X is symplectic.

Proof. Let f ∈ C∞(M) be a Hamiltonian function for X, so that ιXω = df . Using the Cartan homotopy
formula1 and the closedness of ω, we deduce that

LXω = dιXω + ιXdω

= d(df) + 0

= 0.

This easy proof establishes the following fundamental property of symplectic manifolds:

The smooth functions on M describe infinitesimal symmetries of (M,ω).

Remark. We may compare this situation to the case of gradient vector fields on a Riemannian manifold
(M, g). In the Riemannian case, a function f ∈ C∞(M) describes a gradient vector field ∇f which is not in
general an infinitesimal transformation of (M, g). That is, it is not always the case that ∇f preserves the
metric g.

The formalism of Hamiltonian functions and Hamiltonian vector fields endows the space of functions
C∞(M) with a special structure, defined as follows.

Definition 6. Let (M,ω) be a symplectic manifold. Define the Poisson bracket associated to ω,

{ , } : C∞(M)× C∞(M)→ C∞(M),

by
{f, h} = Xfh

for all f, h ∈ C∞(M).

1namely, that LX = d ιX + ιXd.
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That is, {f, h} ∈ C∞(M) measures the infinitesimal rate of change of h ∈ C∞(M) along the infinitesimal
symmetry Xh ∈ X(M) associated to f ∈ C∞(M). Equivalently, we have

{f, h} = Xfh

= dh(Xf )

= ω(Xh, Xf )

= −ω(Xf , Xh).

In the exercises, we will show that { , } is a Lie bracket and a bi-derivation on C∞(M). This motivates the
following definition.

Definition 7. Let M be a smooth manifold. A Poisson bracket on M is a Lie bracket { , } on C∞(M) such
that

{f, hk} = {f, h}k + h{f, k}
for all f, h, k ∈ C∞(M). That is, { , } is a Lie bracket and a bi-derivation on C∞(M). The pair (M, { , }) is
called a Poisson manifold.

Thus, every symplectic manifold is naturally a Poisson manifold. However, It is not the case that every
Poisson bracket arises in this way. We shall see one such example below.

1.3 Examples

Example 8 (the plane). Consider the plane R2 with the usual coordinates x, y : R2 → R. The standard
symplectic structure on R2 is ω = dx ∧ dy.

More generally, we can fix N ≥ 1 and consider RN with coordinates (x1, . . . , xN , y1, . . . , yN ). In terms
of these coordinates, the standard symplectic structure on RN is

ω =

N∑
i=1

dxi ∧ dyi.

Perhaps the most prominent example in these notes is the sphere (S2,dθ ∧ dh), which will illustrate, for
example:

1. coadjoint orbits,
2. integral systems,
3. toric symplectic manifolds,
4. Kähler manifolds,
5. symplectic reduced spaces, in two distinct ways.

Example 9 (the sphere). Let S2 be the unit sphere in R3, with the usual coordinates φ, θ : S2 → R, given as
illustrated below.

S2

φ

θ

N

S
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Observe the following:

1. The coordinate vector fields ∂θ, ∂φ ∈ X
(
S2\{N,S}

)
are pointwise orthogonal.

2. Since φ measures the distance along S2 to the north pole, ∂φ has unit length at every point.

3. The integral curves of ∂θ are circles of length sinφ, and so the vector field 1
sinφ ∂θ has unit length at

every point.

sinφ

φ

N

S

∂φ

∂θ

It follows that
{
∂φ,

1
sinφ ∂θ

}
is an orthonormal basis on S2\{N,S} with metric dual basis {dφ, sinφ dθ}.

In particular, the 2-form
ω = dφ ∧ (sinφdθ) = sinφ dφ ∧ dθ

is the usual volume form on S2, and it is easy to see that ω is closed and nondegenerate. We will call ω the
standard symplectic structure on S2.

Now let h : S2 → R be the height function on S2. For example, h(N) = 1 and h(S) = −1. Since
h = cosφ, we have

dh = − sinφ dφ,

and thus
ω = −dh ∧ dθ = dθ ∧ dh.

Let us smoothly extend the coordinate vector field ∂θ ∈ X
(
S2\{N,S}

)
to all of S2 by defining (∂θ)N = 0 ∈

TNS
2 and (∂θ)S = 0 ∈ TSS2. Since

ι∂θω = ι∂θ (dθ ∧ dh) = dh,

on S2\{N,S}, and since both sides vanish at N and S, we conclude that ∂θ is the Hamiltonian vector field
associated to h.

Example 10 (phase space). Let Q be any smooth manifold. We will show that the cotangent bundle T ∗Q
carries a natural symplectic structure −dθ ∈ Ω2(T ∗Q), where θ ∈ Ω1(Q) is given as follows. Fix q ∈ Q and
α ∈ T ∗qQ. The value of θα : Tα(T ∗Q)→ R is defined by

θα(X) = α(π∗X)

for every X ∈ Tα(T ∗Q). Traditionally, the total space T ∗Q is considered as the momentum phase space
associated to the configuration manifold Q.

T ∗qQ

α
X

Q

T ∗Q

q π∗X

α : TqQ −→ R
∈

π∗X

position q

momentum p
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Definition 11. When a symplectic structure ω ∈ Ω2(M) is exact, so that ω = −dθ for some θ ∈ Ω1(M),
we say that θ is a symplectic potential for ω, or a Liouville 1-form for ω.

In the next chapter, we will see that symplectic potentials never exist on closed manifolds.
We now introduce one of the most interesting examples.

Example 12 (Poisson structure on g∗). Let G be a semisimple Lie group and let g be its Lie algebra. While
not naturally a Lie algebra itself, the dual space g∗ of the Lie algebra g is a key example of a Poisson
manifold.

Here is the idea. For each point λ ∈ g∗, there is a canonical isomorphism of vector spaces

Tλg
∗ ∼= g∗,

and taking the dual of either side yields a canonical isomorphism

T ∗λg
∗ ∼= (g∗)∗ ∼= g.

For f, h ∈ C∞(g∗), define the value of {f, h} ∈ C∞(g∗) at λ ∈ g∗ to be

{f, h}(λ) =
〈
λ,
[
δf
δλ ,

δh
δλ

]〉
where δf

δλ ∈ g is determined, in terms of the above identifications, to be

T ∗λg
∗ ∼= (g∗)∗ ∼= g

∈ ∈

(df)λ
δf
δλ

and similarly for δh
δλ ∈ g. The fact that { , } is a Lie bracket on g∗ follows from the fact that [ , ] is a Lie bracket

on g. Moreover, { , } is a bi-derivation as it factors through the exterior derivative d : C∞(g∗) → Ω1(g∗).
The reader may readily supply the technical details, if desired.

When we consider the coadjoint orbits Oλ ⊆ g∗, later on, we will see that this Poisson bracket does not
arise from a symplectic structure on g∗.

Exercises

1. Let (M,ω) be a symplectic manifold and f ∈ C∞(M) a smooth function. Show that f is constant
along the flow of Xf ∈ X(M), that is, Xff = 0.

Hint. Show that Xff = ω(Xf , Xf ).

2. Symplectic golf. Consider the plane R2 equipped with the standard symplectic structure ω = dx ∧ dy.
In each illustration, find and sketch a Hamiltonian function f ∈ C∞(R2) so that the Hamiltonian
vector field Xf ∈ X(R2) carries the ball into the hole with the flag.

a.

Xf = ∂x

b.
Xf = ∂y
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c.

Xf = ±∂θ

Hint. For part c., consider a quadratic polynomial in x and y, and use the fact that ∂θ = x∂y − y∂x.

3. Consider the mapping

X : C∞(M)→ X(M)

f 7→ Xf

which sends a smooth function f to its associated Hamiltonian vector field Xf .

a. Show that the Poisson bracket { , } is antisymmetric. That is, for all f, h ∈ C∞(M), we have
{f, h} = −{h, f}.

b. Show that { , } is bilinear.

Hint. Show that { , } is linear in the second argument, and use part a. to deduce that it is linear
in the first argument.

c. Prove that X : C∞(M)→ X(M) satisfies

X{h,k} = [Xh, Xk]

for all h, k ∈ C∞(M).

Hint. It requires to show that d{h, k} = ι[Xh,Xk]ω. You may find the identity ι[X,Y ] = [LX , ιY ]
helpful in this regard.

d. Prove that { , } satisfies the Jacobi identity. That is, for all f, h, k ∈ C∞(M),

{f, {h, k}} = {{f, h}, k}+ {h, {f, k}}.

Hint. Part c. implies X{h,k}f = [Xh, Xk]f .

e. Conclude that { , } is a Lie bracket on C∞(M), and that X : C∞(M) → X(M) is a Lie algebra
homomorphism.

4. Show that the Poisson bracket { , } is a bi-derivation on C∞(M). That is,

{f, hk} = {f, h}k + h{f, k}

and
{fh, k} = {f, k}h+ f{h, k}

for all f, h, k ∈ C∞(M).

5. Suppose that (M,ω) is a compact symplectic manifold and that f ∈ C∞(M) is a smooth function.
Show that Xf has at least two vanishing points.

Hint. Show that Xf vanishes at the critical points of f .
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Chapter 2

The Structure of Symplectic
Manifolds

Having gained some intuition, we now begin a more technical development.
Consider two smooth manifolds M and N , each of dimension k ≥ 0, and fix x ∈ M and y ∈ N . In this

setting, we can always find two neighborhoods Ux ⊆ M and Uy ⊆ N , which are identical in the sense that
there exists a diffeomorphism φ : Ux → Uy.

M

Ux φ

Ux ∼= Uy
as smooth manifolds

N

Uy

In other words, if you are given a very small neighborhood U of a smooth manifold M , then all you can
know about M is its dimension. This is not the case for Riemannian manifolds: Indeed, if you are given any
neighborhood (U, g|U ) of a round sphere (S2, ground), then you know, for example, that it did not come from
the flat plane (R2, gflat).

Now suppose that ω ∈ Ω2(M) and σ ∈ Ω2(N) are symplectic structures on M and N . It turns out that we
can always find neighborhoods U ′x ⊆M of x and U ′y ⊆M of y which are identified by a symplectomorphism
φ′ : (Ux, ω|U ′x)→ (Uy, σ|U ′y ).

(M,ω)

U ′x
φ′

U ′x
∼= U ′y

as symplectic manifolds

(N, σ)

U ′y

This is remarkable. A symplectic structure encodes no local information at all. Up close, the sphere
(S2,dθ∧ dh) and the plane (R2,dx∧ dy) cannot be distinguished. This is the content of Darboux’s theorem,
which is the main result of this chapter.

In spite of this flexibility, it is not true that every manifold M possesses a symplectic structure ω ∈ Ω2(M).
Locally, the nondegeneracy of ω requires that the dimension of M be even. Globally, while every contractible
neighborhood U ⊆ M on an even-dimensional manifold M admits a symplectic structure ωU ∈ Ω2(U),
topological considerations can prohibit the existence of a symplectic structure ω on M .
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Our approach in this chapter is, by turns, infinitesimal, local, and global:

TxM

U

M

infinitesimal regarding tangent fibers TxM

local neighborhoods U ⊆M
global manifolds M

Key Points:

1. Symplectic manifolds and symplectic vector spaces are even-dimensional.

2. Any two symplectic vector spaces of the same dimension are symplectomorphic.

3. Any two symplectic manifolds of the same dimension are locally symplectomorphic.

4. A symplectic manifold (Mn, ω) possesses a canonical orientation and measure ωn

n! ∈ Ω2n(M).

5. If M is compact, then [ω] defines a nontrivial cohomology class in H2(M ;R).

2.1 Infinitesimal Structure

Consider a symplectic manifold (M,ω) and fix a point x ∈ M . Our aim in this section is to understand
the tangent fiber TxM as a vector space equipped with a nondegenerate alternating bilinear form ωx :
TxM × TxM → R.

To this end, we will temporarily disregard the manifold M , and fully turn our attention to the intrinsic
structure of (TxM,ωx), that is, to the structure of a symplectic vector space. The most important properties
are the following:

i. a symplectic vector space is necessarily even-dimensional, and

ii. any two symplectic vector spaces of the same dimension are isomorphic.

We also introduce some terminology that will be of use in the local case.

Definition 13. A linear symplectic structure on a vector space V is a nondegenerate alternating bilinear
form ω : V × V → R. The pair (V, ω) is called a symplectic vector space.

Let us briefly review this terminology:

nondegeneracy: ιuω 6= 0,

alternation: ω(u, v) = −ω(v, u), and

bilinearity:

{
ω(su+ u′, v) = sω(u, v) + ω(u′, v),

ω(u, sv + v′) = sω(u, v) + ω(u, v′).

where u, u′, v and v′ range over all points of V .

Example 14. Fix a vector space U . Let V = U ⊕ U∗ and define the linear symplectic structure ω on V by

ω(u+ φ, u′ + φ′) = φ′(u)− φ(u′)

for u, u′ ∈ U and φ, φ′ ∈ U∗. From the perspective of classical mechanics, this is the canonical example of a
symplectic vector space.

The terminology of maps is given in the natural way, as follows.
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Definition 15. Let (V, ω) and (V ′, ω′) be symplectic vector spaces. A linear map φ : V → V ′ is called a
linear symplectic map if ω = φ∗ω′. If φ is additionally a linear isomorphism, then we say that φ is a linear
symplectomorphism between (V, ω) and (V ′, ω′).

We now introduce a very useful construction.

Definition 16. Let (V, ω) be a symplectic vector space. The symplectic orthogonal of the subspace A ⊆ V
the subspace

Aω = {v ∈ V | ∀a ∈ A : ω(a, v) = 0}.

In other words, Aω is the largest subspace of V which vanishes when paired with A under ω. The
symplectic orthogonal is an essentially linear construction, in the sense that it finds no counterpart in the
setting of symplectic manifolds. It will prove to be an important tool in the proof of the symplectic reduction
theorem, which we will see later on.

Definition 17 (Distinguished subspaces). Let (V, ω) be a symplectic vector space. A subspace A ⊆ V is
said to be

• symplectic, if ω defines a linear symplectic structure on A,
• isotropic, if ω vanishes on A,
• coisotropic, if ω vanishes on Aω,
• Lagrangian, if A = Aω.

More concisely:

symplectic A ∩Aω = 0
isotropic A ⊆ Aω

coisotropic Aω ⊆ A
Lagrangian A = Aω

This characterization provides the following important structure result for symplectic vector spaces.

Lemma 18 (Existence of symplectic bases). Let (V, ω) be a symplectic vector space has a basis of the form
{u1, . . . , un, v1, . . . , vn} ⊆ V for some n ≥ 1, where

ω(ui, vi) = 1, ω(ui, uj) = ω(vi, vj) = 0,

for all i, j ≤ n.

To prove this result, we proceed constructively. Specifically, we will obtain a disjoint collection of sym-
plectic subspaces Vi = 〈ui, vi〉 ⊆ V such that V = V1⊕ · · · ⊕ Vk. To achieve this, we will define a descending
chain of subspaces {V(k)}nk=1 designed to satisfy V(k) = Vk ⊕ Vk+1 · · · ⊕ Vn.

Proof. Let u1 ∈ V be nonzero. The nondegeneracy of ω implies that there is a ṽ1 ∈ V such that ω(u1, ṽ1) 6= 0.
Put v1 = ṽ1/ω(u1, ṽ1) ∈ V and observe that ω(u1, v1) = 1. Since the subspace V1 = 〈u1, v1〉 is symplectic,
the symplectic orthogonal V(2) = V ω1 is also symplectic, and V = V1 ⊕ V(2). If V(2) = 0 then we are done.
Otherwise, we repeat this procedure and obtain V(2) = V2 ⊕ V(3) for a suitable V2 = 〈u2, v2〉 ⊆ V(2). As V is
finite-dimensional, this procedure must terminate with V(n+1) = 0 for some n ≥ 0.

A basis B = {u1, . . . , uk, v1, . . . , vk} ⊆ V of the above form is called a symplectic basis of (V, ω). Observe
that

ω = u∗1 ∧ v∗1 + · · ·+ u∗n ∧ v∗n,

where B∗ = {u∗1, . . . , u∗k, v∗1 , . . . , v∗k} ⊆ V ∗ is the dual basis to B. While we have shown that symplectic bases
always exist, the degree of free choice in the construction of our proof correctly suggests that they are never
unique.
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Proposition 19. If (V, ω) and (V ′, ω′) are symplectic vector spaces, then

i. V is even-dimensional,

ii. (V, ω) and (V ′, ω′) are linearly symplectomorphic if and only if dimV = dimV ′.

Proof. Let B = {u1, . . . , um, v1, . . . , vm} ⊆ V and B′ = {u′1, . . . , u′n, v′1, . . . , v′n} ⊆ V ′ be symplectic bases, as
provided by Lemma 18.

i. dimV = |B| = 2n.

ii. If (V, ω) and (V ′, ω′) are linearly symplectomorphic, then they are isomorphic as vector spaces. In
particular, dimV = dimV ′.

Now suppose dimV = dimV ′. There is a unique linear isomorphism φ : V → V ′ sending ui 7→ u′i and
vi 7→ v′i for all i ≤ m. Since ω agrees with φ∗ω′ on the members of B, since B is a basis, and since ω is
bilinear, it follows that ω = φ∗ω′. Thus, (V, ω) and (V ′, ω′) are linearly symplectomorphic.

In the next section, we will show that symplectic manifolds are equipped with canonically defined orien-
tations and volume forms. Given a symplectic basis B = {u1, . . . , un, v1, . . . , vn}, consider the linear volume
element

u∗1 ∧ v∗1 ∧ · · · ∧ u∗n ∧ v∗n ∈ Λ2nV ∗.

In the following lemma, we establish that this element depends only on (V, ω). In particular, it does not
depend on the choice of symplectic basis B.

Lemma 20. If (V, ω) is a symplectic vector space, and if B ⊆ {u1, . . . , un, v1, . . . , vn} ⊆ V is any symplectic
basis, then

ω2n

n!
= u∗1 ∧ v∗1 ∧ · · · ∧ u∗n ∧ v∗n ∈ Λ2nV ∗,

where B∗ = {u∗1, . . . , u∗n, v∗1 , . . . , v∗n} ⊆ V ∗ is the dual basis to B.

Proof. Put αi = u∗i ∧ v∗i for each i ≤ n. Thus,

ω = α1 + · · ·+ αn.

Since α2
i = 0 and αiαj = αjαi, we accumulate like terms to obtain

ω2 =
∑
i<j

2αiαj

and
ω3 =

∑
i<j<k

6αiαjαk.

Indeed, since each term αi1 · · · αik is invariant under all |Sk| = k! permutations of {i1, . . . , ik}, we obtain the
general formula

ωk =
∑

i1<···<ik

k! αi1 · · · αik .

In particular, ωn = n!α1· · · αn.

We have shown that ωn

n! is a linear volume element on V , which we will call the canonical linear symplectic

volume element on (V, ω), and is characterized by the property that ω2n

n! (u1, v1, . . . , un, vn) = 1 for every
symplectic basis {u1, . . . , un, v1, . . . , vn} ⊆ V . In terms of the exponential map, we have

eω = 1 +
ω

1!
+
ω2

2!
+ . . .+

ωn

n!
∈ Λ∗V ∗,

so that the canonical linear symplectic volume element is given by

(eω)[2n] =
ωn

n!
∈ Λ2nV ∗.
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2.2 Local Structure

We turn now from the tangent fiber TxM to a sufficiently small neighborhood U of x ∈ M . Our analysis
will be motivated and informed by the linear symplectic structure of (TxM,ωx).

First let us extend the classification scheme of Definition 17 to the smooth setting.

Definition 21 (Distinguished submanifolds). Let (M,ω) be a symplectic manifold. A submanifold N ⊆M
is called a symplectic (resp. isotropic, coisotropic, Lagrangian) submanifold if TxN is a symplectic (resp.
isotropic, coisotropic, Lagrangian) subspace of (TxM,ωx) for every x ∈ N .

The next result follows easily from our study of the linear situation.

Proposition 22. Every symplectic manifold (M,ω) is even-dimensional.

Proof. Since (TxM,ωx) is a symplectic vector space, Proposition 19 part i. asserts that dimM = dimTxM
is even.

The most profound result of the local setting is arguably Darboux’s theorem. Informally, this states that
any two symplectic manifolds of the same dimension are locally indistinguishable.

Lemma 23 (Existence of symplectic coordinates). Let (M2n, ω) be a symplectic manifold and fix x ∈ M .
There is a neighborhood U ⊆M of x and a coordinate chart (x1, . . . , xn, y1, . . . , yn) : U → R such that

ω =

n∑
i=1

dxi ∧ dyi

on U .

We proceed constructively, by analogy with Lemma 18. The function y1 is chosen arbitrarily, and the
function x1 is defined so that the coordinate vector field ∂xi is the Hamiltonian function Xy1 . The argument
is repeated to obtain the remaining coordinates x2, y2, . . . , xn, yn.

Proof sketch. Take a small neighborhood U1 ⊆ M of x and choose a function y1 ∈ C∞(U1) so that dy1 is
nonvanishing. Let x1 ∈ C∞(U1) be any solution to the ordinary differential equation Xy1x1 = 1. If M is a
surface, then ∂x1

= Xy1 and ∂y1 = −Xx1
, so that ω(∂x1

, ∂y1) = ω(Xyi ,−Xxi) = 1 at every point of U = U1

and we are done.
Otherwise, let y2 ∈ C∞(U2) be chosen on a neighborhood U2 ⊆ U1 of x so that dy2 is nonvanishing and

∂x1y2 = ∂y1y2 = 0, and choose any solution x2 ∈ C∞(U2) of the system of equations ∂x1x2 = ∂y1x2 = 0
and ∂y2x2 = 1. Continuing in this manner yields the system of coordinates x1, y1, . . . , xn, yn ∈ C∞(Un) on
a neighborhood U = Un of x.

A coordinate chart of the above form (x1, . . . , xn, y1, . . . , yn) : U → R is called a symplectic coordinate
chart.

Theorem 24 (Darboux). If (M,ω) and (N, σ) are symplectic manifolds of the same dimension, then (M,ω)
and (N, σ) are locally symplectomorphic.

Proof. Lemma 23 implies that (M,ω) and (N, σ) are each locally symplectomorphic to (R2n,
∑
i dxi ∧ dyi).

Therefore, they are locally symplectomorphic to each other.

In fact, Lemma and Theorem 24 are both known as Darboux’s theorem.
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2.3 Global Structure

In this final section, we consider the global structure of a symplectic manifold (M,ω). Since the Darboux
theorem implies that (M,ω) has no local invariants, the study of symplectic manifolds is sometimes known
as symplectic topology.

Proposition 25. The form ωn ∈ Ω2n(M) defines a volume element on M .

Proof. Lemma 20 implies that ωnx ∈ Λ2nT ∗xM is nonzero at every x ∈ M . That is, the top-degree form
ωn ∈ Ω2n(M) is nowhere vanishing and, consequently, defines a volume form on M .

Fix x ∈M . The space of highest-degree elements Λ2nT ∗xM is a 1-dimensional vector space. By removing
the zero element, we obtain a space Λ2nT ∗xM\{0} with two connected components. These two connected

components comprise the fiber of the orientation bundle M̃ →M at x. That is,

M̃x =
(
Λ2nT ∗xM\{0}

)
/ ∼

where η ∼ η′ if and only if η and η′ ∈ Λ2nT ∗M\{0} lie in the same connected component or, equivalently,
if η = λη′ for some positive real number λ > 0. An orientation [M ] ∈ H2n(M,Z2) of M is a section of the

orientation bundle M̃ →M .

Corollary 26. A symplectic manifold (M,ω) possesses a canonical orientation and measure.

Proof. Since ωn ∈ Ω2n(M) is nowhere vanishing, it descends to a section [ω]∼ of the orientation bundle

M̃ → M . This endows M with the measure U 7→
∫
U
ωn

n! , where we resolve the sign ambiguity according to

the condition that
∫
M
φ ωn

n! > 0 for every compactly supported smooth function φ ∈ C∞(M).

We will always assume that (M,ω) is equipped with the canonical orientation.

Corollary 27. If M is compact, then [ω]k ∈ H2k(M ;R) is nonzero for all k ≤ n.

Proof. Suppose for a contradiction that ωk = dα for some α ∈ Ω2k−1(M). An application of Stokes’ theorem
yields ∫

M

ωn =

∫
M

d(α ∧ ωn−k) = 0.

This provides the desired contradiction, since Proposition 25 asserts that ωn

n! is a volume form on M .

Exercises

1. Let (V, ω) be a symplectic vector space and let U ⊆ V be any subset. Confirm that Uω = {v ∈ V | ∀u ∈
U : ω(u, v) = 0} is a subspace of V .

2. Use the original definitions of symplectic, isotropic, coisotropic, and Lagrangian subspaces A of (V, ω)
to verify the following alternative characterizations.

symplectic A ∩Aω = 0
isotropic A ⊆ Aω

coisotropic Aω ⊆ A
Lagrangian A = Aω

3. Let A be any subspace of (V, ω). Show that

i. dimA+ dimAω = dimV ,

ii. A = Aωω.
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Hint. For part i., consider the linear map v 7→ ιvω from V to V ∗, and use the rank–nullity theorem.
For part ii., show that A ⊆ Aωω, and deduce from part i. that dimA = dimAωω.

4. Prove that the Klein bottle does not admit a symplectic structure.

5. Show that S2 is the only sphere Sk, k ≥ 2, which admits a symplectic structure.

Hint. Recall that the real cohomology of Sk is given by

Hi(Sk,R) =

{
R if i = 0, k

0 otherwise.
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Chapter 3

Group Actions and Hamiltonian
Manifolds

We have seen that the smooth functions f on M induce infinitesimal symmetries Xf of (M,ω). We also
know, more generally, that the symmetries of a smooth mathematical structure are encoded in the action
of a Lie group G. Our goal in this chapter is to combine these two ideas. In particular, we will show how
the action of G may be described infinitesimally in terms of the assignment of Hamiltonian vector fields on
(M,ω).

Since a family of Hamiltonian vector fields describes local symmetries, while the action of a Lie group
encodes global symmetries, our first task is to resolve this difference in scope. We achieve this by means of
the fundamental vector fields associated to a Lie group action. The moment map then naturally arises as a
bridge between the symmetries encoded in the the action of G on M , and those described by the assignment
of Hamiltonian vector fields f 7→ Xf .

The construction of the moment map, which completes the definition of a Hamiltonian manifold (M,ω,G, µ),
is so fundamental to our investigation that the remainder of this chapter is devoted to examples. The first
broad class of examples that we consider comprise the classical phase spaces T ∗Q associated to configuration
manifolds Q. The second consists of the coadjoint orbits Oλ ⊆ g∗ which, as we shall see, carry both a natural
symplectic structure and a natural action of G.

Before we begin, let us make a general remark on group actions in the symplectic setting.

Definition 28. Fix a Lie group G and a symplectic manifold (M,ω). An action of G on M is said to be a
symplectic action if G preserves ω. In this case, we say that G acts on (M,ω).

A symplectic action Gy (M,ω) describes the symmetries of (M,ω) as a symplectic manifold. Symplectic
actions thus form the natural class of actions associated to the symplectic category. Unless otherwise stated,
all actions on symplectic manifolds in these notes are assumed to be symplectic.

Key Points:

1. A comoment map µ̃ : g→ C∞(M) for the action Gy (M,ω) describes the assignment of fundamental
vector fields ξ 7→ ξ in terms of the assignment of Hamiltonian dynamics on (M,ω).

2. A moment map for G y (M,ω) is a smooth function µ : M → g∗ such that (i) dµξ = ιξω and (ii)
ξ 7→ µξ is a homomorphism of Lie algebras.

3. If Q is a smooth manifold, then an action Gy Q yields a Hamiltonian manifold (T ∗Q,−dθ,G, µ).

4. The coadjoint orbit Oλ ⊆ g∗ naturally possesses the structure of a Hamiltonian manifold (Oλ, ω,G, µ),
where µ : Oλ ↪→ g∗ is the inclusion.
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3.1 Fundamental Vector Fields

One of the most interesting and useful features of the smooth setting is that our global constructions often
possess infinitesimal counterparts or descriptions. Here are some examples:

global infinitesimal

manifold tangent bundle
diffeomorphism vector field

Lie group Lie algebra

Consider the action of a Lie group G on a manifold M . Formally, this is a homomorphism from G to the
group of diffeomorphisms Diff M , subject to the familiar the smoothness conditions. The aim of this section
is to describe the infinitesimal counterpart of the action G y M , namely, the assignment of fundamental
vector fields ξ 7→ ξ.

Definition 29. Fix an element ξ ∈ g. The fundamental vector field ξ ∈ X(M) is given by

ξ
x

=
d

dt

∣∣∣
t=0

e−tξ · x ∈ TxM

at each x ∈M .

The negative sign in the above expression is a common source of confusion. The next result offers some
justification.

Proposition 30. The assignment of fundamental vector fields

g→ X(M)

ξ 7→ ξ

is a homomorphism of Lie algebras.

Proof. Fix x ∈M . Observe that

(ξ ηf)(x) = ξ
x

(
y 7→ − d

dt

∣∣∣
t=0

f(etη · y)

)
︸ ︷︷ ︸

∈C∞(M)

=
d

ds

d

dt

∣∣∣
s=0
t=0

f(etηesξ · x)

implies

[ξ, η ]x =
d

ds

d

dt

∣∣∣
s=0
t=0

etηesξ · x − d

ds

d

dt

∣∣∣
s=0
t=0

etξesη · x,

while

[ξ, η] =
d

ds

d

dt

∣∣∣
s=0
t=0

esξetηe−sξ

yields

[ξ, η]
x

= − d

ds

d

dt

∣∣∣
s=0
t=0

esξetηe−sξ · x

= − d

ds

d

dt

∣∣∣
s=0
t=0

esξetη · x +
d

ds

d

dt

∣∣∣
s=0
t=0

etηesξ · x.

In particular, [ξ, η ] = [ξ, η].
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One sometimes sees the fundamental vector field induced by ξ ∈ g define by ξ′
x

= d
dt

∣∣
t=0

etξ · x. The

assignment ξ 7→ ξ′ is an anti -Lie algebra homomorphism. That is, [ξ, η]
′

= −[ξ′, η′] for all ξ, η ∈ g. Informally,
we might identify the source of the negative sign to be in the inversion of the order of the terms ξ and η in
the identity

(ξ ηf)(x) =
d

ds

d

dt

∣∣∣
s=0
t=0

f(etηesξ · x),

as shown in the proof of Proposition 30.
Proposition 30 asserts that, with our conventions, the assignment of fundamental vector fields is a Lie

algebra action of g on M . Let us recall what this means.

Definition 31. Fix a Lie algebra g. A Lie algebra action of g on M is a homomorphism of Lie algebras
from g to X(M).

The fundamental vector fields ξ ∈ X(M) completely describe the action of the identity component of G.

Specifically, the transformation of M induced by eξ ∈ G is the unit-time flow of the vector field −ξ ∈ X(M).
In these notes, we will adopt a common notational convention. Given ξ ∈ g and α ∈ Ω∗(M), we will omit

the underline and write ιξα for ιξα ∈ Ω∗(M) and Lξα for Lξα ∈ Ω∗(M).

3.2 Introducing the Moment Map

Consider the sphere.

∂θ

θ

R

0

h

ω = dθ ∧ dh

S2

We have seen that the height function h : S2 → R is a Hamiltonian function for the vector field ∂θ ∈ X(S2).
The vector field ∂θ, in turn, generates a one-parameter group of transformations of (S2, ω) in the form of
rotations about the vertical axis. Informally, we might say that the function h generates the rotations of the
sphere.

Let us try to capture this intuition in terms of group actions and fundamental vector fields. Let the circle
group U(1) = eiR ⊆ C act on S2 by rotations about the vertical axis, so that eit ∈ S1 induces a rotation by
2πt radians in the negative θ direction. The vector field induced by i ∈ iR ∼= u(1) is ∂θ. More generally, the
vector field induced by ξ = it ∈ iR ∼= u(1) is given by ξ = t∂θ. In particular, the induced vector fields of
it ∈ u(1) is the Hamiltonian vector field for the function t · h ∈ C∞(M).

Thus, to say that h generates the action of U(1) is to say that the infinitesimal symmetry Xh ∈ X(M)
h ∈ C∞(M) coincides with the infinitesimal action of i ∈ u(1). Furthermore, as the action of a Lie group
G on a manifold M is locally described by the fundamental vector fields ξ 7→ ξ, it is sometimes the case
that each fundamental vector field ξ may be identified as the Hamiltonian vector field associated to some
function µ̃(ξ) ∈ C∞(M). This identification takes the form of a comoment map.

Definition 32. A comoment map for the action of G on (M,ω) is a homomorphism of Lie algebras µ̃ : g→
C∞(M) such that µ̃(ξ) is a Hamiltonian function for the fundamental vector field ξ ∈ X(M).
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That is, µ̃ is a lift of the assignment of fundamental vector fields to the space of smooth functions, in the
sense that we have a commutative diagram,

g X(M)

C∞(M)

µ̃

ξ ξ

f

Xf

in the category of Lie algebras and Lie algebra homomorphisms. In this way, a comoment map factors the
induced action of a Lie algebra through the Hamiltonian dynamics of (M,ω).

It turns out that the comoment map µ̃ : g→ C∞(M) is not very convenient to work with. We prefer to
repackage µ̃ in the form of a moment map µ : M → g∗, given as follows.

First, some notation: Denote by 〈 , 〉 the natural pairing between g∗ and g, and write λξ = 〈λ, ξ〉 for
λ ∈ g∗ and ξ ∈ g. Given ξ ∈ g and α ∈ Ω∗(M), recall that the expression ιξα is shorthand for ιξα ∈ Ω∗(M).

Definition 33. A moment map for the action of G on (M,ω) is a smooth function µ : M → g∗ such that

i. dµξ = ιξω for every ξ ∈ g,

ii. the assignment ξ 7→ µξ is a homomorphism of Lie algebras.

In this case, we say that G y (M,ω) is a Hamiltonian action, and that (M,ω,G, µ) is a Hamiltonian
manifold.

That is, µ : M → g∗ is a moment map precisely when ξ 7→ µξ is a comoment map for G y (M,ω). The
moment map µ : M → g∗ encodes a family of smooth functions (µξ)ξ∈g which collectively describe a Lie
group action G y (M,ω) by identifying the fundamental vector fields ξ with the Hamiltonian vector fields
Xµξ ∈ X(M).

f : M → R generates a one-parameter transformation, along the flow of −Xf

µ : M → g∗ Lie group action, according to the identity ξ = Xµξ

Every moment map µ : M → g∗ for G y (M,ω) defines a comoment map ξ 7→ µξ. The converse is
also true: If µ̃ is a comoment map for G y (M,ω), then µ(x)(ξ) = µ̃(ξ)(x) defines a moment map µ for
Gy (M,ω). Note that the expression µ(x)(ξ) is equal to 〈µ(x), ξ〉. It may be helpful to clarify the domain
of each component:

µ(x)︸︷︷︸ (ξ) = µ̃(ξ)︸︷︷︸ (x)

g∗ g C∞(M) M

Indeed, µ : M → C∞(M) and µ̃ : g→ C∞(M) are just two different perspectives on the two-point function

g×M −→ R
(ξ, x) 7−→ µ(x)(ξ) = µ̃(ξ)(x).

In light of this equivalence, we consider the moment map µ : M → g∗ both as a smooth function on M , and
in terms of its associated comoment map ξ 7→ µξ.
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3.3 Examples from Classical Mechanics

Let Q be a smooth manifold equipped with the action of a Lie group G. The action of G on Q induces an
action of G on T ∗Q according to the rule

(g · αq)(Xg·q) = α(g−1 ·Xgq),

where g ∈ G, q ∈ Q, α ∈ T ∗qQ, and X ∈ TqQ. Let us first make sense of this formula, particularly the
appearance of the inverse element g−1. Suppose G acts on a smooth manifold M .

M
x g · x

g

The induced action on C∞(M) is given by (g · f)(y) = f(g−1 · y) for f ∈ C∞(M) and g ∈ G.

f g · f

f(y)f(g−1 · y)

M
g−1 · y y

g

Informally, we push f forward by pulling M back. The transition from Gy Q to Gy T ∗Q is similar.
Recall that the canonical symplectic structure on T ∗Q is given by ω = −dθ, where θ ∈ Ω1(T ∗Q) is the

canonical 1-form.

Proposition 34. The assignment µ : T ∗Q→ g∗ given by

µξ(αq) = −αq(ξq),

for q ∈ Q, αq ∈ TqQ and ξ ∈ g, is a moment map for the induced action of G on T ∗Q.

Proof. We will show that

i. dµξ = ιξω for all ξ ∈ g,
ii. ξ 7→ µξ is a Lie algebra homomorphism.

Since π∗ξα = −ξ
q

for α ∈ T ∗qQ and ξ ∈ g, we have µξ(α) = θα(ξ
α

). That is, µξ = ιξθ.

i. Since θ is preserved by the lift of any smooth transformation of Q, it follows that Lξθ = 0, and
consequently that dµξ = dιξθ = −ιξdθ = ιξω.

ii. Proposition 30 implies that ι[ξ,η] = ι[ξ,η] = [Lξ, ιη], so that

µ[ξ,η] = ι[ξ,η]θ = [Lξ, ιη] θ = Lξιηθ = ιξdιηθ.

The result follows as
{µξ, µη} = −ω(ξ, η) = dθ(ξ, η) = −ιξιηdθ.
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3.4 Coadjoint Orbits

Fix a Lie group G.

Definition 35. The action of conjugation of G on G is given by g · h = ghg−1 for g, h ∈ G.

The action of conjugation is the natural action of G on G as a group of transformations. Let us explain
this comment.

If G acts on a smooth manifold M , then the natural action of G on the space of diffeomorphisms Diff M
is given by

(g · φ)(x) = g · φ(g−1 · x),

where φ ∈ Diff M , g ∈ G, and x ∈ M . To see why this is, consider the case in which M is a plane and
φ ∈ Diff M is a rotation.

M

φ

x

φ(x)

If g ∈ G induces a translation on M , then the formula for g · φ appears to “translate” the rotation φ.

M

g−1 · y

φ(g−1 · y)

g

y

(g · φ)(y)

We now return to conjugation. Left multiplication associates each element h ∈ G with a transformation
φh ∈ Diff G of M = G, given by φh(x) = hx for h, x ∈ G. Let us write Ḡ for the collection of transformations
(φg)g∈G. Clearly, G and Ḡ are naturally isomorphic as groups. Now, left multiplication also describes an
action G on M = G, given by g · x = gx for g, x ∈ G. Applying the above ideas, we obtain

(g · φh)(x) = g · φh(g−1 · x) = ghg−1x = φghg−1(x).

Therefore, the action of left multiplication of G on G induces the action of conjugation of G on Ḡ. In fact,
a similar argument shows that the action φ : G → SymX of any group G on any set X induces the action
of conjugation of G on Ḡ = φ(G).

An infinitesimal counterpart to the action of conjugation Gy G is the adjoint action Gy g.

Definition 36. Let φ : G→ AutG denote the action of conjugation. The adjoint action of G on g is given
by

Adg ξ =
d

dt

∣∣∣
t=0

φg(e
tξ)

for g ∈ G and ξ ∈ g.
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The adjoint action of G on g induces an action of G on the dual space g∗ ⊆ C∞(g).

Definition 37. The coadjoint action of G on g∗ is given by

〈Ad∗g λ, ξ〉 = 〈λ,Adg−1 ξ〉

for g ∈ G, λ ∈ g∗, and ξ ∈ g.

That is, (g · λ)(ξ) = λ(g−1 · ξ), in accordance with our discussion above.
We now arrive at the main construction of this section.

Definition 38. The coadjoint orbit through λ ∈ g∗ is the orbit Oλ = G · λ ⊆ g∗ of the coadjoint action of
G on g∗.

Since the action of G is smooth, the orbit Oλ ⊆ g∗ is a smooth submanifold.

Proposition 39. Fix λ ∈ g∗. We have
Oλ ∼= G/StabGλ

as smooth manifolds.

Proof sketch. The principal map

G→ Oλ
g 7→ g · λ

descends to a smooth bijection
G/StabGλ

∼−→ Oλ.

This describes the smooth structure of Oλ. Before we define the natural symplectic structure on Oλ, we
first review some terminology.

Recall the adjoint action of G on g. This action admits a further infinitesimal expression, taking the
form of the identically-named adjoint action g y g.

Definition 40. The adjoint action of g on g is given by

adη ξ =
d

ds

∣∣∣
s=0

Adesη ξ

for η, ξ ∈ g.

A key property of the adjoint ad is that

adξη = [ξ, η]

for all ξ, η ∈ g. The coadjoint action of G on g∗ is define similarly.

Definition 41. The coadjoint action of g on g∗ is given by

ad∗ξ λ =
d

ds

∣∣∣
s=0

Ad∗esη ξ

Thus,
〈ad∗η λ, ξ〉 = 〈λ, ad−η ξ〉 = −〈λ, [η, ξ]〉

for λ ∈ g∗ and η, ξ ∈ g. All together, we have introduced the following actions:
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Gy G conjugation — : G→ AutG

Gy g adjoint action Ad : G→ GL g
g y g adjoint action ad : G→ gl g

Gy g∗ coadjoint action Ad∗ : G→ GL g
g y g∗ coadjoint action ad∗ : G→ gl g

When speaking, we sometimes call Ad the “big” adjoint action and ad the “little” adjoint action, and
similarly for Ad∗ and ad∗.

We are now ready to define the natural symplectic structure on Oλ.

Definition 42. Fix λ ∈ g∗. Define the 2-form ω ∈ Ω2(Oλ) by

ω(ξ
τ
, η
τ
) = −〈τ, [ξ, η]〉,

for all τ ∈ Oλ and ξ, η ∈ g.

Proposition 43. The form ω ∈ Ω2(Oλ) is a symplectic structure on Oλ.

Proof. We will show that ω is

i. well-defined,
ii. closed,
iii. nondegenerate.

Fix a point τ ∈ Oλ.

i. Since Oλ is an orbit of G, every tangent vector X ∈ TτOλ is of the form ξ
τ

for some ξ ∈ g. We must

show that if ξ, ξ′ ∈ G satisfy ξ
τ

= ξ′
τ
, then 〈τ, [ξ, η]〉 = 〈τ, [ξ′, η]〉 for all η ∈ g. This follows as

ad∗(ξ−ξ′) τ = ξ − ξ′
τ

= 0

implies that 〈
τ, [ξ − ξ′, η]

〉
= −〈ad∗(ξ−ξ′) τ, η〉 = 0.

ii. Using Proposition 30, we derive that

dω(ξ, η, ζ) = ξ ω(η, ζ)− η ω(ξ, ζ) + ζ ω(ξ, η)

− ω([ξ, η], ζ) + ω([ξ, ζ], η)− ω([η, ζ], ξ)

= 〈ad∗ξ τ, [η, ζ]〉 − 〈ad∗η τ, [ξ, ζ]〉+ 〈ad∗ζ τ, [ξ, η]〉
〈τ, [[ξ, η], ζ]〉 − 〈τ, [[ξ, ζ], η]〉+ 〈τ, [[η, ζ], ξ]〉

= −〈τ, [ξ, [η, ζ]]〉+〈τ, [η, [ξ, ζ]]〉−〈τ, [ζ, [ξ, η]]〉
−〈τ, [[ξ, η], ζ]〉+〈τ, [[ξ, ζ], η]〉−〈τ, [[η, ζ], ξ]〉

= 0,

where we have treated τ ∈ Oλ as an indeterminate.

iii. Let ξ ∈ g and suppose that ω(ξ
τ
, η
τ
) = 0 for all η ∈ g. It follows that

〈ad∗ξ τ, η〉 = −〈τ, [ξ, η]〉 = 0

for all η ∈ g, so that ξ
τ

= ad∗ξ τ = 0.
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ιXω = 0

ιξω 6= 0

X

ξ
τ

g∗

Oλ

λ

τ

The natural action of G on a coadjoint orbit Oλ ⊆ g∗ is, of course, the restriction of the coadjoint action
Ad∗. As we now show, this action is Hamiltonian and admits a particularly simple moment map.

Proposition 44. Fix λ ∈ g∗. The inclusion µ : Oλ ↪→ g∗ is a moment map for the natural action of G on
Oλ ⊆ g∗.

Proof. We will show that

i. dµξ = ιξω for all ξ ∈ g,
ii. µ : Oλ ↪→ g∗ is G-equivariant.

i. We have
dµξ(η) = 〈dµ(η), ξ〉 = −〈µ, [η, ξ]〉 = ω(η, ξ).

ii. This follows by the construction of the action on Oλ ⊆ g∗.

Exercises

1. Let (M,ω,G, µ) be a Hamiltonian system. Show that

〈µ∗X, ξ〉 = −ω(X, ξ
x
)

for all X ∈ TxX, and ξ ∈ g.

Hint. Evaluate both sides of the equality dµξ = ιξω on X.

2. We have seen that action of U(1) by rotations on the sphere (S2,dθ ∧ dh) is Hamiltonian. Consider
the action of U(1) on the torus T 2 = (R2/Z2,dx ∧ dy) given by

e2π t ·
[
(x, y)

]
=
[
(t+ x, y)

]
for all x, y, t ∈ R.

i. Show that the action U(1) y T 2 is symplectic.

ii. Show that this action is not Hamiltonian. That is, show that it does not admit any moment map.

3. According to our definition, a Hamiltonian action is assumed to be symplectic. Give an example of an
action of a Lie group G on a symplectic manifold (M,ω) which satisfies

i. dµξ = ιξω,

ii. ξ 7→ µξ is a Lie algebra homomorphism
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but is not symplectic.

Hint. Consider the two-point group G = Z2.

4. Consider a symplectic action of G on (M,ω), and suppose that the smooth function ν : M → g∗

satisfies

i. dνξ = ιξω, for all ξ ∈ g,

ii. Ad∗g ν(x) = ν(g · x) for all g ∈ G and x ∈M , that is, ν is G-equivariant.

Show that ν is a moment map for the action of G on (M,ω).

Hint. It remains to show that the assignment ξ 7→ νξ = 〈ν, ξ〉 is a morphism of Lie algebras. In
particular, that

ν[ξ,η] = {νξ, νη}

for all ξ, η ∈ g. Compare each side of this equation with the identity for G-equivariance in condition
ii. above. Recall that {νξ, νη} = Lξ νη and [ξ, η] = adξ η.

5. Let (M,ω) be a symplectic manifold and suppose that ω = −dθ for some θ ∈ Ω1(M). Suppose,
furthermore, that the Lie group G acts on M and preserves θ.

i. Show that the action of G on (M,ω) is symplectic.

ii. Find a moment map µ : M → g∗ for the action of G.

Hint. You may wish to consult Proposition 2 in the notes.

6. Let G be an abelian Lie group and fix an element λ ∈ g∗. Show that the coadjoint orbit Oλ ⊆ g∗ is
equal to the singleton {λ}.
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Chapter 4

Reduction

The purpose of this chapter is to prove the symplectic reduction theorem.
Consider a manifold M , a Lie group action of G on M , and a smooth function f : M → N . There are

two standard ways to remove degrees of freedom of M . First, we may take the quotient M/G. Second,
we may take the preimage f−1(y) of a regular value y ∈ N . A Hamiltonian manifold (M,ω,G, µ) suggests
both of these procedures: a quotient by the action of G, and a preimage of a regular value λ ∈ g∗ under the
moment map µ : M → g∗.

When dimG ≥ 1, it turns out that ω never descends to a symplectic structure on M/G, and never
restricts to a symplectic structure on µ−1(λ) ⊆M . The resulting 2-form is always degenerate. Intriguingly,
ω does a symplectic structure when both these two operations are used together. Denote by Gλ ⊆ G the
stabilizer subgroup of λ ∈ g∗ under the coadjoint action of G on g∗. Subject to mild conditions on the action
GyM and the moment map µ : M → g∗, the reduced space Mλ = µ−1(λ)/Gλ inherits a natural symplectic
structure from (M,ω). This is the content of the Marsden–Weinstein–Meyer symplectic reduction theorem,
due to Marsden–Weinstein [10] and [11]. Here we present the statement due to Marsden and Weinstein.

Theorem 45 (Symplectic reduction). Let (M,ω,G, µ) be a Hamiltonian manifold with G-equivariant mo-
ment map µ, and let λ ∈ g∗ be a regular value of µ. If Gλ acts freely and properly on µ−1(λ) ⊆ M , then
there is a unique symplectic structure ωλ on the reduced space Mλ = µ−1(λ)/Gλ such that

π∗ωλ = i∗ω

where i : µ−1(λ)→M is the inclusion and π : µ−1(λ)→Mλ is the projection.

µ−1(λ) M

Mλ

i∗ω ω

π∗ωλ

ωλ

Our proof utilizes two lemmas:

1. the action descent lemma ensures that i∗ω descends to a unique, closed ωλ on Mλ,
2. the linear symplectic reduction lemma guarantees that ωλ is nondegenerate.

Action Descent Linear Symplectic Reduction

Symplectic Reduction

nondegeneracy
existence
uniqueness

closedness
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From these lemmas, the symplectic reduction theorem follows easily.

Key Points:

1. Symplectic reduction is a process for taking a Hamiltonian manifold (M,ω,G, µ) and an admissible
value λ ∈ g∗, and obtaining a new symplectic manifold (Mλ, ωλ) where Mλ = µ−1(λ)/Gλ.

2. Informally, symplectic reduction removes conjugate degrees of freedom (xi, yi) together, so that the
resulting space remains symplectic.

3. The complex projective spaces (CPn, ωFS) is a symplectic reduction of (Cn+1,
∑
i dx ∧ dy) under the

action of scalar multiplication by U(1) ⊆ C∗.

4. The symplectic reduction of the cotangent bundle T ∗Q, equipped with an action lifted from G y Q,
is the cotangent bundle T ∗(Q/G).

Remark. A review of the literature turns up varying definitions of the moment map. In every case, µξ ∈
C∞(M) is required to be a Hamiltonian function for ξ ∈ X(M) for every ξ ∈ g. In some sources, this is the
defining condition. Others require µ to be G-equivariant. Our condition, that ξ 7→ µξ is a homomorphism
of Lie algebras, or equivalently that µ is g-equivariant, is intermediate between these two.

not necessarily
equivariant

g-equivariant G-equivariant

equivalent for connected G

stronger

µ is . . .

The reader is also advised that the names “action descent lemma” and “linear symplectic reduction lemma”
are not in standard usage.

4.1 The Idea of Reduction

Before we begin the proof, let us first discuss the underlying ideas.
Consider a symplectic coordinate chart (x1, . . . , xn, y1, . . . yn) on a neighborhood U of (M,ω). Suppose

we wish to remove the degrees of freedom on U corresponding to the coordinates x1 and y1.

ω = dx1 ∧ dy1︸ ︷︷ ︸
to be removed

+ dx2 ∧ dy2 + · · ·+ dxn ∧ dyn

Our approach is to

i. restrict the coordinate y1 : U → R to the fixed value c ∈ R,
ii. quotient by the flow of ∂x1

.

x1

restrict
y1 c

quotient by ∂x1

x2, . . . , xn
y2, . . . , yn
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We are left with the remaining degrees of freedom x2, . . . , xn, y2, . . . , yn and the symplectic structure

ωc = dx2 ∧ dy2 + · · ·+ dxn ∧ dyn.

It is important that conjugate pairs (x1, y1) are removed together. If we only restrict y1 to c ∈ R, then the
induced 2-form on y−1(c) ⊆ U would be degenerate in the x1 direction. If we only quotient by the flow of
∂y1 , then the induced two form on U/〈∂x1

〉 would be degenerate in the y1 direction.
This informal discussion captures the essential idea of symplectic reduction:

Reduce (M,ω) by restricting and quotienting conjugate degrees of freedom.

To see how these local ideas extend to the global setting, replace the coordinate function y1 with an
arbitrary smooth function f ∈ C∞(M), and replace the coordinate vector field ∂x1

with the Hamiltonian
vector field Xf ∈ X(M). Recall from our proof of Darboux’s theorem that, away from the critical points of
f , we may always locally extend y1 = f to a system of symplectic coordinates (xi, yi)i≤k with ∂x1 = Xf .

local global

y1 f

∂x1
Xf

Adapting the previous local approach, we proceed to

i. restrict to the preimage f−1(c) ⊆M for a fixed regular value c ∈ R,
ii. quotient by the flow of the Hamiltonian vector field Xf ∈ X(M)

That c is a regular value ensures that f−1(c) ⊆M is a smooth submanifold. Note that Xf preserves f−1(c)
since Xff = 0. To ensure a smooth quotient, we could, for example, introduce the condition that Xf

generates a free circle action on f−1(c).
We illustrate this on the sphere (S2,dθ ∧ dh) with f equal to the height function h and Xf = ∂θ.

restrict to f−1(c)

quotient by Xf

R

0

f
c

S2

This procedure removes from M , first, those directions in which f varies; second, those directions tangent to
Xf . In our illustration on S2, we are left with a point f−1(c)/S1, on which ω ∈ Ω2(S2) induces the trivial
symplectic structure ωc = 0.

Fix a Hamiltonian manifold (M,ω,G, µ) and suppose that G is connected so that the fundamental vector
fields ξ ∈ X(M) generate the action of G. Recall that the moment map µ : M → g∗ encodes a family of
functions µξ ∈ C∞(M), with associated Hamiltonian vector fields Xµξ = ξ. Our idea now is to restrict to

the preimage µ−1
ξ (λξ) of every function µξ ∈ C∞(M) for ξ ∈ g, and take the quotient with respect to every

Hamiltonian vector field Xµξ = ξ. That is, we

i. restrict to the preimage µ−1(λ) ⊆M for a fixed regular value λ ∈ g∗,
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ii. quotient by the action of G.

restrict to µ−1(λ)

quotient by G

g∗

0

µ
λ

S2

The symplectic reduction theorem provides broad conditions under which the restriction ω|µ−1(λ) descends
to a symplectic structure ωλ on Mλ = µ−1(λ)/G.

4.2 Linear Symplectic Reduction

Turning to the setting of symplectic vector spaces, we establish a result which will model the infinitesimal
situation of the general symplectic reduction theorem. Looking ahead, we have in mind the identifications

• V = TxM , for some point x ∈ µ−1(λ),

• A = Txµ
−1(λ) the tangent space to the preimage µ−1(λ) ⊆M ,

• Aω = g
x

the subspace spanned by the action of gλ at x.

The distribution g = {ξ
x
|x ∈ M, ξ ∈ g} ⊆ TM is called the fundamental distribution associated to the

action GyM

Lemma 46 (Linear symplectic reduction). Let (V, ω) be a symplectic vector space. If A ⊆ V is a subspace,
then ω descends to a linear symplectic structure ω̄ on Ā = A/(A ∩Aω), where

ω̄([a], [b]) = ω(a, b)

for a, b ∈ A.

A V

Aω

Proof. We will show that

i. ω̄ is well-defined,
ii. ω̄ is nondegenerate.

This will complete the proof, since ω̄ is clearly alternating and bilinear.
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i. If a′, b′ ∈ A with [a] = [a′] and [b] = [b′], then a− a′, b− b′ ∈ Aω. Thus,

ω(a, b) = ω
(
a′ + (a− a′)︸ ︷︷ ︸

Aω

, b′ + (b− b′)︸ ︷︷ ︸
Aω

)
= ω(a′, b′),

and it follows that ω̄ : Ā× Ā→ R is well-defined.

ii. Fix a ∈ A. If ω̄([a], [b]) = ω(a, b) = 0 for all b ∈ A, then a ∈ Aω, so that [a] = 0 ∈ Ā.

4.3 Descending Forms

We now consider the general question of when a differential form α ∈ Ω∗(N) descends under the quotient
map π : N → N/G for a group action G y N to a differential form on N/G. Applying this result to
the action of the stabilizer subgroup Gλ ⊆ G on the level set N = µ−1(λ) ⊆ M will enable us to obtain
everything in the conclusion of the symplectic reduction theorem, with the exception of the nondegeneracy
of ωλ.

Definition 47. Let π : N → P be a smooth map of manifolds. A tangent vector X ∈ TN is said to be
π-vertical if π∗X = 0. A form α ∈ Ω∗(N) is called π-horizontal if ιXα = 0 for all π-vertical X ∈ TN .
In particular, if π : N → N/G is the quotient map for a smooth action G y N , then we say that α is
G-horizontal if ιξα = 0 for all ξ ∈ g.

π

ξ

N

N/G

π∗ξ

ιξα=0

Informally, α ∈ Ω∗(M) is horizontal when it has no extension in the vertical directions.

Lemma 48 (Action descent). Suppose the Lie group G acts freely and properly on the smooth manifold N
and let π : N → N/G be the quotient map. If α ∈ Ω∗(N) is horizontal and invariant, then there is a unique
form ᾱ ∈ Ω∗(N/G) such that π∗ᾱ = α. Moreover, dα = 0 if and only if dᾱ = 0.

N

N/G

α

π∗α

ᾱ

Proof. We will assume without loss of generality that α is homogeneous. That is, α ∈ Ωk(N) for some k ≥ 0.
Since the action of G is free and proper, it follows that N/G is smooth, and that π : N → N/G is a surjective
submersion. Define

ᾱπx(π∗X1, . . . , π∗Xk) = αx(X1, . . . , Xk),

where x ∈ N and X1, . . . , Xk ∈ TxN . Since π : N → N/G is surjective, this defines ᾱ at every point x ∈ N .
Clearly π∗ᾱ = α, and it follows that dα = 0 if ᾱ = 0. It remains to prove that
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i. ᾱ is well-defined and smooth,
ii. ᾱ is unique,
iii. dα = 0 implies dᾱ = 0.

We prove each in turn.

i. Clearly, ᾱ is well-defined when α ∈ Ω0(N) is a G-invariant smooth function on N . Now suppose that
k > 0 and assume the claim to be true for forms of lower degree. Fix x ∈ N and X ∈ TxN . We will
show that ιπ∗X ᾱ ∈ Λk−1T ∗πx(N/G) is well-defined.

If Y ∈ TyN with π∗X = π∗Y , then there is a g ∈ G with gy = x. From π∗X = π∗g∗Y it follows that
X − g∗Y ∈ TxN is vertical. Therefore,

ιXα = ιg∗Y α, since α is horizontal,

= ιY α, since α is invariant.

We conclude that ιπ∗X ᾱ identifies a well-defined element of Λk−1T ∗πx(N/G).

π

X

g∗Y

Y

N

N/G
π∗X

To see that α is smooth, observe that every vector field on N/G is of the form π∗Z ∈ X(N/G) for some
G-invariant vector field Z ∈ X(N). For any choice of Z1, . . . , Zk ∈ X(N), the function

ᾱ(π∗Z1, . . . , π∗Zk) = π∗
[
α(Z1, . . . , Zk)

]
is smooth on N/G, since α(Z1, . . . , Zk) is a G-invariant smooth function on N .

ii. Fix x ∈ N . Since π : N → N/G is submersive, the derivative π∗ : TxN → Tπx(N/G) is surjective,
and thus the dual map π∗ : T ∗πx(N/G) → T ∗xN is injective. Consequently, ᾱπx is the unique element
of T ∗πx(N/G) satisfying π∗ᾱπx = αx.

iii. Suppose dα = 0. Using again the fact that π∗ : T ∗πx(N/G) → T ∗xN is injective, it follows from the
identity π∗dᾱ = dπ∗ᾱ = 0 that (dᾱ)πx = 0.

We are now ready to prove the symplectic reduction theorem.

Proof of the reduction theorem. Since λ ∈ g∗ is a regular value of µ : M → g∗, the preimage µ−1(λ) ⊆M is
a smooth submanifold. Since µ : M → g∗ is equivariant, we have

µ(g · x) = g · µ(x) = λ

for all g ∈ Gλ and x ∈ µ−1(λ). This implies that Gλ preserves µ−1λ. As ω is G-invariant, and as Gλ is a
subgroup of G, it follows that i∗ω is Gλ-invariant. Moreover, observe that i∗ω is Gλ-horizontal since

ιξi
∗ω = i∗ιξω, since i : g ↪→ Tµ−1(0) is an inclusion,

= i∗dµξ, since µξ is a Hamiltonian function for ξ,

= di∗µξ

= d〈λ, ξ〉, since µ takes the constant value λ on µ−1(λ),

= 0
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for every ξ ∈ gλ. It follows from Lemma 48 that there is a unique, closed 2-form ωλ ∈ Ω2(Mλ) satisfying
π∗ωλ = i∗ω.

It remains to show that ωλ is nondegenerate. Fix x ∈ µ−1(λ) and X ∈ TxM . From the equality

ω(ξ,X) = ιξω(X) = dµξ(X) = 〈µ∗X, ξ〉, ξ ∈ g

we deduce that

X ∈ gω ⇐⇒ 〈µ∗X, g〉 = ω(g, X) = 0

⇐⇒ µ∗X = 0

⇐⇒ X ∈ Txµ−1(λ).

That is, gω = Txµ
−1(λ), from which it follows that

Txµ
−1(λ)ω = gωω = g.

An application of Lemma 46 yields that ωλ is nondegenerate as a bilinear form on

TπxMλ
∼= Tπx

(
µ−1(λ)/Gλ

) ∼= Txµ
−1(λ)/(Txµ

−1(λ) ∩ g
x
).

4.4 Examples

Example 49 (CPn). Define the standard symplectic structure on the real manifold Cn+1 to be

ω = dx1 ∧ dy1 + · · ·+ dxn+1 ∧ dyn+1,

where xi and yi are obtained from the standard complex coordinates

(x1 + iy1, . . . , xn+1 + iyn+1).

The action of scalar multiplication by the circle group U(1) = {|z| = 1}z∈C on Cn+1 admits the moment
map

µ : Cn+1 −→ R ∼= u(1)

z 7−→ 1
2‖z‖

2

where ‖ · ‖2 =
∑
i x

2
i + y2

i is the usual norm squared on Cn+1. When λ > 0, the action of U(1) on Cn+1 on
µ−1(λ) = {‖z‖ = 1}z∈Cn+1 is free and proper, and the reduced space is

CPn+1
λ = {‖z‖2 = 2λ}/U(1) ∼= CPn

with reduced form ωλ proportional to the Fubini–Study form ωFS ∈ Ω2(CPn). Setting n = 1, we obtain the
sphere S2 = CP 1 as a symplectic reduced space.

C1

ξ = −∂θ

µ = 1
2 (x2 + y2)

U(1)
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Example 50 (T ∗Q). Consider the Hamiltonian action of G on (T ∗Q,−dθ) induced by a free and proper
smooth action of G on Q. Recall that the canonical moment map µ : T ∗Q→ g∗ is given by

µξ(α) = −α(ξ
q
)

for α ∈ T ∗qQ and ξ ∈ g. The preimage of 0 ∈ g∗ under µ is given by

µ−1(0) = {α(g
Q

) = 0}α∈T∗Q,

where gQ ⊆ TQ is the fundamental distribution of the action Gy Q. It follows that

T ∗Q0 = {α(g
Q

) = 0}/G ∼= T ∗(Q/G).

Example 51 (Oλ ⊆ g∗). Let G be a Lie group and let O ⊆ g∗ be a coadjoint orbit in g∗. Recall that the
canonical moment map for the coadjoint action G y O is the inclusion µ : Oλ ↪→ g∗. Fix λ ∈ g∗. If λ ∈ O,
then

µ−1(λ)/Gλ = {λ}/Gλ = {λ}

If λ /∈ O, then µ−1(λ) is empty. The situation is more interesting when we consider the induced action of a
subgroup H ⊆ G on g∗.

Exercises

Consider a Hamiltonian system (M,ω,G, µ) with G-equivariant moment map µ : M → g∗, and suppose that
λ ∈ g∗ is a regular value of µ.

1. Reduction of dynamics. Let f ∈ C∞(M) be a smooth function which is preserved by the action of G.
You may assume that if G preserves f , then there is a unique function fλ ∈ C∞(Mλ) such that

i∗f = π∗fλ

where i : µ−1(λ)→M is the inclusion and π∗ : µ−1(λ)→Mλ is the projection.

i. Show that the Hamiltonian vector field Xf ∈ X(M) is tangent to µ−1(λ) ⊆M .

ii. Prove that Xf |µ−1(λ) descends to Mλ and

π∗(Xf |µ−1(λ) = Xfλ ∈ X(Mλ).

2. If ω is exact, does it necessarily follow that ωλ ∈ Ω2(Mλ) is exact? Prove or give a counterexample.

3. Show that the action of G on µ−1(0) ⊆M is locally free if and only if 0 ∈ g∗ is a regular value of µ.

Hint. Recall the identity ω(ξ,X) = 〈µ∗X, ξ〉 and the nondegeneracy of ω. You may assume that the

action of G on µ−1(0) is locally free when ξ 7→ ξ
x

is an injection from g to TxM for all x ∈ µ−1(0).

4. Confirm that µ : CPn+1 → u(1) is indeed a moment map for the action of U(1) y (CPn+1, ω) in
Example 2.

5. Describe the diffeomorphism {α(g
Q

) = 0}α∈T∗Q/G ∼= T ∗(Q/G) in Example 3.
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Chapter 5

Reduction by Stages

The symplectic reduction theorem takes a Hamiltonian manifold (M,ω,G, µ) and an admissible value λ ∈ g∗,
and returns a symplectic manifold (Mλ, ωλ).

(M,ω,G, µ)
reduce by G−−−−−−−−→ (Mλ, ωλ)

Heuristically, this process consists of encoding a collection of symmetries of (M,ω) in the form of a Lie group
action G y (M,ω), and then removing these symmetries to obtain a reduced space (Mλ, ωλ). We could,
instead, remove the symmetries corresponding to a normal subgroup N ⊆ G. As we shall see, it is easy to
show that ν : x 7→ µ(x)|n is a moment map for this induced action. Taking an admissible value κ ∈ n∗, we
may then reduce (M,ω,N, µ|n) at an admissible value κ ∈ n∗ as usual. Let us assume, for simplicity, that
κ ∈ n∗ is fixed by the action of N on n∗, so that Mκ = ν−1(κ)/N .

(M,ω,G, µ)
“forget” G/N−−−−−−−−→ (M,ω,N, µ|n)

reduce by N−−−−−−−−→ (Mκ, ωκ)

We may wonder if the information inherent in G/N , which is lost in the transition to an action N y (M,ω),
may be reclaimed in the form of an action of G/N on Mκ. This is at least plausible, since G/N and µ−1(κ)/N
each involve quotients by N . It turns out that, under certain broad conditions, we can. In this case, we may
perform a second reduction, this time by the action of G/N .

(M,ω,G, µ)
reduce by N−−−−−−−−→ (Mκ, ωκ, G/N, µκ − λ)

reduce by G/N−−−−−−−−−→ (Mκ,τ , ωκ,τ )

We explain this notation in Theorem 56, below.
The perspective of what we will call partial reduction is that the reduction of a Hamiltonian manifold

(M,ω,G, µ) is another Hamiltonian manifold (Mκ, ωκ, G/N, µκ−λ). Taking this view, we may consider the
usual symplectic reduction of (M,ω,G, µ) as the Hamiltonian manifold (Mλ, ωλ, 1, 0) incorporating a trivial
action, reflecting the fact that we have “used up” the available symmetries. In this way, partial reduction is
an extension of the process of symplectic reduction.

Reduction by stages is study of the twice-reduced space (Mκ,τ , ωκ,τ ), particularly in respect to a single,
ordinary reduction (Mλ, ωλ). The “stages” refer to the application of a partial reduction procedure. We will
present a reduction by stages theorem in the simplest nontrivial case, in which G = H ×N is a product of
the subgroup N and the quotient H = G/N .

Key Points:

1. If (M,ω,G, µ) is a Hamiltonian manifold, and if K ⊆ G is a Lie subgroup, then there is an induced
Hamiltonian manifold (M,ω,K, µ|k).
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2. IfN ⊆ G is a closed central subgroup, then there is an induced Hamiltonian manifold (Mκ, ωκ, G/N, µκ−
λ).

3. If N y (M,ω) and H y (M,ω) are commuting actions, then there is an induced action H × N y
(M,ω). Moreover, if ν and ρ are moment maps for the respective actions of N and H, then, subject
to a technical compatibility condition, ν ⊕ ρ is a moment map for the action of H ×N .

4. The reduction of a Hamiltonian manifold (M,ω,H ×N, ρ⊕ ν) at (τ, κ) ∈ h∗⊕ n∗ is symplectomorphic
to the reduction of (M,ω,N, ν) at κ ∈ n∗, followed by the reduction by the induced action of H on
Mκ. That is, M(κ,τ)

∼= (Mκ)τ .

Remark. The conditions under which one may reduce by stages are quite general. The conditions appearing
in this chapter, chosen to aid the exposition, are by comparison highly restrictive. The topic is considerably
more complex in greater generality and the interested reader may wish to consult the literature for further
details.

5.1 Subgroup Actions

In this brief section, we show that the property of being a Hamiltonian action G y (M,ω) descends to
induced actions of subgroups K ⊆ G. We will make frequent use of this result.

Proposition 52. Let (M,ω,G, µ) be a Hamiltonian manifold with G-equivariant moment map µ : M → g∗.
If K is a Lie subgroup of G, then the function

ν : M → k∗

x 7→ µ(x)|k

is a moment map for the action of K on (M,ω).

Proof. Since µ : M → g∗ is G-equivariant, it follows that ν : M → k is K-equivariant. Restricting both sides
of the equality dµξ = ιξω to k for every ξ ∈ k yields dνξ = ιξω.

5.2 Partial Reduction

Let (M,ω,G, µ) be a Hamiltonian manifold with G-equivariant moment map µ, and let N ⊆ G be a closed
normal subgroup. Our aim in this section is to reduce (M,ω,G, µ) by the action of N , to obtain a partially
reduced system (Mκ, ωκ, G/N, µκ−λ). We explain our notation, and impose further conditions on N , as we
proceed.

Observe, first of all, that the normality of N in G implies that n∗ is preserved by the coadjoint action of
G on g∗. That is, there is a well-defined coadjoint action of G on n∗.

Lemma 53. The assignment

[g]N · [x]N = [g · x]N , g ∈ G, x ∈ ν−1(κ),

defines a symplectic action of G/N on (Mκ, ωκ).

Proof. We will show that the action is

i. well-defined,
ii. symplectic.
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i. Fix g, g′ ∈ G and x, x′ ∈ ν−1(κ) so that [g]N = [g′]N and [x]N = [x′]N . Thus

g′ = mg, x′ = nx,

for some m,n ∈ N , and hence
g′ · x′ = mgn · x.

By the normality of N ⊆ G, we have n′ = gng−1 ∈ N . From

g′ · x′ = mn′g · x

we conclude that [g · x]N = [g′ · x′]N . Moreover, since ν : M → n∗ is G equivariant and G preserves κ,
we have [g · x]N ∈Mκ.

ii. This follows by the injectivity of π∗ : Ω∗(Mκ)→ Ω∗(ν−1(κ)) and the equality

π∗g∗ωκ = g∗π∗ω = i∗g∗ω = i∗ω = π∗ωκ, g ∈ G.

Here, as usual, we identify the group element g ∈ G with its image in Diff M .

Definition 54. The annihilator of n ⊆ g is the subspace

n0 = {λ ∈ g∗ | 〈λ, n〉 = 0} ⊆ g∗.

Observe that each λ ∈ n0 corresponds to a well-defined element λ̄ ∈ (g/n)∗ given by the equality

〈λ̄, ξ + n〉g/n = 〈λ, ξ〉g, ξ ∈ g.

Lemma 55. The linear map

n0 → (g/n)∗

λ 7→ λ̄,

is an isomorphism of vector spaces.

Proof. The map λ 7→ λ̄ is injective since λ̄ = 0 implies 〈λ, ξ〉g = 0 for all ξ ∈ g. The result follows as
dim n0 = dim g− dim n = dim (g/n)∗.

Recall that the subgroup N ⊆ G is said to be central if ng = gn for all n ∈ N and g ∈ G.

Theorem 56. Let (M,ω,G, µ) be a Hamiltonian manifold with G-equivariant moment map µ, let λ ∈ g∗ be
G-invariant, let N ⊆ G be a closed central subgroup, put κ = λ|n ∈ n∗, let

ν : M → n∗

x 7→ µ(x)|n

be the induced moment map for the action of N on (M,ω), and suppose that N acts freely on ν−1(κ).

i. There is a unique function µκ : Mκ → g∗ such that π∗µκ = i∗µ, where i : ν−1(κ)→M is the inclusion
and π : ν−1(κ)→Mκ is the projection.

ν−1(κ) M

Mκ

i∗µ µ

π∗µκ

µκ
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ii. The map µκ − λ : Mκ → g∗ takes values in n0 ∼= (g/n)∗.

iii. The function
µκ − λ : M → (g/n)∗

is a moment map for the action of G/N on (Mκ, ωκ).

N

G M

G/N
Mκ = ν−1(κ)/N

g∗

n∗

n0 ∼= (g/n)∗ κ

λ

Proof. i. Since N acts freely on µ−1(κ), it follows that κ ∈ n∗ is a regular value of ν : M → n∗.
Consequently, the symplectic reduction theorem ensures that Mκ is a smooth manifold.

Let n ∈ N . Since N ⊆ G is central, we have

Adn ξ =
d

dt

∣∣∣
t=0

netξn−1 =
d

dt

∣∣∣
t=0

etξ = ξ

for all ξ ∈ g. It follows that Ad∗nλ = λ for all λ ∈ g∗. In particular,

µ(n · x) = n · µ(x) = µ(x)

for all x ∈M . Thus i∗µ : ν−1(κ)→ g∗ is N -invariant, and we conclude that i∗µ descends to a unique
function µκ : ν−1(κ)/N → g∗.

ii. Fix x ∈ ν−1(κ). We have µκ(πx)|n = ν(x) = κ, from which µκ(πx)− λ
∣∣
n

= 0.

iii. From the G-equivariance of µ on M , we obtain the G/N -equivariance of µκ on Mκ. Since λ ∈ g∗ is
fixed by the coadjoint action of G on g∗, it follows that µκ − λ : M → g∗ is G/N -equivariant.

Let χ ∈ g/n be represented by ξ ∈ g. Since n acts trivially on ν−1(κ), we obtain i∗dµξ = i∗ιξω and
hence π∗d(µκ)χ = π∗ιχωκ. By the injectivity of π∗ : Ω∗(Mκ)→ Ω∗(ν−1(κ)), we conclude that

d(µκ − λ)χ = d(µκ)χ = ιχωκ.
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5.3 Product Groups

We now change our perspective and begin with the groups N and H, from which we construct a larger group
G = H × N . By contrast, in the preceding section, we began with an ambient group G and considered a
subgroup N and quotient H = G/N .

Definition 57. Two smooth actions of Lie groups N y M and H y M are said to be commuting actions
if

h · (n · x) = n · (h · x)

for all h ∈ H, n ∈ N , and x ∈M . Locally, this implies [ξ, η] = 0 for ξ ∈ h and η ∈ n.

Theorem 58. Suppose that N y (M,ω) and H y (M,ω) are commuting Hamiltonian actions with respec-
tive moment maps ν : M → n∗ and ρ : M → h∗, and suppose that ρ is N -invariant.

i. The induced action of G = H ×N on (M,ω) is Hamiltonian, with moment map

µ = ρ⊕ ν : M → h∗ ⊕ n∗∼= g∗.

ii. If κ ∈ n∗ and τ ∈ h∗ are regular values of ν and ρ, respectively, if µ is G-equivariant, and if G acts
freely on µ−1(τ, κ) ⊆ M , then H y (M,ω) descends to a Hamiltonian action H y (Mκ, ωκ) with
induced moment map

ρκ : Mκ → h∗,

and there is a natural symplectomorphism of reduced spaces (Mκ)τ ∼= M(τ,κ).

g∗

n∗

h∗

We prove this result through a series of lemmas.

Lemma 59. There is a well-defined symplectic action of G = H ×N on (M,ω), given by

(h, n) · x = h · (n · x).

The induced vector fields are

h⊕ n→ X(M)

(χ, η) 7→ χ+ η,

where χ ∈ X(M) is induced by the action of G, and η ∈ X(M) is induced by the action of N .

Proof. If (h, n) and (h′, n′) ∈ H ×N , then

[(h, n) ·G (h′, n′)] · x = (hh′, nn′) · x
= h h′n︸︷︷︸n′x
= h nh′︸︷︷︸n′x, since the actions of N and H commute,

= (h, n) · [(h′, n′) · x].
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Thus, the action of H ×N on M is well-defined. From

(h, n)∗ω = h∗n∗ω = ω,

we deduce that the action of G is symplectic. We derive the identity (χ, η) = χ+ η as follows,

(χ, η)
x

=
d

dt

∣∣∣
t=0

e−t(χ,η) · x

=
d

dt

∣∣∣
t=0

e−tχe−tη · x, since N commutes with H,

=
d

dt

∣∣∣
t=0

e−tχ · x +
d

dt

∣∣∣
t=0

e−tχ · x, by the Leibniz property, using e0 = 1,

= χ
x

+ η
x
.

We are ready to prove part i. of Theorem 58.

Proof of Theorem 58, part i. Lemma 59 ensures that the action G y (M,ω) is symplectic. For all χ ∈ h
and η ∈ n, we have

d(ρ⊕ ν)χ+η = dρχ + dνχ = ιχω + ιηω = ιχ+ηω.

Since,

{ρχ, ρχ′} = ρ[χ,χ′], χ, χ′ ∈ h

{νη, νη′} = ν[η,η′], η, η′ ∈ n

and
{νη, ρχ} = Lηρχ = 0 = µ[η,χ],

by the N -invariance of ρ, we deduce that the comoment map associated to µ = ρ⊕ ν is a homomorphism of
Lie algebras.

We now turn to part ii. of Theorem 58.

Lemma 60. If κ ∈ n∗ is a regular value of ν : M → n∗, then the action H y (M,ω) descends to an action
H y (Mκ, ωκ), with induced moment map ρκ : Mκ → h∗.

Proof. First observe that the N -invariant of ρ implies that i∗ρ : ν−1(κ)→ h descends to Mκ. It remains to
show that

i. H acts on Mκ = ν−1(κ)/N ,
ii. ρκ is a moment map for H y (Mκ, ωκ).

i. If x ∈ ν−1(κ) and h ∈ H, then the (H ×N)-equivariance of ρ⊕ ν : M → h∗ ⊕ n∗ yields

ν(h · x) = h · ν(x) = ν(x)

so that H preserves ν−1(κ). Moreover, since N commutes with H, the action H yMκ given by

h · [x]N = [h · x]N

is well-defined.

ii. From the injectivity of π∗ : Ω∗(Mκ)→ Ω∗(ν−1(κ)), and the equality

π∗d(ρκ)χ = i∗dρχ = i∗ιχω = π∗ιχωκ,

we deduce that d(ρκ)χ = ιχωκ for all χ ∈ h. Similarly, the H-equivariance of ρκ follows from the
H-equivariance of ρ.
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Finally, we show that the reduced spaces M(τ,κ) and (Mκ)τ are canonically symplectomorphic.

Proof of Theorem 58, part ii. Fix h ∈ H and x ∈ ν−1(κ) such that h · [x]N = [x]N . It follows that h ·x = n ·x
for some n ∈ N . Since G = H × N acts freely on µ−1(τ, κ) = ρ−1(τ) ∩ ν−1(κ), and since n−1h · x = x, it
follows that h = n in H × N , and we conclude that h = 1. Thus, the action of H on ρ−1

κ (τ) is free, from
which τ ∈ h∗ is a regular value of ρκ : Mκ → h∗, and hence (Mκ)τ is a symplectic manifold.

Consider the diffeomorphism

φ : M(τ,κ) =
(
ρ−1(τ) ∩ ν−1(κ)

)
/H ×N ∼−→ ρ−1

κ (τ)/H = (Mκ)τ

[x]H×N 7−→
[
[x]N ]H ,

where x ∈ ρ−1(τ) ∩ ν−1(κ), and consider the commutative diagram

ρ−1(τ) ∩ ν−1(κ) ρκ(τ) ∩Mκ

(Mκ)τM(τ,κ)

πN

πHπH×N

φ

∼

relating the quotient maps πN , πH , and πH×N with the diffeomorphism φ. Since

π∗H×Nφ
∗(ωκ)τ = π∗Hπ

∗
N (ωκ)τ = i∗ω,

where i : ρ−1(τ) ∩ ν−1(κ)→M is the inclusion, since

π∗H×Nω(τ,κ) = i∗ω,

and since π∗N , π∗H , and π∗H×N are injective, we conclude that ω(τ,κ) = φ∗(ωκ)τ . That is, φ is a symplecto-
morphism.

Review Exercises for Part I

1. Let V be a complex vector space equipped with a Hermitian inner product ( , ) : V × V → C. Show
that the real part

〈 , 〉 = Re ( , ) : V × V → R
defines a real-valued inner product on V , and that the imaginary part

ω = Im ( , ) : V × V → R

defines a linear symplectic structure on the underlying real vector space V .

2. Fix n ∈ N and let Cn×n denote the complex vector space of n × n complex matrices. Show that the
pairing

( , ) : Cn×n × Cn×n → C
(A,B) 7→ trA∗B

is equal to the standard Hermitian inner product

(A,B) =
∑
i,j≤n

āijbij .

Conclude that 〈 , 〉 = Re ( , ) defines an inner product on the underlying 2n2-dimensional vector space
Cn×n.
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3. Unitary coadjoint orbits. Fix n ∈ N.

i. Recall that the space of unitary matrices U(n) ⊆ Cn×n consists of those matrices U ∈ Cn×n for
which

UU∗ = I

where U∗ = ŪT is the conjugate transpose of U , and where I = diag(1, . . . , 1) ∈ Cn×n is the
identity matrix. Differentiating a path Ut : (−ε, ε)→ U(n) with U0 = I yields

0 =
d

dt

∣∣∣
t=0

UtU
∗
t = U̇0U0 + U0U̇

∗
0 = U̇0 + U̇∗0 ,

where we have written U̇0 for d
dt

∣∣
t=0

Ut. It follows that the Lie algebra u(n) = T1U(n) consists of
those matrices A ∈ Cn×n for which

A+A∗ = 0.

Such matrices are said to be antihermitian (or skew-Hermitian). Show that the adjoint action of
U(n) on u(n) is given by

AdUB = UBU∗

for U ∈ U(n) and B ∈ u(n).

Hint. The action of conjugation of U(n) on U(n) is given by U · V = UV U−1 for U, V ∈ U(n).
Now let Vt : (−ε, ε) → U(n) be a path satisfying V0 = I and V̇0 = B, and consider the induced
path UVtU

−1. What is the relation between U∗ and UT for the unitary matrix U?

ii. Show that the adjoint action of u(n) on u(n) is given by

adAB = [A,B]

for A,B ∈ u(n), where [A,B] = AB −BA denotes the commutator.

Hint. Let Ut : (−ε, ε)→ U(n) be a path with U0 = I and U̇0 = A, and consider the induced path
AdUtB.

iii. Show that
〈A,B〉 = −trAB

defines an Ad-invariant metric on u(n). That is, show that

〈AdUA,AdUB〉 = 〈A,B〉

for all U ∈ U(n) and A,B ∈ u(n).

Hint. To show that 〈 , 〉 is a metric, use part i. together with the fact that A∗ = −A for all u(n).
To show U(n)-invariance, use the fact that trXY = trY X for any matrices X,Y ∈ Cn×n, and
choose X and Y carefully.

iv. Recall that a real vector space V may be identified with its dual V ∗ by means of a real-valued
inner product 〈 , 〉 on V ,

V
∼→ V ∗

v 7→ 〈v, 〉.

Under this equivalence, we identify A ∈ u(n) with the dual element 〈A, 〉 ∈ u(n)∗ given by

〈A,B〉 = −trAB, B ∈ u(n).
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In particular, we identify u(n)∗ with the subspace of antihermitian matrices in Cn×n. Show that
the coadjoint action of U(n) on u(n)∗ is given by

Ad∗U A = UAU∗

for all U ∈ U(n) and A ∈ u(n)∗. Conclude that the coadjoint orbit through A ∈ u(n)∗ is given by

OA = {UAU∗}U∈U(n) ⊆ Cn×n

with symplectic structure given by

ω(BA, CA) = −tr (A [B,C])

where BA = −adBA = −[B,A] ∈ TAOA, and likewise for CA ∈ TAOA.

Hint. Recall that the defining condition for AdUA is that 〈Ad∗UA,B〉 = 〈A,AdU−1B〉 for all
B ∈ u(n).

4. Characterizing unitary coadjoint orbits. Fix n ∈ N and A ∈ u(n)∗.

i. Let B ∈ OA. Use the fact that conjugation preserves the spectrum to obtain SpecA = SpecB.

ii. Suppose that A = diag(a1, . . . , an) and B = diag(b1, . . . , bn) ∈ u(n)∗ are diagonal. Prove that if
SpecA = SpecB then B ∈ OA.

Hint. Observe that SpecA = {a1, . . . , an} and SpecB = {b1, . . . , bn}, so that A and B are equal
up to permutation of diagonal entries. That is, there is a permutation σ on {1, . . . , n} such that
ai = bσ(i) for each i ≤ n. Let k, ` ≤ n and define the matrix Ek` = (eij)i,j ∈ Cn×n by

eij =

{
1 if i = k and j = `

0 otherwise.

Define the matrix Pk` = Ek` + E`k, and show that conjugation by P interchanges the entries
ak and a` in A = diag(a1, . . . , an). Now use the fact that every permutation on {1, . . . , n} is a
product of transpositions.

iii. Conclude that
OA = {B ∈ u∗(n) |SpecA = SpecB}.

Hint. Use the fact that every antihermitian matrix A ∈ u(n)∗ is diagonalizable by some unitary
matrix U ∈ U(n).
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Part II

Geometry of the Moment Map
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Chapter 6

Morse Theory

If f is a smooth function on a compact manifold M , then we know that there must be critical points x, y ∈M
at which f attains a minimum and a maximum. If f satisfies a mild nondegeneracy condition, then it turns
out that much more can be said about the number and nature of the critical points of f . These properties
are investigated in Morse theory.

In the next chapter, we will use the formalism of Morse–Bott functions in order to prove that the image of
the moment map associated to a torus action T y (M,ω) is a convex polytope in t∗. This chapter presents
the relevant background.

Key Points:

1. The Hessian of f ∈ C∞(M) is well-defined as a symmetric bilinear form Hf on TxM when x is a
critical point of f . The Hessian Hf describes the second variation of f at x.

2. The index of a nondegenerate critical point x of f is the number of independent directions, emanating
from x, in which f decreases.

3. The Morse inequalities relate the critical points of a Morse function f ∈ C∞(M) to the topology of
M . In particular, they relate the number of critical points of f of index k ≥ 0 to the kth Betti number
bk = dimHk(M).

Remark. Every homology group in this chapter should be understood to have coefficients in R.

6.1 Bilinear Forms

We first review the language of bilinear forms. Suppose V is a vector space equipped with a bilinear form
B : V × V → R. Here we have in mind the tangent space V = TxM at a critical point x of a function
f ∈ C∞(M), together with the bilinear form given by the Hessian B = Hf .

Definition 61. We say that B is

i. nondegenerate if, for every v ∈ V , there is a w ∈ V such that B(v, w) 6= 0,

ii. positive (resp. negative) definite if B(v, v) ≥ 0 (resp. ≤ 0) for all v ∈ V , and B(v, v) = 0 only if v = 0.

The diagonalizability of symmetric matrices implies that there are subspaces V+, V−, V0 ⊆ V with

V = V+ ⊕ V− ⊕ V0,

such that B is
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i. positive definite on V+,
ii. negative definite on V−,
iii. zero on V0.

Observe that B is nondegenerate precisely when V0 = 0. While V0 ⊆ V is uniquely determined as the kernel
of B, note that there are many available choices of V+ and V−.

Definition 62. The index of B is the dimension of any negative definite subspace V−.

It is a fact of linear algebra, known as Sylvester’s law of inertia, that the index of B is well-defined.

6.2 Critical Points and the Hessian

Let us review the basic elements of Morse theory. We begin with critical points and nondegeneracy, and
finish with the definition of the Morse polynomial.

Definition 63. We call x ∈ M a critical point of f ∈ C∞(M) if df = 0 at x. In this case, we say that
f(x) ∈ R is the critical value associated to x.

That is, x is critical for f if the derivative Y f ∈ C∞(M) vanishes at x for every vector field Y ∈ X(M).

Definition 64. The Hessian of f ∈ C∞(M) at a critical point x ∈M is the symmetric bilinear form

Hf : TxM × TxM −→ R
(Xx, Yx) 7−→ XY f,

where X,Y ∈ X(M) are any vector fields extending Xx, Yx ∈ TxM , respectively.

Our first order of business is to prove that Hf is well-defined at critical points.

Lemma 65. Let x ∈M be a critical point of f ∈ C∞(M), and let X,Y ∈ X(M) be arbitrary.

i. XY f = Y Xf at x.

ii. The Hessian Hf : TxM × TxM → R is well-defined at x.

Proof. i. We have
XY f − Y Xf = [X,Y ]f = 0 at x.

ii. Choose any X ′, Y ′ ∈ X(M) such that X ′x = Xx and Y ′x = Yx. We will show that

XY f =
(1)
XY ′f =

(2)
X ′Y ′f at x.

To obtain Equality (1), observe that part i. implies

X(Y − Y ′)f = (Y − Y ′)Xf = 0 at x, (∗)

since (Y − Y ′)x ∈ TxM is the zero vector. Equality (2) follows as Xg = X ′g at x for all g ∈ C∞(M).

Definition 66. Let M be a manifold and let f ∈ C∞(M) be a smooth function on M .

i. The index of a critical point x ∈M is the index of the Hessian Hf as a bilinear form on TxM .

ii. A critical point x of f is said to be nondegenerate if Hf is nondegenerate on TxM .

iii. The function f is called a Morse function if every critical point of f is nondegenerate.
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If x is a nondegenerate critical point of f , then the tangent space admits a splitting

TxM = TxM+ ⊕ TxM−,

such that the Hessian Hf is positive definite on TxM+ and negative definite on TxM−. Thus,

• f increases along the positive definite subspace TxM+,
• f decreases along the negative definite subspace TxM−.

Definition 67. Let Mn be a compact manifold and let f be a Morse function on M . The Morse polynomial
of f is defined to be

Mf (t) = c0 + c1t+ · · ·+ cnt
n ∈ Z[t],

where ck ∈ N is the number of critical points of f of index k.

Equivalently, we have

Mf (t) =
∑
x∈Cf

tind x

where Cf ⊆M is the set of critical points of f .

f

x

TxM+

y

TyM−

indx = 0 ind y = 1

Mf (t) = t0 t1+ = 1 + t

TxM+

x

indx = 0

Mf (t) = t0 = 1

f

TyM−

y

ind y = 2

Mf (t) = t2

f

TzM+

TzM−

ind z = 1

Mf (t) = t1 = t

f
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6.3 The Morse Inequalities

Having developed the language of Morse functions, we take the opportunity in this section to present the
Morse inequalities. This is a truly fascinating result which relates the structure of the critical point set
Cf ⊆ M of a Morse function f ∈ C∞(M) to the topology of the underlying manifold M . We remark that
this section is logically independent of the remainder of the text.

Let M be a compact manifold.

Definition 68. The Poincaré polynomial of M is defined to be

P(t) = b0 + b1t+ · · ·+ bnt
n ∈ Z[t],

where bk = dimHk(M,R) is the kth Betti number of M .

Thus, P(M) encodes topological information about M . The Morse inequalities, which we now state,
imply that Mf (t) also contains topological data.

Theorem 69 (Morse inequalities). If f is a Morse function on a compact manifold M , then

Mf (t)− P(t) = (1 + t)Q(t) (∗)

for some polynomial Q(t) = q0 + q1t+ · · ·+ qnt
n with non-negative coefficients qk ≥ 0.

Before we proceed to sketch the proof of this result, let us collect some immediate consequences.

Corollary 70. If f is a Morse function on a compact manifold M , then

i. f has at least bk critical points of index k, for each k ≥ 0,

ii. χ(M) =Mf (−1), where χ(M) =
∑
i≤n(−1)ibi is the Euler characteristic of M ,

iii. (Morse lacunary principle) if no two adjacent coefficients ck, ck+1 are nonzero, then Mf (t) = P(t).

Proof. i. It follows from Theorem 69 that the coefficients ofMf (t)−P(t) are nonactive. That is, ck ≥ bk
for each k ≥ 0.

ii. Evaluate each side of the Morse inequalities (∗) at t = −1.

iii. If ck = 0 then bk = 0 by part i. Now suppose ck > 0. It follows that ck−1 = ck+1 = 0, and consequently
that bk−1 = bk+1 = 0. Expanding (1 + t)q(t) yields

q(t) = q0 + q1t + · · · + qnt
n

+ tq(t) = + q0t + · · · + qn−1t
n + qnt

n+1

(1 + t) q(t) = q0 + (q0 + q1)t + · · · + (qn−1 + qn)tn + qnt
n+1

Equating coefficients on either side of the Morse inequalities (∗), and using the fact that qi ≥ 0, we

obtain
tk+1 : 0 = qk + qk+1 =⇒ qk = 0
tk : ck − bk = qk−1 + qk
tk−1 : 0 = qk−1 + qk−1 =⇒ qk−1 = 0

}
=⇒ qk−1 + qk = 0,

and we conclude that ck = bk.

We now turn to the proof of the Morse inequalities. Our approach is to begin with the empty set ∅ ⊆M
and to use the Morse function f to “build” the manifold M in a controlled way. At each step, we confirm
that the Morse inequalities hold.

First, we need to introduce some notation. For each a ∈ R, define the open submanifold Ma =
f(x) < ax∈M , write Ma(t) for the Morse polynomial of Ma, and write Pa(t) for the Poincaré polynomial of
Ma. Consider the illustration below, where we identify endpoints on the horizontal line to represent M = S1.
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M = S1

f

x y

R

a

b

b′

c

f(x)

f(y)

∅ = Ma Ma(t) = 0, Pa(t) = 0

Mb Mb(t) = 1, Pb(t) = 1

Mb′ Mb′(t) = 1, Pb′(t) = 1

M = Mc Mc(t) = 1 + t, Pc(t) = 1 + t

Note the following:

• Ma is empty when a is less than the minimum value f(x).

• Mc is the entire manifold when c is greater than the maximum value f(y).

• The transition from Ma to Mb involves the addition of a nontrivial 0-cycle; the transition from Mb to
Mc involves the addition of a nontrivial 1-cycle.

• Mb and Mb′ are homotopy equivalent.

With these observations in mind, we present the following key lemma.

Lemma 71. Let f be a Morse function on a smooth manifold M and let a < b be real numbers.

A. If f has no critical values between a and b, then

Pb(t) = Pa(t).

B. If f has precisely one critical value f(x) between a and b, then

Pb(t) = Pa(t) + tind x

or
Pb(t) = Pa(t)− tind x−1.

Idea of proof. First observe that Ma ⊆Mb.

A. The space Ma can be shown to be a deformation retract of Mb. In particular, Mb and Ma are homotopy
equivalent, and thus H∗(Mb) ∼= H∗(Ma).
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B. Put k = indx. By part A., it suffices establish this for a and b arbitrarily near f(x) ∈ R. Homotopically,
we obtain Mb by attaching a k-cell Bx to Ma,

Mb = Ma ∪Bx.

Let γ ∈ Hk−1(M) be the (k − 1)-cycle in Ma represented by ∂Bx. There are two possibilities:

i. If ∂Bx bounds Σ ⊆Ma, then Bx ∪ Σ represents a nontrivial k-cycle on Mb. Thus,

Pb(t) = Pa(t) + tk.

ii. If ∂Bx represents a nontrivial homology class onMa, then Bx trivializes ∂Bx onMb. Consequently,

Pb(t) = Pa(t) + tk−1.

M
x y

R

a

b

c

f(x)

f(y)

Ma

Mb

Mc

Bx

By

Attaching a 1-cell at x

creates a nontrivial 1-cycle.

Attaching a 2-cell at y

removes a nontrivial 1-cycle.

The Morse inequalities now follow easily.

Proof of the Morse inequalities. Let {xi}i≤k ⊆M be the critical points of f . Let us suppose that the critical
values f(xi) ∈ R are distinct, and that the critical points are ordered so that

f(x1) < f(x2) < · · · < f(xk).
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We may always perturb the function f to satisfy this condition, in such a way that preserves the critical
points {xi}i≤k and their indices indxi, so there is no loss of generality.

If c ∈ R is less than the minimum value of f , then Mc = ∅. In this case,

Ma(t) = Pa(t) = 0.

Now suppose that f(x) is the unique critical value of f on the interval (a, b) ⊆ R, and that

Ma(t)− Pa(t) = (1 + t)Qa(t)

for some Qa(t) ∈ Z[t]. Lemma 71 implies that

Mb(t) =Ma(t) + tk

Pb(t) = Pa(t) +

{
tk, or

−tk−1

where k = indx. Taking the difference yields

Mb(t)− Pb(t) =Ma(t)− Pb(t) + tk −

{
tk

−tk−1

= (1 + t)Qa(t) +

{
0

(1 + t) tk−1

= (1 + t)Qb(t).

We proceed in this manner across every critical value of f .

6.4 Bott–Morse Functions and Critical Manifolds

In this section, we extend the notion of a critical point x ∈ M of a function f ∈ C∞(M) to characterize a
critical submanifold Σ ⊆ M of f . In this new situation, the definition of a Morse function extends to that
of a Bott–Morse function. We will invoke this material when we prove the convexity theorem in the next
chapter.

Definition 72. A normal bundle for a submanifold Σ ⊆ M is a vector subbundle of NΣ ⊆ TM |Σ → Σ
which satisfies

TM |Σ = NΣ⊕ TΣ.

Here we identify TΣ→ Σ as a subbundle of TM |Σ → Σ.

TxM

NxΣ

TxΣ

M

Σx
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Definition 73. Fix a manifold M and a smooth function f ∈ C∞(M).

i. If df vanishes on a connected submanifold Σ, then we say that Σ is a critical manifold for f .

ii. A critical manifold Σ ⊆M of f is called nondegenerate if the Hessian Hf is nondegenerate as a bilinear
form on every fiber of the normal bundle NΣ.

iii. The function f is called a Bott–Morse function if the critical set Cf = {dfx = 0}x∈M is equal to the
union ∪αΣα of nondegenerate critical manifolds for f .

If Σ ⊆M is a nondegenerate critical manifold of f , then the fibers of the normal bundle admit a splitting

NxΣ = NxΣ+ ⊕NxΣ−, x ∈ Σ,

such that Hf is positive definite on NxΣ+ and negative definite on NxΣ−. Since we assume our critical
manifolds to be connected, it follows that this decomposition extends to the bundle NΣ. That is, NΣ splits
as the sum of positive and negative normal bundles

NΣ = NΣ− ⊕NΣ+.

Definition 74. The index of a nondegenerate critical manifold Σ of f is defined to be the rank of NΣ− → Σ.

Observe that, when Σ = {x} consists of a single point in M , we have

NxΣ = TxM, NxΣ+ = TxM+, NxΣ− = TxM−, TxΣ = 0.

In particular, ind Σ = indx.
If Σ ⊆M is a nondegenerate critical manifold of f , then

• f increases along the positive definite subbundle NΣ+,
• f decreases along the negative definite subbundle NΣ−.

NΣ+Σ

ind Σ = 0

f

NΣ−

f

Σ

ind Σ = 1

Exercises

1. Give a new example (i.e. one that does not appear in the notes) of a manifold M and a function
f ∈ C∞(M) such that

i. f is a Morse function,

ii. f is not a Morse function, but is a Bott–Morse function,

iii. f is neither a Morse function nor a Bott-Morse function.

2. Consider the height function f on the sphere S2.
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R

0

f
S2

i. Determine the Morse polynomial Mf (t) of f .

ii. Use part i. and the Morse lacunary principle to compute the homology of S2.

3. Consider the indicated height function f on the torus T 2.

R

0

f

i. Determine the Morse polynomial Mf (t) of f .

ii. Use part i. to compute the Euler characteristic χ(T 2).

4. Extend the previous exercise to obtain the Euler characteristic χ(Σg) of the g-holed torus Σg.
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Chapter 7

The Moment Polytope

Consider the familiar action of the circle T on the sphere S2 by rotations. The image of the standard moment
map µ : S1 → t∗ is the convex hull of the image of the north and south poles N,S ∈ S2.

N

S

S2
t∗

µ(N)

µ(S)

0
µ

T

Note that N and S are the fixed points of the action of T on S2. The Atiyah–Guillemin–Sternberg convexity
theorem generalizes this observation to the class of Hamiltonian manifolds (M,ω, T, µ) for which M is
compact and connected and T is a torus. In this case, µ(M) ⊆ t∗ is the convex hull of the image under µ
of the fixed-point set Z ⊆M of T yM . In particular, µ(M) is a convex polytope in t∗, called the moment
polytope of the Hamiltonian manifold (M,ω, T, µ).

M

µ
Z

µ(M)

t∗

µ(Z)

This is a landmark result in the theory of Hamiltonian manifolds. It was proved independently by Atiyah
[1] and Guillemin–Sternberg [7]. Here we follow the proof of Atiyah.

The proof of the convexity theorem relies heavily on Lemma 76, which provides that the fibers of the
moment map µ−1(λ) ⊆ M are connected. This result, in turn, relies on Lemma 77, which establishes this
connectedness in the special case in which the torus T is a circle.

54



Fiber Connectedness for Circle Actions

Fiber Connectedness Lemma

Convexity Theorem

Key Points:

1. If (M,ω, T, µ) is a Hamiltonian manifold with M compact and connected and T a torus, then the image
∆ = µ(M) ⊆ t∗ is a convex polytope.

2. The polytope ∆ ⊆ t∗ is the convex hull of the image µ(Z) ⊆ t∗ of the fixed points Z ⊆M of T yM .

3. If (M,ω, T, µ) is such that M is connected and T is a torus, then the preimage µ−1(λ) ⊆M is connected
for every λ ∈ t∗.

7.1 The Convexity Theorem

In this section we state and prove the convexity theorem.

Theorem 75 (Atiyah–Guillemin–Sternberg convexity theorem). If (M,ω, T, µ) is a Hamiltonian manifold
with M compact and connected and T a torus, then the image of the moment map µ(M) ⊆ t∗ is a convex
polytope.

The proof follows from the following key lemma.

Lemma 76 (Fiber connectedness). If (M,ω, T, µ) is a Hamiltonian manifold with M connected and T a
torus, then the level set µ−1(λ) ⊆M is connected for every λ ∈ t∗.

We defer the proof to Section 7.2. For now, we take it on faith.

Proof of the convexity theorem. Let Z ⊆M be the fixed point set of T yM . We will show that

i. µ(M) ⊆ t∗ is convex,
ii. if ξ ∈ t generates T , then µξ ∈ C∞(M) achieves its maximum value on Z,
iii. µ(M) is contained in the convex hull of µ(Z) ⊆ t∗.

Parts i. and iii. together imply that µ(M) is equal to the convex hull of µ(Z) ⊆ t∗. Since dµξ|Z = 0
implies that µξ is constant on the connected components of Z, and since the number components of Z is
finite by the compactness of M , we conclude that µ(Z) is a finite set and consequently that µ(M) is a convex
polytope.

i. The subset µ(M) ⊆ t∗ is convex precisely when:

` ∩ µ(M) is connected for every affine linear subset ` ⊆ t∗.

Let H ⊆ T be any subtorus of codimension 1, and let

ρ = π ◦ µ : M → h∗

be the induced moment map for the action H y (M,ω). Here we write π : t∗ → h∗ for the dual of the
inclusion map i : h→ t. Observe that
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• ρ−1(κ) is connected by Lemma 76,

• µ(ρ−1(κ)) is connected as it is the continuous image of a connected set,

• π−1(κ) ∩ µ(M) is connected since it is equal to µ(ρ−1(κ)).

ρ−1(κ)

M

µ

ρ

t∗

π−1(κ) ∩ µ(M)

h∗

κ

π

Our task is now to show that every line ` ⊆ t∗ can be suitably approximated by π−1(κ), for some
codimension 1 subtorus H and some κ ∈ h∗.

Let Λ = exp−1(1T ) be the integral lattice in t. Any 1-dimensional subspace n ⊆ t, which meets Λ
at any nonzero point, is tangent to a 1-dimensional subtorus N = exp(n) ⊆ T . Moreover, there is a
complementary codimension 1 subtorus H ⊆ T with H×N = T . The annihilator h0 = {〈φ, h〉 = 0}φ∈t∗
is a 1-dimensional subspace of t∗. As κ varies over h∗, the subsets π−1(κ) ⊆ t∗ are precisely the
translates of h0.

Fix an line ` ⊆ t∗. Since every 1-dimensional subspace U ⊆ t∗ meeting the dual lattice Λ∗ at a nonzero
point arises as h0 for some choice of n ⊆ t, and since µ(M) ⊆ t∗ is compact, it follows that there are
codimension 1 subtori Hi ⊆ T and elements κi ∈ hi, such that

π−1
i (κi) ∩ µ(M) −→ ` ∩ µ(M), as i→∞,

in the sense that the maximum of the distance, with respect to any metric on t∗, from any point of
π−1
i (κi) ∩ µ(M) to the set ` ∩ µ(M) approaches 0 as i → ∞. Since π−1

i (κi) ∩ µ(M) is connected for
each i ≥ 0, and since µ(M) is closed, we conclude that ` ∩ µ(M) is connected.

n

h
t

0

Λ

h∗

π−1(κ)

h0

t∗

0

Λ∗
κ
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ii. The set of critical points of µξ ∈ C∞(M) is precisely the vanishing set of the associated Hamiltonian
vector field ξ ∈ X(M). Now, since ξ ∈ t generates T , the vanishing set of ξ is precisely the fixed point
set of T yM . That is,

Cµξ = {ξ
x
= 0}x∈M = Z.

In particular, µξ attains its maximum at some point z ∈ Z.

iii. Recall that every φ ∈ (t∗)∗ is of the form

ξ̄ : t∗ → R
λ 7→ 〈λ, ξ〉.

for some ξ ∈ t. If ξ generates T , then part ii. guarantees a point z ∈ Z with

µξ(M) ≤ µξ(z).

That is,
ξ̄
(
µ(M)

)
≤ ξ̄
(
µ(z)

)
.

Thus, since the generic ξ ∈ t generates T , it follows that the generic φ ∈ (t∗)∗ satisfies

φ
(
µ(M)

)
≤ φ(c)

for some c ∈ µ(Z). We conclude that µ(M) is contained in the convex hull of µ(Z).

ξ̄

t∗

µ(z)

µξ(z)

µ(x)

µξ(x)

7.2 Hamiltonian Circle Actions

To prove Lemma 76, we require a technical lemma.

Lemma 77. If (M,ω, T, µ) is a Hamiltonian manifold with M connected and T = S1, then

i. µξ ∈ C∞(M) is a Bott–Morse function for every ξ ∈ t,
ii. the index of each critical manifold Σ ⊆M of µξ is even,

iii. the fiber µ−1(λ) is connected for every λ ∈ t∗.

Sketch of proof. If ξ = 0, then the result is trivial. Thus suppose ξ 6= 0.
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i. In general, the fixed point set of the action of a compact Lie group is an embedded submanifold. Let
Σ be a connected component of the fixed-point manifold of T y M and fix x ∈ Σ. Since ξ

x
= 0 for

every x ∈ Σ, it follows that
dµξ(X) = −ω(ξ

x
, X) = 0,

for all X ∈ TM |Σ. Thus, dµξ vanishes on Σ, from which it follows that Σ is a critical manifold for µξ.
Since T fixes x, there is an induced action of T on the tangent fiber

TxM = TxΣ⊕NxΣ.

As T acts by rotations on NxΣ, there are symplectic coordinates (xi, yi)i on a neighborhood of x, in
terms of which ξ = −λi∂θj = λi(y∂x−x∂y) for some nonzero values λi ∈ R. (This can be proved using
the equivariant Darboux theorem.) In terms of these coordinates, we have

µξ =
1

2

∑
i

λi (x2
i + y2

i ), (∗)

and it follows that the Hessian Hµξ is nondegenerate on NxΣ.

ii. The index of Σ at x is the dimension of the subspace NxΣ− ⊆ NxΣ consisting of the directions in
which µξ is decreasing. In terms of Equation (∗), this is equal to the number of coordinates xi, yi which
are preceded by a negative coefficient λi < 0. In particular, the index is even.

iii. The essential fact for our purposes is that:

The index of each critical manifold Σ is odd.

Recall from the previous chapter how we construct M by means of the manifolds

Mc = {µξ(x) < c}x∈M

for c ∈ R. Suppose c ∈ R is a regular value of µξ. Suppose for a contradiction that U,U ′ ⊆M are two
distinct components of Mc. Since

• M is connected,

• dimU = dimU ′ = dimM − 1,

it follows that U and U ′ can only be joined in Md ⊇ Mc by passing through a critical value between
c and d of index 1. This is the desired contradiction. We deduce that no such distinct components U
and U ′ can exist. Therefore, Mc is connected for every regular value c ∈ R, and thus for every c ∈ R.

M

U

U ′

Md
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Suppose, again for a contradiction, that µ−1
ξ (c) = ∂Mc is disconnected for some regular value c ∈ R.

It follows that any boundary component defines a nontrivial (n − 1)-cycle in Mc, where n = dimM .
However, since n−1 is odd, and recalling our discussion from the previous chapter, a nontrivial (n−1)-
cycle cannot be created during the construction of M from the intermediate manifolds Ma. From this
contradiction we conclude that µ−1

ξ (c) is connected.

M

∂Mc = µ−1
ξ (c)

Mc γ

We are now equipped to prove the fiber connectedness lemma.

Proof of Lemma 76. Since T is connected, it suffices to show that Mλ = µ−1(λ)/T is connected.
If T = H ×N , where H ⊆ T is a torus and N ⊆ T is a circle, then

t∗ = h∗ ⊕ n∗,

µ = ρ⊕ ν,
λ = (χ, κ),

where ρ : M → h∗ is a moment map for H y (M,ω) and ν : M → n∗ is a moment map for N y (M,ω).
Lemma 77 asserts that ν−1(κ) is connected, and it follows that the partial reduced space Mκ = ν−1(κ)/N

is connected. Since (Mκ, ωκ, H, χ) is again a Hamiltonian manifold with H a torus, we may repeat this
procedure until we obtain the full reduced space (Mλ, ωλ). Since the partial reduced space is connected at
every stage, we conclude that Mλ = µ−1(λ) is connected.
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Chapter 8

Delzant’s Theorem

We have seen that, if (M,ω, T, µ) is a Hamiltonian manifold with M compact and connected and T a torus,
then the image of the moment map µ(M) is a polytope in t∗. When the action T y M is effective, and
when the dimension of T is half the dimension of M , much more can be said.

Let us illustrate the underlying idea with an example. Suppose that the 1-torus T = S1 acts effectively
on a compact and connected 2-dimensional symplectic manifold (M,ω) with moment map µ : M → t∗.
Moreover, suppose we know that the image of the moment map is µ(M) = [a, b] for some values a, b ∈ t∗.
Our discussion above suggests that this data alone is enough to determine the symplectic manifold (M,ω).
We know that

• µ−1(λ) is a circle, for all λ ∈ (a, b),

• µ−1(a) and µ−1(b) are points.

µ−1(b)

µ−1(a)

µ−1(λ)

t∗

b

a

λµ

T

After a moment’s reflection, we see that we have arrived again at the familiar example of a symplectic sphere.
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µ−1(b)

µ−1(a)

t∗

b

a

µ

It turns out that we can perform this reconstruction more generally, specifically in the setting of symplectic
toric manifolds.

Definition 78. A symplectic toric manifold is a compact connected symplectic manifold (M2n, ω), equipped
with the effective action of a torus Tn of half the dimension of M .

If µ : M → t∗ is a moment map for a symplectic toric manifold T y (M,ω), we will call (M,ω, T, µ) a
toric Hamiltonian manifold.

In this case, the orbits of T y M are precisely the fibers of µ : M → t∗. In particular, when λ ∈ t∗ is
a regular value of µ : M → t∗, the fiber µ−1(λ) ⊆ M is topologically an n-torus. At the other extreme, if
λ = µ(x) is the image of a fixed point x ∈M , then the fiber µ−1(λ) is the singleton {x} ⊆M . In general, if
λ ∈ t∗ lies on a k-dimensional wall of the polytope µ(M) ⊆ t∗, then the fiber µ−1(λ) is a k-torus.

Of course, it is not at all clear that we can combine the preimages µ−1(λ), as λ varies over some polytope
∆ ⊆ t∗, into a symplectic manifold (M,ω). Indeed, in general we cannot; the polytope ∆ ⊆ t∗ must be
Delzant, a condition that we will define later on. In fact, Delzant’s theorem establishes a 1–1 correspondence
between toric Hamiltonian manifolds (M2n, ω, Tn, µ) and the Delzant polytopes ∆ ∈ t∗.

Theorem 79 (Delzant). If (M,ω, T, ω) is a toric Hamiltonian manifold, then the image of the moment map
µ(M) ⊆ t∗ is a Delzant polytope. Moreover, every Delzant polytope ∆ ⊆ t∗ is the moment polytope for some
toric Hamiltonian manifold (M,ω, T, µ).

This theorem was originally established in [5]. The remainder of this chapter is dedicated to the proof.

Symplectic Toric Manifolds (M,ω, T ) Delzant Polytopes ∆ ⊆ t∗
Section 8.2

Section 8.3

Key Points:

1. A 2n-dimensional symplectic manifold (M2n, ω) equipped with the effective action of a n-torus Tn is
called a symplectic toric manifold.

2. Delzant’s theorem asserts that the assignment of moment polytopes µ(M) ⊆ t∗ describes a 1–1 corre-
spondence between symplectic toric manifolds (M,ω, T ), up to equivariant symplectomorphism, and
Delzant polytopes ∆ = µ(M) ⊆ t∗, up to translation.

3. Every symplectic toric manifold arises as the partial reduction of the 2d-dimensional universal sym-
plectic toric manifold (Cd, ω, T d, µ), for some d ≥ 1.

61



8.1 Delzant Polytopes

Our first task is to define the class of Delzant polytopes ∆ ⊆ t∗. As guaranteed by Delzant’s theorem, these
are the polytopes that arise as the image of a moment map µ(M) ⊆ t∗ associated to a symplectic toric
manifold T y (M,ω).

Consider a vector space V and a full sublattice L ⊆ V . For concreteness, we may take V = Rk and
L = Zk. However, our interest in this chapter regards V = t∗ and L = Λ∗, the dual lattice to the integral
lattice Λ = exp−1(1T ).

Recall that the tangent space to V at any point p ∈ V is canonically linearly isomorphic to V . The image
of L ⊆ V under this identification V

∼→ TpV is a lattice in TpV , which we will denote by Lp ⊆ TpV .

0 L⊆Vp

0 Lp⊆ TpV

We recall the following definition.

Definition 80. A basis of a lattice L ⊆ V is a minimal generating set B ⊆ L of L.

The primary new construction of this chapter is the following.

Definition 81. A Delzant polytope in V is a convex polytope ∆ ⊆ V such that the edges of ∆ at each vertex
v ∈ ∆ are tangent to a basis Bv of Lv.

Equivalently, the tangent cone to ∆ at v is spanned by Bv. Here are some examples of Delzant polytopes:

a

b c

V

0

L

TaV

Ba

TbV

Bb

TcV

Bc

And here are some non-examples:
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V

0

L

Let T be a torus. Recall that the integral lattice Λ ⊆ t is defined to be the kernel of the exponential map
exp : t→ T , that is,

Λ = {ξ ∈ t | exp(ξ) = 1T } = exp−1(1T ),

and that the lattice of integral forms Λ∗ ⊆ t∗ is the dual lattice

Λ∗ = {λ ∈ t∗ |λ(Λ) ⊆ Z}.

8.2 Moment Polytopes of Symplectic Toric Manifolds

The aim of this section is to establish that the moment polytope ∆ = µ(M) of a toric Hamiltonian manifold
(M,ω, T, µ) is Delzant. Our approach is to appeal to the theory of torus actions on a vector space V , and
then apply the equivariant Darboux theorem.

Lemma 82. If the n-dimensional torus Tn acts effectively on Cn, then the weights of Tn y Cn form a basis
B of the lattice of integral forms Λ∗ ⊆ t∗.

Proof. Suppose for a contradiction that B = {λi}i ⊆ Λ does not generate the lattice Λ∗. It follows that
there is a ξ /∈ Λ such that 〈λi, ξ〉 ∈ Z for all λi ∈ B. Consequently, exp(ξ) ∈ T is a nontrivial element of T
that acts trivially on V . This contradicts the assumption that the action T y V is effective.

t∗

t
0

λ1

ξ

1 exp(ξ)

T ∼= t/Λ

We now apply

Proposition 83. If (M,ω, T, µ) is a toric Hamiltonian manifold with M , then the moment polytope µ(M) ⊆
t∗ is Delzant.

Proof. Since the action T y M is effective, and since T is abelian, it follows that the principal orbit type
of T y M is (1T ). In particular, the action of T on M is free on a dense open subset M(1) ⊆ M . Thus,
if x ∈ M is fixed by T , then the action T y TxM is effective, and Lemma 82 implies that the weights of
T y TxM form a basis of Λ∗. The result follows since we have seen, in the proof of the fiber connectedness
lemma, that the weights of T y TxM are tangent to the vertices of µ(M) which meet µ(x).

In our proof of the fiber connectedness lemma, we described that
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8.3 The Universal Symplectic Toric Manifold

In this section, we show that every Delzant polytope is realized as the moment polytope of some toric
Hamiltonian manifold.

Put d = n+ 1. Let the d-torus T d ⊆ Cd act on Cd by

(t1, . . . , td) · (z1, . . . , zd) = (t1z1, . . . , tdzd).

A moment map for the action T y Cd is given by

µ(z1, . . . , zd) =
1

2

(
|z1|2, . . . , |zd|2

)
where we identify t∗ with Rd. Note that the image of µ is identified with the positive octant in Rd. We call
(Cd, ω, T, µ) the universal toric symplectic manifold because, as we shall see, every n-dimensional toric sym-
plectic manifold arises as the partial reduction of (Cd, ω, T, µ) by a circle subgroup N ⊆ T . Notwithstanding
our terminology, note that (Cd, ω, T ) is not, in fact, a toric symplectic manifold, as it is noncompact.

The partial reduction of (Cd, ω, T d, µ) by any circle subgroup N ⊆ T d at the level κ ∈ n∗ is the Hamil-
tonian manifold (Cdκ, ωκ, H, µκ), where

Cdκ = ν−1(κ)/N,

and where ν = π ◦ µ : M → n∗ is the induced moment map for the action N y (M,ω).

µ(Cd) ⊆ t∗

n∗

π−1(κ)

π−1(κ) ∩ µ(Cd)

λ

0

Λ∗κ

Our interest in this construction is expressed by the following fact of polytopes, which we state without
proof.

Lemma 84. Every n-dimensional Delzant polytope is of the form ∆ = π−1(κ) ∩ µ(Cd).

Our task now is to show that ∆ = π−1(κ) ∩ µ(Cd) is the moment polytope of (Mκ, ωκ, H, µκ), and that
this Hamiltonian manifold is toric.

Fix λ ∈ µ(Cd). Under the identification

t∗ ←→ Rd

λ (λ1, . . . , λd)
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we have
µ−1(λ) = S

(√
λ1

)
× · · · × S

(√
λd
)
⊆ Cd,

where Sk = S
(√
λk
)

denotes the circle of radius
√
λk in C. Moreover, the torus T ∼= U(1)d acts on the fiber

µ−1(λ) = S1 × · · · × Sk by coordinatewise rotations on each factor. If λ is an interior point in µ(M), then
λk > 0 for each k ≤ d, and the fiber µ−1(λ) is diffeomorphic to a d-torus. If, on the other hand, λ lies
on an `-dimensional wall of µ(M), then only ` of the parameters λk are nonzero, and the fiber µ−1(λ) is
diffeomorphic to an `-torus.

As noted in the proof of the convexity theorem, we have

π−1(κ) ∩ µ(M) = µ(ν−1(κ)). (∗)

Thus,

µκ(Cdκ) = µκ
(
ν−1(κ)/N

)
, by the definition of Cdκ,

= µ(ν−1(κ)), since µκ
(
[x]N

)
= µ(x) for all x ∈ ν−1(κ),

= π−1(κ) ∩ µ(M), by Equation (∗).

Lemma 85. If π−1(κ) ⊆ t∗ meets the interior of µ(Cd), then H y (Cdκ, ωκ) is a symplectic toric manifold.

Proof. Fix a λ ∈ π−1(κ) which lies in the interior of µ(Cd). It follows that λ is a regular value of µ : M → t∗

and consequently that κ is a regular value of ν : M → n∗. We will show that

i. Mκ is a smooth manifold,

ii. dimH = 1
2 dimCdκ,

iii. H y (Cdκ, ωκ) is effective.

This establishes that H y (Cdκ, ωκ) is a symplectic toric manifold.

i. Since κ ∈ n∗ is a regular value of ν : M → n∗, the preimage ν−1(κ) ⊆ Cd is smooth. Note that N acts
freely on the complement of the origin 0 in Cd. Now, since π−1(κ) meets the interior of µ(M), the
preimage π−1(κ) cannot contain the origin 0 ∈ Cd. Therefore, N acts freely on the smooth manifold
π−1(κ), and therefore the quotient Cdκ = ν−1(κ)/N is smooth.

ii. From
dimT = d, dimN = 1, T = H ×N,

we deduce that dimH = d− 1. Since λ ∈ t∗ is a regular value of µ : Cd → t∗, it follows that κ ∈ n∗ is
a regular value of ν : M → n∗. Thus,

dim
(
ν−1(κ)/N

)
= dimCd − 2 = 2(d− 1),

as dimN = dim n∗ = 1.

iii. Since λ ∈ π−1(κ) lies in the interior of µ(Cd), it follows that the torus T acts freely, by coordinatewise
rotations, on the fiber µ−1(λ) ⊆ Cd. Consequently, the subgroup H ⊆ T acts freely on µ−1(λ)/N ⊆ Cdκ
and thus the action of H on Cdκ is effective.

We are now able to conclude that every Delzant polytope arises as a moment polytope for some symplectic
toric manifold.

Proposition 86. For every Delzant polytope ∆ ⊆ t∗, there is a toric Hamiltonian manifold (M,ω, T, µ)
with µ(M) = ∆.

Proof. By Lemma 84, there is a circle subgroup N ⊆ T and an element κ ∈ n∗ such that T = H × N and
∆ = µ(M)∩. By Lemma 85, the partial reduction of (M,ω, T, µ) by N yields a toric Hamiltonian manifold
(Mκ, ωκ, H, µκ) with µκ(Mκ) = ∆.
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Exercises

1. Let V be a vector space, let L ⊆ V be a lattice, and let ∆ be a Delzant polytope. Show that

i. s∆ is a Delzant polytope for all nonzero s ∈ R,

ii. p+ ∆ is a Delzant polytope for all p ∈ V .
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Chapter 9

Connections and Curvature

In this chapter we introduce the language of principal bundles, connections, and curvature. Since we will
apply this material to the setting of torus actions on symplectic manifolds, our structure group T will always
be a torus. As a consequence, our exposition is substantially more straightforward than the general case, in
which the structure group G may be nonabelian.

Our interest in this framework will be made clear in the next chapter, when we study the dependence of
the reduction of a Hamiltonian manifold (M,ω, T, µ) on the parameter λ ∈ t∗. In particular, we will use the
fact that, when the action T y µ−1(λ) is free, the projection π : µ−1(λ) → Mλ inherits the structure of a
T -principal bundle.

Key Points:

1. A T -principal bundle on a smooth manifold M is a fiber bundle π : P → M equipped with a free
action T y P , such that the orbits of T are the fibers of π.

2. A connection A ⊆ TP on a T -principal bundle P →M splits the tangent fibers TuP into a horizontal
direction, modeled on TxM for x = πu, and a vertical direction, modeled on t.

3. The curvature F ∈ Ω2(M, t) of a connection A ⊆ TP measures the variation of A under parallel
transport on P . Alternatively, F measures the failure of A to be integrable as a distribution on P .

4. The Chern form c ∈ H2(M, t) of a T -principal bundle P →M is the cohomology class of the curvature
F ∈ Ω2(M, t) with respect to any connection A ⊆ TP . In particular, c does not depend on the choice
of the connection A ⊆ TP .

Remark. We emphasize that we only consider torus structure groups T . Many of the results in this chapter
are not true when the structure group G of P → M is nonabelian. See Section 9.4 for a discussion of the
differences that are encountered in the nonabelian setting.

9.1 Principal Bundles and Connections

A principal bundle P → M is a structure which traditionally encodes the global topological properties of a
fiber bundle E →M . A connection on a principal bundle establishes a distinguished “horizontal” directions
at every point u ∈ P , with respect to which we may define a notion of parallel transport.

Fix a torus T .

Definition 87. A T -principal bundle on a smooth manifold M is a fiber bundle π : P →M equipped with
a free action T y P , such that the orbits of T y P are precisely the fibers of π : P →M .
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It follows that the fibers of P → M are diffeomorphic to T , though there is no canonical identification
between Px and T . Indeed P →M is naturally a T -fiber bundle with structure group T .

M

T

1x

P

x

Px

u

Principal bundles are everywhere. If E → M is a fiber bundle with typical fiber F and structure group
a torus T ⊆ Diff E, then there is an associated principal bundle P (E)→M with fibers P (E)x consisting of
the admissible identifications of Ex with F ,

P (E)x = {φ : Ex
∼−→ F}, x ∈M.

The action T y P (E) is given by
t · φ = t∗φ : Ex

∼−→ F.

Note that the local sections of P (E)→M correspond to local trivializations of E →M . Informally, we may
consider P (E)→M as the infinitesimal counterpart to the collection of trivializing charts {φα : π−1

E (Uα)→
Uα ×F}α of E →M . The original bundle E →M can be retrieved, up to an isomorphism of fiber bundles,
as the associated bundle

E ∼= P (E)×T F.

Thus, as the typical fiber F encodes the structure of E →M over any given x ∈M , so the principal bundle
P (E)→M encodes the global topological structure of P →M over all of M .

Example 88. Consider a Hermitian line bundle E → M . In this case, the typical fiber is F = C equipped
with its standard Hermitian structure 〈 , 〉, and the structure group is T = U(1). An admissible identification
φ : Ex

∼−→ C is a linear map which respects the Hermitian structures on Ex and the typical fiber C. The
associated principal bundle P (E)→M consists of all such maps φ : Ex

∼−→ C as x ranges over M .

Ex

M

E

x

C
U(1)

1x
φ

While the associated principal bundle construction P (E)→M is a common source of principal bundles,
we remark that the T -principal bundles that we will encounter in the next chapter will arise in an entirely
different manner.

Suppose we wished to identify the points of a fiber Px with those of a nearby fiber Py, in a manner that
respects the action of T .
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M

P

x y

v

u
t

v′

u′
T

1

t

As an alternative to defining a T -equivariant diffeomorphism ax,y : Px → Py, we could alternatively take the
following infinitesimal approach.

Definition 89. A connection on a T -principal bundle P →M is a distribution A ⊆ TP which is

i. T -invariant,
ii. horizontal, in the sense that Au ⊕ tu = TuP .

The vertical directions tu = Tu(Px) are those that are tangent to the fibers of P →M .

TuP

Au

tu = Tu(Px)

Given a pair of points x, y ∈M and a path γt : [0, 1]→M with x = γ0 and y = γ1, the parallel transport
of a element u0 ∈ Px is the endpoint u1 ∈ Py, where the path ut : [0, 1]→ P is determined by the condition
that

i. ut covers γt, in the sense that π(ut) = γt for all t ∈ [0, 1],
ii. ∂tu is always tangent to A.

P

M
x yγt

A ⊆ TM

u0 u1
ut

The assignment u0 7→ u1 is T -equivariant since the connection A ⊆ TP is T -invariant. We say that
u1 ∈ Py is the parallel transport of x ∈ Px with respect to the path γ. Note that different paths γ may

induce different identifications Px
∼−→ Py. Informally, the connection A ⊆ TM “connects” the fiber Px with

the fibers Px+δx which are infinitesimally nearby. The identification between Px and Py, with respect to γ,
is achieved by accumulating these infinitesimal identifications along γ.

We frequently express the connection A ⊆ TP as the kernel distribution of a t-valued 1-form on P .
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Definition 90. A connection 1-form on a T -principal bundle P →M is a 1-form α ∈ Ω1(P, t) which is

i. T -invariant,
ii. satisfies α(ξ) = ξ, for all ξ ∈ t, at every point u ∈ P .

TuP

kerα = Au

t

ξ = α(ξ)

α(X)

0
α

tu

ξ

X

The condition that α(ξ) = ξ fixes α along the vertical directions t ⊆ TP . The connection 1-form

α ∈ Ω1(P, t) is completely determined by prescribing a choice of kernel distribution A = kerα ⊆ TP .
Indeed, there is a natural bijection

{connection 1-forms on P →M} ∼−→ {connections on P →M}
α ∈ Ω1(M, t) 7−→ kerα ⊆ TP

9.2 Curvature

Curvature is the infinitesimal counterpart to the global phenomenon of topological twistedness. We first
define curvature in terms of connection 1-forms α ∈ Ω1(P, t), and then explain it in terms of connections
A ⊆ TP .

Lemma 91. If π : P → M is a T -principal bundle, and if α ∈ Ω1(P, t) is a connection 1-form on P , then
there is a unique closed 2-form F ∈ Ω2(M, t) such that π∗F = dα.

P

M

x Tdα

F

Proof. By the action descent theorem, of Chapter 4, we must show that

i. α is T -invariant,
ii. α is T -horizontal.

It follows that F exists and is unique. The closedness of F follows since π∗F , and since π : P → M is a
surjective submersion.

i. This follows from the definition of a connection 1-form.

ii. Fix ξ ∈ t. Observe that

• dιξα = 0, since ιξα ∈ C∞(P, t) is the function with constant value ξ ∈ t,

• Lξα = 0, since α is T -equivariant.

Therefore,
ιξdα = Lξα− dιξα = 0.
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Definition 92. The curvature of a connection 1-form α ∈ Ω2(M, t) on a T -principal bundle π : P → M is
the unique closed 2-form F ∈ Ω2(M, t) satisfying dα = π∗F .

It is instructive to consider the curvature form F ∈ Ω2(M, t) in terms of the connection A ⊆ TP . Let X
and Y be local vector fields on M , let X̃ and Ỹ be their unique horizontal lifts to P , and observe that

α
(
[X̃, Ỹ ]

)
= [LX̃ , ιỸ ]α, since α

(
[X̃, Ỹ ]

)
= ι[X̃,Ỹ ] α,

= LX̃ιỸ α− ιỸ LX̃α
= −ιỸ ιX̃dα, since α(X̃) = α(Ỹ ) = 0,

= −F (X,Y ).

Therefore,
F (X,Y ) = −α

(
LX̃ Ỹ

)
.

We conclude that F (X, · ) measures the variation of A ⊆ TP along X̃, in terms of the fiberwise projection
α : TP → t. In particular, Fx(X,Y ) measures this variation in the Ỹ direction.

M

γX

Y

x

P T

1

Px

γ̃

Ỹ

u

When the connection A ⊆ TP is integrable as a distribution on P , we have

[X̃, Ỹ ] ⊆ A

and consequently
F (X,Y ) = α([X̃, Ỹ ]) = 0

for all local vector fields X and Y on M . Thus, we may alternatively interpret the curvature as a measure
of the degree to which the connection A ⊆ TP fails to be an integrable distribution.

We are now in a position to clarify the analogy between infinitesimal curvature and global topology.
Consider a fiber bundle E → M , modeled on F , and with structure group T . Recall from our discussion
above that local sections of P (E)→M correspond to local trivalizations of E →M . Suppose that A ⊆ TP
is a connection on P →M . The subspace Au ⊆ TPu(E) is tangent to a local trivialization φ : π−1

E (U)→ F
of E → M on a neighborhood U ⊆ M of x = πu. Now, the curvature of A measures the infinitesimal
incompatibility of the tangent elements to local trivializations {Au}u∈P , while the global topology of E →M
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is a measure of the inherent non-integrability of a system of local trivializations {φU : π−1
E (U)→ F}U⊆U for

some family of neighborhoods U covering M .
Before we continue, let us remark that the curvature does not determine the global topology of P →M .

For example, a principal bundle P → M may admit a connection A ⊆ TP with curvature F = 0, such a
connection is said to be flat, and still be nontrivial as a fiber bundle on M .

9.3 Characteristic Classes and the Chern–Weil Homomorphism

In this section, we define the Chern class of a principal bundle P → M with structure group a torus T .
We then introduce the Chern–Weil homomorphism, which extracts from the curvature form F ∈ Ω2(M, t) a
family of characteristic classes p([F ]) ∈ H∗(M,R) parameterized by multilinear forms p ∈ I∗(t).

A characteristic class associated to a principal bundle P →M is a cohomology class on M which describes
some aspect of the global topological structure of P →M . As we have taken the perspective that curvature
represents, in some sense, the local nontriviality of P →M , it comes as no surprise that characteristic classes
may be derived from the curvature. In our current setting, with a torus structure group T , this theory takes
a comparatively straightforward form.

Lemma 93. If α, β ∈ Ω1(P, t) are connection 1-forms on the T -principal bundle π : P → M , then there is
a unique η ∈ Ω1(M, t) such that π∗η = α− β.

Proof. The difference α− β is T -equivariant since α and β are each T -equivariant. Since

ιξ(α− β) = ξ − ξ = 0, ξ ∈ t,

it follows that α − β is T -horizontal. Therefore, the action descent theorem implies that η exists and is
unique.

Theorem 94. If P →M is a T -principal bundle, then the cohomology class [F ] ∈ Ω2(M, t) does not depend
on the choice of connection A ⊆ TP .

Proof. Let Fα and Fβ ∈ Ω2(M, t) be the respective curvatures of two connection 1-forms α and β ∈ Ω1(P, t).
Lemma 93 implies that the difference

Fα − Fβ = d(α− β)

is exact. In particular, the cohomology class [Fα] = [Fβ ] does not depend on α or β.

Theorem 94 implies that the following definition is well-defined.

Definition 95. The Chern class c ∈ H2(M, t) of a T -principal bundle π : P → M is the cohomology class
[F ] ∈ H2(M, t), where F ∈ Ω2(M, t) is the curvature of P →M with respect to any connection A ⊆ TP .

Write Ik(t) for the space of symmetric k-linear forms

p : t⊗ · · · ⊗ t︸ ︷︷ ︸
k

→ R.

Given p ∈ Ik(t), there is an induced homomorphism of vector bundles

Λ2kT ∗M ⊗ t⊗k
p−−−→ Λ2kT ∗M,

which in turn yields a map

Ω2k(M, t⊗k)
p−−−→ Ω2k(M).

If π : P → M is a T -principal bundle, if α ∈ Ω1(P, t) is a connection 1-form on P , and if F ∈ Ω2(M, t) is
the curvature of α, then we denote the image of F k ∈ Ω2k(M, t⊗k) under this map by p(F ).
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Definition 96. The Chern–Weil homomorphism with respect to a T -principal bundle π : P → M is the
map

I∗(t) −→ H∗(M,R)

p 7−→
[
p(F )

]
We say that [p(F )] ∈ H∗(M,R) is the characteristic class associated to p ∈ I∗(t).

Observe that the Chern–Weil homomorphism is well-defined since Theorem 94 ensures that [F ] ∈
H2(M, t) does not depend on the choice of connection A ⊆ TP .

9.4 The Nonabelian Case

We briefly indicate some of the adjustments that must be made when defining connections, curvature, and
characteristic forms when the torus T is replaced by a general compact Lie group G. This material will not
appear elsewhere in the course. The interested reader may consult [8, Chapter II] and [9, Chapter XII] for
more information.

It is conventional to define a G-principal bundle P → M to incorporate a right action of G on P . This
may be motivated, for example, by the observation that the points u ∈ P are traditionally considered to be
dual elements, namely, identifications u : Eπu → F associated to an F -fiber bundle E →M , in which setting
the symmetries Gy F are considered to be primary. When G = T is abelian, every left action is naturally
a right action and vice versa. Thus, we ignore this distinction in the exposition above.

Perhaps the most important difference in the nonabelian setting is that a connection 1-form α ∈ Ω1(P, g) is
G-equivariant–as opposed to G-invariant–so that the exterior derivative dα ∈ Ω2(P, g) is neither G-invariant
nor G-horizontal, and thus does not descend to M .

To accommodate the fact that dα fails to be

• G-horizontal, we project dαu to the horizontal directions Au ⊆ TuP at each point u ∈ TuP ,

• G-equivariant, we introduce the adjoint bundle adP = P ×Ad g→M which incorporates the action of
G.

In this setting, the curvature of a connection A is a 2-form F ∈ Ω2(M, adP ) taking values in the adjoint
bundle adP → M . When G = T is abelian, the adjoint action of T on t is trivial and there is a natural
isomorphism P ×Ad t which the trivial bundle M × t. In this case, the curvature takes values in the vector
space t, as we describe above.

As the curvature F ∈ Ω2(M, adP ) does not take values in g, the construction of the characteristic class
[p(F )] ∈ H∗(M,R) in the Chern–Weil homomorphism takes place on the total space P . The key property
is that, after restricting to G-invariant multilinear forms p ∈ I∗(g), the differential form p(F ) ∈ Ω∗(P,R) is
both G-invariant and G-horizontal, and thus descends to M .

Exercises

1. Fix a torus T , a manifold M , and a T -principal bundle π : P →M .

i. Let U ⊆M be an open set such that P |U is trivializable. Show that there exists a connection on
P |U .

Hint. Let P |U ∼= U × T be a trivialization of P |U , so that the action of the structure group T
on U × T is given by left multiplication on the second factor. Using this identification, show that
TU ⊆ T (U × T ) defines a connection on P |U .
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ii. Show that there exists a connection on P →M .

Hint. Let U = {Ui}i be a locally finite open cover of M which trivializes P → M , and let
{ψ : Ui → R}i be a partition of unity subordinate to U . Use part i. to establish that, for each
Ui ∈ U , the restriction P |Ui has a connection 1-form αi ∈ Ω1(P, t). Now show that α =

∑
i ψiαi

is a connection 1-form on P →M .
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Chapter 10

The Duistermaat–Heckman Theorem

The purpose of this chapter is to state and prove the Duistermaat–Heckman theorem. This result describes
how the reduced space (Mλ, ωλ) depends on the parameter λ ∈ t∗.

Consider the symplectic sphere. Observe that, over the set C ⊆ t∗ lying strictly between µ(S) and µ(N)
the standard moment map defines a fiber bundle with typical fiber S1.

N

S

µ−1(τ)

S2 t∗

µ(N)

µ(S)

τ

C

µ

T

Furthermore, each fiber µ−1(τ) ⊆ S2 inherits an action of the circle T , and that the quotient µ−1(τ)/T is
the reduced space Mτ . Since the moment map µ : M → t∗ is invariant under the action of T yM , there is
an induced map µ̄ : M/T → t∗.

M/T

M t∗

µ̄
π

µ

Over the set C ⊆ t∗, the map µ̄ : M/T → t∗ defines a fiber bundle modeled on Mτ0 for any τ0 between
µ(S) and µ(N). We will take the perspective that the moment map µ : µ−1(C) → C describes a bundle of
T -principal bundles µ−1(τ)→Mτ , modeled on µ−1(τ0)→Mτ0 for some fixed τ0 ∈ C.
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µ−1(τ0) Mτ0
π

t∗

τ0µ

T

As we shall see, it is true in general that there is a canonical isomorphism of the cohomology of the reduced
space H∗(Mτ ) with that of the model space H∗(Mτ0). In terms of this identification, the Duistermaat–
Heckman theorem establishes a linear relation between the cohomology of the reduced symplectic forms ωτ ,
as τ varies over C.

Theorem 97 (Duistermaat–Heckman). Let (M,ω, T, µ) be a Hamiltonian manifold with T a torus, and let
C ⊆ t∗ be a connected component of the set of regular values of µ : M → t∗. If T acts freely on µ−1(C) ⊆M ,
then

[ωτ ] = [ωτ0 ] + 〈τ − τ0, c〉,
where c ∈ H2(Mτ , t) is the Chern class of the T -principal bundle µ−1(τ)→Mτ .

We follow the original proof of [6]. The key insight is that a trivialization µ−1(C)
∼−→ C × µ−1(τ0) of

the moment bundle µ−1(C)→ C, together with the underlying symplectic structure ω ∈ Ω2(M), induces a
distinguished connection on each T -principal bundle µ−1(τ)→Mτ . Defined in terms of ω, these connections
unite the symplectic geometry of the reduced spaces Mτ with the curvature of the T -principal bundles
µ−1(τ)→Mτ .

Key Points:

1. If (M,ω, T, µ) is a Hamiltonian manifold with T a torus, if C ⊆ t∗ is a connected set of regular value
of µ : M → t∗, and if T acts freely on µ−1(C), then µ−1(τ) → Mτ is a T -principal bundle for every
τ ∈ C. We may consider the moment bundle µ : µ−1(C) → C as a bundle of T -principal bundles,
modeled on µ−1(τ0)→Mτ0 for any τ0 ∈ C.

2. The moment bundle µ : µ−1(C)→ C is trivializable. Moreover, a trivialization µ−1(C)
∼−→ C×µ−1(τ0)

induces a T -principal bundle connection on each fiber µ−1(τ)→Mτ .

3. The Duistermaat–Heckman theorem asserts that the cohomology of the reduced form [ωτ ] ∈ H2(Mτ )
associated to a Hamiltonian manifold (M,ω, T, µ) with T a torus, varies linearly with the parameter
τ ∈ t∗.

10.1 The Moment Bundle

Fix a Hamiltonian manifold (M,ω, T, µ) with T a torus. Let C ⊆ t∗ be a connected component of the set of
regular values of µ : M → t∗, and suppose that T acts freely on µ−1(C).

Definition 98. The moment bundle over C is the restriction of the moment map µ : M → t∗ to C, that is,
µ : µ−1(C)→ C.
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Since C is convex, and hence contractible, it follows that the moment bundle is trivializable. Fix a point
τ0 ∈ C and a trivializing function φ : µ−1(C)→ µ−1(τ0) of µ : µ−1(C)→ C, so that

µ× φ : µ−1(C)
∼−→ C × µ−1(τ0).

For each λ ∈ t∗, let λ ∈ X
(
µ−1(C)

)
denote the horizontal lift of the constant vector field λ ∈ X(C) to

µ−1(C). To keep our notation uniform, and as there is no opportunity for confusion, we will write ιλ and
Lλ for ιλ and Lλ, respectively.

µ−1(C)

µ−1(τ0)

λ

t∗

C

τ0

λ

µ

φ

µ−1(τ0)

In the statement of the Duistermaat–Heckman theorem we add two cohomology classes, [ωτ ] and [ωτ0 ], which
lie in distinct spaces H2(Mτ ) and H2(Mτ0), respectively. We justify this operation by means of the following
lemma.

Lemma 99. For each τ ∈ C, there is a natural identification H∗(Mτ ) ∼= H∗(Mτ0).

Proof. Consider the bundle µ−1(C)/T → C, modeled on the reduced spaceMτ0 = µ−1(τ0)/T , and fix any two
trivializing functions ψ,ψ′ : µ−1(C)/T →Mτ0 . The restriction of ψ and ψ′ to the subspace Mτ ⊆ µ−1(C)/T
yields homotopic diffeomorphisms

ψ|Mτ
' ψ′|Mτ

: Mτ
∼−→Mτ0 ,

which thus descend to identical isomorphisms of cohomology,(
ψ|Mτ

)∗ =
(
ψ′|Mτ

)∗ : H∗(Mτ )
∼−→ H∗(Mτ0).

In particular, the isomorphism H∗(Mτ ) ∼= H∗(Mτ0) is independent of the choice of trivialization of the
bundle µ−1(C)/T → C.

In light of Lemma 99, it is meaningful to compare the cohomology classes of the reduced symplectic
structures [ωτ ] ∈ H2(Mτ ) and [ωτ0 ] ∈ H2(Mτ0).

While the trivialization µ−1(C) ∼= µ−1(C)× µ−1(τ0) is noncanonical, the induced isomorphism of coho-
mology H(Mτ )→ H(Mτ0) is canonical. This is because any two identifications φ, φ′ : M

Since µ : µ−1(C) → C is T -invariant, it follows that λ ∈ X
(
µ−1(C)

)
is T -invariant. The vector fields

λ ∈ X
(
µ−1(C)

)
define a distribution

t∗ = {λ |λ ∈ t} ⊆ TM,

which is conjugate to the fundamental distribution t ⊆ TM over µ−1(C) ⊆M in the following sense.
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Lemma 100. We have
ω(λ, ξ) = −〈λ, ξ〉,

for every λ ∈ t∗ and ξ ∈ t.

Proof. Since λ ⊆ TM lifts the constant vector field λ ∈ X(C) to the total space of µ : µ−1(C) → C, it
follows that µ∗λ = λ. Using the fact that ω(X, ξ) = −〈µ∗X, ξ〉, for all X ∈ TM , we conclude that

ω(λ, ξ) = −〈µ∗λ, ξ〉 = −〈λ, ξ〉.

Write π : µ−1(τ) → Mτ for the natural projection and i : µ−1(τ) → M for the natural inclusion.
Identifying the fibers of µ−1(C)/→ C by means of the trivialization µ−1(C)/T ∼= C ×Mτ , we define

∂λωτ =
d

dt

∣∣∣
t=0

ωτ+tλ ∈ Ω2(Mτ ),

and similarly for ∂λi
∗ω. Observe that, in contrast to the natural isomorphisms of cohomology H∗(Mτ ) ∼=

H∗(Mτ0), the identifications Mτ
∼= Mτ0 depend on our choice of trivialization µ−1(C) ∼= C × µ−1(τ0).

The proof of the Duistermaat–Heckman theorem makes use of the following technical lemma.

Lemma 101. We have
π∗∂λωτ = di∗ιλω.

Proof. A direct computation yields

π∗∂λωτ = ∂λπ
∗ωτ , since λ is T -basic,

= ∂λi
∗ω, by the defining condition π∗ωτ = i∗ω,

= i∗Lλω, since λ ∈ X
(
µ−1(C)

)
lifts λ ∈ X(C),

= i∗dιλω, using Lλ = dιλ + ιλd and dω = 0,

= di∗ιλω.

10.2 The Chern Class of the Moment Fibers

In this section, we will see that the variation of the cohomology of the reduced form reduced form ∂λ[ωτ ] ∈
H2(Mτ ) is described by the Chern class c ∈ H2(Mτ , t) of the T -principal bundle µ−1(τ) → Mτ . The proof
of the Duistermaat–Heckman theorem will readily follow from this property.

Our first task is to define a connection 1-form α ∈ Ω1
(
µ−1(τ), t

)
on the moment fiber µ−1(τ)→Mτ . As

we will now show, such a form is induced by our choice of trivialization µ−1(C) ∼= C × µ−1(τ0).
For each x ∈M , define the assignment

αx : TxM → t

to be dual to the map

t∗ → T ∗xM

λ 7→ −ιλω.

That is, α ∈ Ω1(M, t) is determined by the condition that〈
λ, α(X)

〉
= −ω(λ,X)

for all λ ∈ t∗ and X ∈ TM . Succinctly, 〈λ, α〉 = −ιλω.

78



Lemma 102. For each τ ∈ C, the pullback i∗α ∈ Ω2
(
µ−1(τ), t

)
is a connection 1-form on µ−1(τ) → Mτ ,

where i : µ−1(τ)→M is the inclusion.

Proof. We will show that

i. α is T -invariant,
ii. α(ξ) = ξ for all ξ ∈ t.

Since the action T yM restricts to µ−1(τ), it follows that these properties also hold for i∗α.

i. Observe that 〈
λ, (t∗α)(X)

〉
= −ω

(
λ, t∗X

)
= −ω

(
λ,X

)
, since λ and ω are T -invariant,

=
〈
λ, α(X)

〉
.

ii. From Lemma 100, we deduce that 〈
λ, α(ξ)

〉
= −ω(λ, ξ) = 〈λ, ξ〉.

For each τ ∈ C, let A = kerα ∩ Tµ−1(τ) be the connection on µ−1(τ) → Mτ corresponding to the
restriction of α ∈ Ω1(M, t) to µ−1(τ). Observe that the tangent bundle Tµ−1(C) splits as the sum of three
distributions,

Tµ−1(C) = t⊕ t∗ ⊕A,

where

• t, which is tangent to the action of T ,

• t∗, which is parallel to the reduced space C ⊆ t∗ of the moment bundle,

• A, which, on each moment fiber µ−1(τ)→Mτ , is parallel to the base Mτ .

t∗x

tx Ax

TxM

λ

ξ
Txµ

−1(τ)

Note that in in the example of the sphere (S2, ω, T, µ), the reduced space Mτ is a point for every τ ∈ C, and
thus the distribution A vanishes on µ−1(C).

Lemma 103. For every λ ∈ t∗, we have

π∗〈λ, F 〉 = di∗ιλω,

where F ∈ Ω2(Mτ , t) is the curvature of i∗α ∈ Ω1
(
µ−1(τ), t

)
, the map i : µ−1(τ)→M is the inclusion, and

π : µ−1(τ)→Mτ is the projection.
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Proof. This follows as
〈λ, π∗F 〉 = 〈λ, di∗α〉 = di∗〈λ, α〉 = di∗ιλω.

We are now ready to prove the Duistermaat–Heckman theorem.

Proof of the Duistermaat–Heckman theorem. Lemma 101 and Lemma 103 together yield

π∗∂λωτ = di∗ιλω = π∗〈λ, F 〉.

Since π : µ−1(τ)→Mτ is a surjective submersion, it follows that ∂λωτ = 〈λ, F 〉. Descending to cohomology
on either side yields

∂λ [ω ] = 〈λ, c〉. (∗)

Since the Chern form c ∈ H2(Mτ , t) depends only on the T -principal bundle isomorphism class of µ−1(τ)→
Mτ , and since Lemma 99 asserts that every fiber of µ : µ−1(C) → C is isomorphic to µ−1(τ0) → Mτ0 , it
follows that c ∈ H2(Mτ , t) ∼= H2(Mτ0 , t) is constant as a function of τ ∈ C. We may thus solve Equation (∗)
with λ = τ − τ0 to obtain

[ωτ ] = [ωτ0 ] + 〈τ − τ0, c〉.
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Chapter 11

The Exact Stationary Phase
Approximation

Suppose f ∈ C∞(R) is a smooth function with isolated critical points and consider the integral

I(t) =

∫
R
eitf(x) dx.

The idea behind the stationary phase approximation is that, for fixed t > 0 very large, the integrand eitf(x)

oscillates wildly at all points of R except those points x0 ∈ R at which the derivative f ′(x0) vanishes. These
are the points at which eitf exhibits stationary phase. The effect of this oscillation is to tend to cancel out
the contribution to the integral I(t) from all points, other than the critical points x0 ∈ Cf . In particular, the
integral I(t) will depend predominantly on the second-order behavior of f on the critical point set Cf ⊆ R.

Suppose for simplicity that x0 ∈ Cf is the unique critical point of f , and consider the Taylor expansion
of f at a critical point x0 ∈ Cf ,

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 +O(x3).

Using the ideas of the stationary phase approximation, we deduce that

I(t) ≈
∫
R
eit
[
f(x0)+f ′(x0)(x−x0)+ 1

2 f
′′(x0)(x−x0)2

]
dx, approximating f to 2nd order at x0,

≈ eitf(x0)

∫
R
eit 1

2 f
′′(x0) 1

2 (x−x0)2 dx, since f ′(x0) = 0,

= eitf(x0)

√
2π i

tf ′′(x0)
.

In the exact stationary phase approximation we consider an analogous situation in the setting of Hamiltonian
manifolds, in which the approximation is equal to the integrand, that is, the approximation is exact.

Key Points:

1. Given a Lie group action on a smooth manifold GyM , there is an associated complex of G-equivariant
differential forms Ω∗G(M) and equivariant exterior derivative dG : Ω∗G(M)→ Ω∗+1

G (M).

2. If a G-equivariant form α ∈ Ω∗G(M) is G-equivariantly closed, then the equivariant localization theorem
reduces the integral

∫
M
α to an integral over the fixed-point set of GyM .
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3. If (M,ω,G, µ) is a Hamiltonian manifold, then the form ω + µξ ∈ Ω2
G(M) is equivariantly closed.

The application of the equivariant localization theorem to eω+µξ yields the exact stationary phase
approximation.

4. The pushforward of the Liouville measure eω ∈ Ω∗(M) by the moment map µ : M → g∗ is called the
Duistermaat–Heckman measure µ∗e

ω ∈ Ω∗(g∗). The exact stationary phase approximation computes
the Fourier transform of this measure.

11.1 Equivariant Differential Forms

In this section we introduce equivariant differential forms. We follow the presentation in [4, Chapter 7].

Definition 104. A G-equivariant differential form is a G-equivariant polynomial α : g→ Ω∗(M).

We denote the space of G-equivariant differential forms on M by Ω∗G(M). This space possesses a natural
grading, given by

deg(p⊗ α) = 2 deg p+ degα

where p : g→ R is a polynomial, and α ∈ Ω∗ is an ordinary differential form.

Definition 105. The equivariant exterior derivative on Ω∗G(M) is the operator

dG : Ω∗G(M)→ Ω∗G(M)

given by
(dGα)(ξ) = (d− ιξ) α(ξ)

for every α ∈ Ω∗G(M) and ξ ∈ g. A G-equivariant differential form α ∈ Ω∗G(M) is said to be equivariantly
closed if dGα = 0, and equivariantly exact if α = dGβ for some β ∈ Ω∗G(M).

The equivariant exterior derivative dG increases the degree of homogeneous elements α ∈ Ω∗G(M) by one.

Proposition 106. The pair (Ω∗G(M),dG) forms a chain complex.

Proof. For any ξ ∈ g, we have

(d2
Gα)(ξ) = (d− ιξ)2α(ξ)

= (d2 − dιξ − ιξd + ι2ξ)α(ξ)

= −Lξα(ξ), since d2 = ι2ξ = 0 and Lξ = dιξ + ιξd,

= α
(
[ξ, ξ]

)
, by the G-equivariance of α,

= 0.

In light of Proposition 106, we define the kth G-equivariant cohomology module to be

Hk
G = ker d

[k]
G /im d

[k−1]
G ,

where d
[k]
G : ΩkG(M)→ Ωk+1

G (M) denotes the restriction of dG : Ω∗G(M)→ Ω∗G(M) to ΩkG(M).
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11.2 The Stationary Phase Approximation

The original version of the stationary phase approximation was proved in [6] as a consequence of the
Duistermaat–Heckman theorem. It was later obtained as a consequence of the equivariant localization theo-
rem in [2, §7]. Here we present a simplified version of this theorem.

Lemma 107. If (M,ω,G, µ) is a Hamiltonian manifold, then the equivariant differential form ωG ∈ Ω2
G(M)

given by
ωG(ξ) = ω + µξ ∈ Ω∗(M), ξ ∈ g,

is equivariantly closed.

Proof. For all ξ ∈ g, we have

(dGωG)(ξ) = (d− ιξ)(ω + µξ)

= −ιξω + dµξ

= 0,

since dµξ = ιξω.

Given a smooth action Gy,M and a fixed point x0 ∈M , define the map

Lx0
(ξ) : Tx0

(M) −→ Tx0
M

X 7−→ LξX.

Here we present the localization theorem for actions with isolated zeros.

Theorem 108 (Equivariant localization, [4] Theorem 7.11). Let G be a compact group with Lie algebra g
acting on a compact manifold M , and let α be an equivariantly closed differential form on M . Let ξ ∈ g be
such that ξ ∈ X(M) has only isolated zeros. Then∫

M

α(ξ) = (−2π)`
∑

x0∈M0(ξ)

α(ξ)(x0)

det1/2(Lx0
(ξ))

,

where ` = dim(M)/2, and by α(ξ)(x0), we mean the value of the function α(ξ)[0] at the point x0 ∈M .

The following version of the exact stationary phase approximation follows immediately.

Theorem 109 (Exact stationary phase approximation). If (M,ω,G, µ) is a Hamiltonian manifold with M
and G compact, and if ξ ∈ g such that µξ : M → g∗ has only isolated zeros, then∫

M

eiµξ eω =
∑

x0∈Cµξ

eiµξ(x0)

det1/2(Lx0(ξ))
.

Proof. It follows from Lemma 107 that the element

eωG =
∑
k≥0

ωkG
k!
∈ Ω∗G(M)

is equivariantly closed. Since the critical point set Cµξ ⊆ M is equal to the fixed point set M0(ξ), an
application of Theorem 108 yields∫

M

eiµξ eω =

∫
M

eωG(ξ) =
∑

x0∈Cµξ

eiµξ(x0)

det1/2(Lx0
(ξ))

.
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11.3 The Fourier Transform of the Duistermaat–Heckman Mea-
sure

In this section, we give an alternative characterization of the exact stationary phase approximation, in terms
of the Fourier transform of a distinguished measure on g∗.

Recall that the canonical measure on a symplectic manifold (M2n, ω) is the Liouville measure, which is
given as

eω[n] =
ωn

n!
∈ Ω2n(M).

Definition 110. If (M,ω,G, µ) is a Hamiltonian manifold with M compact, then we define the associated
Duistermaat–Heckman measure measure on g∗ to be the pushforward by µ : M → g∗ of the Liouville measure
eω[n] on M .

We will denote the Liouville measure by eω ∈ Ω∗(M) and the Duistermaat–Heckman measure by µ∗e
ω ∈

Ω∗(g∗).

Definition 111. Let V be an n-dimensional vector space. The Fourier transform of a measure m ∈ Ωn(V )
is the function

m̂ : V ∗ → C

given by

m̂(φ) =

∫
x∈V

e−i〈φ,x〉m, φ ∈ V ∗.

In particular, if V = g∗ then we identify V ∗ = g and we define

m̂(ξ) =

∫
λ∈g∗

e−i〈λ,ξ〉m, ξ ∈ g.

Theorem 112 (Fourier transform of the Duistermaat–Heckman measure). If (M,ω,G, µ) is a Hamiltonian
manifold with M and G compact, and if ξ ∈ g such that µξ : M → g∗ has only isolated zeros, then

µ̂∗eω(ξ) =
∑

x0∈Cµξ

e−iµξ(x0)

det1/2(Lx0(ξ))
.

Proof. From Theorem 109, we derive

µ̂∗eω(−ξ) =

∫
λ∈g∗

ei〈λ,ξ〉 µ∗e
ω

=

∫
x∈M

ei〈µ(x),ξ〉 eω

=

∫
M

eiµξ(x) eω

=
∑

x0∈Cµξ

eiµξ(x0)

det1/2(Lx0(ξ))
.
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Part III

Geometric Quantization
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Chapter 12

Prequantization

Quantum physics refers to a family of profoundly mysterious theories about the natural world. Geometric
quantization, by contrast, comprises an entirely transparent and straightforward collection of mathematical
procedures. The basic idea is this:

Lift the symmetries of (M,ω) to the space of sections of a Hermitian line bundle L→M .

That is, given a Hamiltonian vector field Xf ∈ X(M) associated to a function f ∈ C∞(M), we would like to
extend Xf to an operator Qf acting on the space of sections H = Γ(L) of a Hermitian line bundle L→M .

(M,ω)

L

R

0
f

Xf

x zy

Qf

More specifically, this describes geometric prequantization. The sections of L → M form a vector space
H, and we may consider prequantization as a bridge from the “classical” world of symplectic geometry to
the “quantum world” of linear representations.

Classical World

symplectic manifolds (M,ω)
Hamiltonian symmetries

Quantum World

vector spaces H
linear transformations

prequantization

From this perspective, we might characterize prequantization as the linearization of the Hamiltonian
symmetries of (M,ω).

There is a complication. The space of sections H is infinite-dimensional, and we would prefer to work in
the finite-dimensional setting. To achieve this, we restrict our attention to certain distinguished subspaces
of H. This, however, is the topic of geometric quantization, which we will turn to in the following chapter.
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Key Points:

1. Informally, a prequantization of (M,ω) is a lift of the infinitesimal Hamiltonian symmetries Xf ∈ X(M)
to infinitesimal symmetriesQf of the space of sections of a Hermitian line bundle L→M . Alternatively,
a prequantization of (M,ω) is a linearization of the Hamiltonian symmetries of (M,ω).

2. A prequantization of (M,ω) is determined by a Hermitian line bundle L→M with connection ∇, such
that F∇ = ic ω for some nonzero constant c ∈ R.

3. A symplectic manifold (M,ω) can be prequantized if and only if c[ω] ∈ H2(M,R) lies in the image of
the inclusion H2(M, 2π Z) for some nonzero value c ∈ R.

4. The quantum observables considered in physics are typically Hermitian, whereas the quantum operators
in these notes are skew-Hermitian.

Remark. Though there is substantial interaction between quantum physics and symplectic geometry, we will
have little to say about this in these notes. The interested reader may wish to consult [3, 13].

12.1 Lifting the Hamiltonian Symmetries

We begin with a preliminary working definition, which will serve to explain the underlying idea of prequan-
tization. Later on, in Section 12.3, we will replace our working definition with the standard one.

Preliminary Definition. A prequantization of a compact symplectic manifold (M,ω) consists of

i. a Hermitian line bundle L→M ,

ii. a faithful unitary representation of Lie algebras

Q : C∞(M)→ u(H),

where H = Γ(L) denotes the space of sections of L → M , which lifts the assignment of Hamiltonian
vector fields in the sense that

Qf (s · ψ) = (Xfs)ψ + sQfψ, (∗)

for all f, s ∈ C∞(M) and ψ ∈ H.

We also impose a technical first-order condition on Q: namely, that (QXfψ)(x) = 0 for all ψ ∈ H whenever
f vanishes to first order at x ∈M .

A few remarks are in order.

i. The Lie algebra structure on C∞(M) is defined by the Poisson bracket { , }. The condition that Q is
a Lie algebra representation of C∞(M) on H means that Q : C∞(M) → u(H) is a homomorphism of
Lie algebras.

ii. The Hermitian structure on H = Γ(L) is induced by the Hermitian structure on the fibers of L→M ,
and by the Liouville measure 1

n!ω
n. Explicitly, we define

(ψ, φ)H =

∫
M

〈ψ, φ〉L eω

for ψ, φ ∈ H. The space of infinitesimal unitary transformations u(H) consists of those endomorphisms
of H which generate ( , )H-preserving transformations of H.

iii. To say that the representation Q : C∞(M) → u(H) is faithful means that Qf is the zero operator on
H if and only if f is the zero function on M .
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iv. The Hamiltonian lifting property (∗) may be understood as follows. The Hamiltonian vector field
Xf ∈ X(M) is a derivation on C∞(M). That is, Xf (sh) = (Xfs)h+ s(Xfh) for all s, h ∈ C∞(M). If
we were to extend the domain of Xf to include H, then we must have Xf (sψ) = (Xfs)ψ+ s(Xfψ) for
all s ∈ C∞(M) and ψ ∈ H. The operator Qf is precisely such an extension.

v. The first-order condition ensures that the operator Qf depends on only the first- and zeroth-order
behavior of f at any given point of M .

Informally, we consider a function f ∈ C∞(M) as a classical observable, and we think of the operator Qf ∈
u(H) as the associated quantum observable. Under this interpretation, a prequantization is an assignment
f 7→ Qf of a quantum observable Qf to every classical observable f on (M,ω).

Lemma 113. If Q : C∞(M) → u(H) is a prequantization of a compact connected symplectic manifold
(M,ω), then there is a unitary connection ∇ on L→M , and a nonzero constant c ∈ R, such that

Qf = ∇Xf + icf,

for all f ∈ C∞(M).

Proof. We will show that

i. if s ∈ C∞(M) is a constant function, then Qc(ψ) = ics ψ for some c ∈ C∞(M).
ii. The operator

∇ : XH(M)×H −→ H
(Xf , ψ) 7−→ Qf − icf,

is well-defined,
iii. ∇Xf : H → H is a derivation for every f ∈ C∞(M),
iv. ∇ defines a connection on L→M ,
v. the function c ∈ C∞(M) is a nonzero constant.

i. For all s ∈ C∞(M) and ψ ∈ H, we have

Q1(sψ) = (X1s)ψ + sQhψ, by the Hamiltonian lifting property (∗),
= sQ1ψ, since X1 = 0.

It follows that the operator Q1 : H → H is tensorial. Since Q1 is also unitary, it follows that Q1 : ψ 7→
icψ for some function c ∈ C∞(M). The result follows by the linearity of Q : C∞(M)→ u(H).

ii. If f, f ′ ∈ C∞(M) satisfy Xf = Xf ′ , then f − f ′ is constant. Part i. implies that

Qf−f ′ = ic(f − f ′),

from which we obtain
Qf − icf = Qf ′ − icf ′.

iii. A direct computation yields

∇Xf (sψ) = Qf (sψ)− icf sψ

= (Xfs)ψ + sQfψ − s icf ψ, by the Hamiltonian lifting property (∗)
= (Xfs)ψ + s∇Xfψ.
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iv. If Xf vanishes at x ∈M , then df vanishes at x. Let c ∈ C∞(M) be the function with constant value
f(x). By the first-order condition on Q, it follows that Qf−cψ vanishes at x for all ψ ∈ H. Therefore,

∇Xfψ = Qf−c − ic(f − c)

vanishes at x for all ψ ∈ H. Thus, ∇ is tensorial in Xf . In particular, at any point y ∈ M , the map
ψ 7→ (∇Xfψ)(y) depends only on ψ ∈ H and on the value of Xf at y. The unitarity of ∇ follows from
that of Q.

v. Since Q : C∞(M) is a homomorphism of Lie algebras, we have

0 = Q{f,1}ψ =
[
∇Xf + icf, ic

]
ψ,

and thus
0 =

[
∇Xf , c

]
ψ =

(
∇Xf c

)
ψ

for all f ∈ C∞(M) and ψ ∈ H. Since M is connected, we deduce that c is a constant function.
If c = 0, then Qcψ = 0 for all constant functions c ∈ C∞(M), in violation of the faithfulness of
Q : C∞(M)→ u(H). We therefore conclude that c is nonzero.

Informally, Lemma 113 establishes that a quantum operator Qf : C∞(M)→ u(H) splits into a

i. horizontal part, ∇Xf , defined by means of a unitary connection ∇ on L→M ,

ii. vertical part, icf , given in terms of scalar multiplication on the fibers of L→M .

12.2 The Curvature Condition

One of the most fascinating properties of a prequantization Q : C∞(M) → u(H) is that the curvature
F∇ ∈ Ω2(M,EndL) of the associated connection ∇ is always proportional to the symplectic structure
ω ∈ Ω2(M).

Proposition 114. If Q : C∞(M) → u(H) is a prequantization of (M,ω), with Qf = ∇Xf + icf for each
f ∈ C∞(M), then the curvature of ∇ is F∇ = ic ω.

Proof. For f, h ∈ C∞(M), we obtain the following equalities of operators on H,

∇X{f,h}+ ic {f, h} = Q{f,h}

= [Qf , Qh], since Q is a homomorphism of Lie algebras,

= [∇Xf + icf,∇Xh + ich]

= [∇Xf ,∇Xh ] + 2ic {f, h}, since [∇Xf , ic h]ψ = ic {f, h}ψ for all ψ ∈ H.

Rearranging yields
−ic {f, h} = [∇Xf ,∇Xh ]−∇X{f,h} .

Using the fact that ω(Xf , Xh) = −{f, h}, on the left-hand side, and that X{f,h} = [Xf , Xh] on the right-hand
side, we conclude that

ic ω(Xf , Xh) = [∇Xf ,∇Xh ]−∇[Xf ,Xh] = F∇(Xf , Xh).
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12.3 Prequantum Line Bundles

Motivated by the preceding sections, we now introduce the usual definition of a prequantization.

Definition 115. A prequantization of a symplectic manifold (M,ω) consists of

i. a Hermitian line bundle L→M ,

ii. a unitary connection ∇ on L with curvature F∇ = ic ω, for some nonzero constant c ∈ R.

iii. the assignment

Q : C∞(M) −→ D1(L)

f 7−→ Qf ,

where
Qf = ∇Xf + ic f

and where D1(L) denotes the space of first-order differential operators on sections of L→M .

In this situation, the pair (L,∇) called a prequantum line bundle on (M,ω), and the operator

Qf = ∇Xf + ic f

is said to be the quantum operator associated to f ∈ C∞(M).

Proposition 116. A compact connected symplectic (M,ω) admits a prequantum line bundle (L,∇) only if
the cohomology class c [ω] ∈ H2(M,R) lies in the image of the inclusion H2(M, 2πZ) ↪→ H2(M,R).

Proof. This follows immediately from

i. the condition F∇ = ic ω,

ii. the fact that Chern class [F∇] of a Hermitian line bundle lies in the image of the inclusionH2(M, 2πiZ) ↪→
H2(M, iR).

In fact, the converse is also true. That is, a symplectic manifold (M,ω) admits a prequantum line bundle
if and only if c [ω] lies in the image of H2(M, 2π Z) ↪→ H2(M,R).

Remark. In physics, given an observable f ∈ C∞(M), one considers the associated quantum observable

Q̄f = −i~∇Xf + f.

In terms of our own convention, we have

Q̄f = −i~ (∇Xf + i~−1 f) = −i~Qf .

Note that the physicists’ operator Q̄f is not an element of u(H). Instead, Q̄f is a Hermitian operator on H,
while Qf is a skew-Hermitian operator on H.
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Chapter 13

Complex Manifolds

In this chapter we introduce the basic elements complex geometry. Informally, complex geometry is the
theory that arises from smooth differential geometry when the properties of complex linearity and complex
antilinearity are brought into consideration.

Smooth Manifolds C-linearity

Complex Manifolds

Our interest in complex geometry lies in the formalism of Kähler quantization, to which we will turn
in the following chapter. Briefly, the state space of this type of quantization is defined to be the space of
holomorphic sections on a Hermitian holomorphic line bundle L→M over a distinguished type of complex
manifold (M,J), called a Kähler manifold. With the exception of Kähler structures, which we introduce in
the following chapter, our present task is to explain what all these terms mean.

Key Points:

1. The space of R-linear maps V = HomR(Cn,Ck) is a C-vector space. Moreover, V splits as the direct
sum V = V 1,0 ⊕ V 0,1 of the space of C-linear maps V 1,0 and the space of C-antilinear maps V 0,1.

2. A holomorphic function f : C→ C is a smooth function such that the induced map f∗ : TwC→ Tf(w)C
is C-linear at every point w ∈ C.

3. A complex manifold is a smooth manifoldM with a holomorphic structure, that is, an atlas of coordinate
charts φi : Ui → Cn such that the transition functions φi ◦ φ−1

j are biholomorphisms.

4. The Chern connection is the unique connection on a Hermitian holomorphic vector bundle E → (M,J)
which is compatible with both the Hermitian and the holomorphic structure of E →M .

Remark. In these notes, we will take a Hermitian structure 〈 , 〉 to be C-antilinear in the first component and
C-linear in the second. In general, our conventions are similar to [12].

13.1 Linear Maps of Complex Vector Spaces

Informally, the global difference between smooth manifolds and complex manifolds, is a consequence of the
infinitesimal difference between R-linearizations and C-linearizations. The aim of this section is to describe
the
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Let V = HomR(C,C) be the space of R-linear functions from C to C, and write V 1,0 (resp. V 0,1) for
the space of C-linear (resp. C-antilinear) maps from C to C. Denote by V (resp. V 1,0, V 0,1) the space of
R-linear (resp. C-linear, C-antilinear) maps from C to C.

V R-linear

V 1,0 C-linear

V 0,1 C-antilinear

Recall that a map of complex vector spaces A : U → V is C-antilinear when

• A(u+ u′) = Au+Au′,
• A(zu) = z̄Au.

for all u, u′ ∈ U and z ∈ C.
Observe that V , V 1,0, and V 0,1 are naturally C-vector spaces. Note, for example, that if A : C → C is

C-antilinear, then iA : C→ C is C-antilinear as well.
The following key lemma shows that every R-linear function A : C → C splits uniquely as the sum

A = A− +A+ of a C-linear map A− : C→ C and a C-antilinear map A+ : C→ C.

Lemma 117. Put V = HomR(C,C). As C-vector spaces, we have V = V 1,0 ⊕ V 0,1.

Proof. We will show that

i. V = V 1,0 + V 0,1,
ii. V 1,0 ∩ V 0,1 = ∅.

i. Fix an R-linear map A : C→ C, and define A± : C→ C by

A±(z) =
1

2

[
A(z)± iA(iz)

]
, z ∈ C.

From

2A−(iz) = A(iz)− iA(i2z)

= −i2A(iz) + iA(z)

= 2iA−(z),

and

2A+(iz) = A(iz) + iA(i2z)

= −i2A(iz)− iA(z)

= −2iA+(z),

we deduce that A− is C-linear, and that A+ is C-antilinear. Since A = A− + A+, it follows that
V = V 1,0 + V 0,1.

ii. If A ∈ V 1,0 ∩ V 0,1, then
iA(z) = A(iz) = īA(z),

for all z ∈ C. Since ī = −i, it follows that A(z) = 0.
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Consider the following R-basis of V = HomR(C,C).

z :

{
1 7→ 1

i 7→ i
z̄ :

{
1 7→ 1

i 7→ −i

iz :

{
1 7→ i

i 7→ −1
iz̄ :

{
1 7→ i

i 7→ 1

Note that z : C → C is the identity map and z̄ : C → C is the identity map composed with complex
conjugation. It is conventional to represent by z both the identity map id : C→ C and an arbitrary point in
C. This may be compared with the frequent usage of x, y, t, . . . to denote the identity map id : R → R and
to label points in R.

1

i

V 1,0 (C-linear)

z

1

i

iz

i

−1

dimR = 2

dimC = 1

V 0,1 (C-antilinear)

z̄

1

−i

iz̄

i

1

dimR = 2

dimC = 1

As R-vector spaces, V is 4-dimensional and V 1,0, V 0,1 are each 2-dimensional. As C-vector spaces, V is
2-dimensional and V 1,0, V 0,1 are each 1-dimensional.

V V 1,0 V 0,1

R-basis {z, z̄, iz, iz} {z, iz} {z̄, iz̄}
C-basis {z, z̄} {z} {z̄}

Here we have focused our attention on the underlying complex vector space C. We remark that analogous
results hold for finite-dimensional complex vector spaces in the general setting.
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13.2 Holomorphic Functions

Perhaps the most characteristic feature of complex geometry is the notion of holomorphicity. Briefly, a map
is holomorphic if its linearization at any point is C-linear. Our present task is to formalize this idea and
explore some of its consequences.

Definition 118. A smooth map f : C → C is called holomorphic (resp. antiholomorphic) if the induced
map f∗ : TwC→ Tf(w)C is C-linear (resp. C-antilinear) at every point z ∈ C.

Since f is smooth, f∗ is R-linear, and thus f∗(aX) = af∗X for every real scalar a ∈ R.

C

w

XaX

a ∈ R

f

smooth

C

f(w)

f∗Xf∗aX = af∗X

Thus, f is holomorphic precisely when f∗(iX) = if∗X at every z ∈ C.

C

w

X
iX

f

holomorphic

C

f(w)

f∗X
f∗iX = if∗X

To see that this is a nontrivial condition, consider that projection map π : C→ R given by (a+ bi) 7→ a. At
0 ∈ C, the induced map π∗ : T0C→ T0C satisfies

π∗i∂x = 0 6= ∂y = iπ∗∂x.

C

0

∂x
i∂x

π

not holomorphic

C

R
π∗∂x

iπ∗∂x

0

π∗i∂x

We now incorporate the properties of C-linearity and C-antilinearity into the construction of cotangent and
exterior-algebra bundles. Put M = C.

Definition 119. We define the following C-vector bundles on M .

• The complexified cotangent bundle T ∗CM →M has fiber HomR(TwM,C) at w consisting of the R-linear
maps from TwM to C.
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• The holomorphic cotangent bundle T 1,0M →M has fiber T 1,0
w M equal to the C-linear maps from TwM

to C.

• The antiholomorphic cotangent bundle T 0,1M → M has fiber T 0,1
w M consisting of the C-antilinear

maps from TwM to C.

• The `-holomorphic, k-antiholomorphic exterior algebra bundle Λk,`M → M is the subbundle of the
exterior algebra bundle Λk+`T ∗CM with fiber Λk,`w M consisting of elements of the form

α1 ∧ . . . ∧ αk ∧ β1 ∧ . . . ∧ β` ∈ T ∗CM,

where each αi : TwC→ C is C-linear, and each βj : TwM → C is C-antilinear. We write Ωk,`(M,C) =
Γ(Λk,`) for the space of sections. Elements α ∈ Ωk,`(M,C) are called (k, `)-forms on M .

T ∗CM R-linear

T 1,0M C-linear

T 0,1M C-antilinear

Λk,`M k-linear, `-antilinear

Adapting Lemma 117, we obtain a canonical splitting T ∗CM = T 1,0M ⊕ T 0,1M . This, in turn, induces a
splitting on each space of sections,

Ωm(M,C) =
⊕

k+`=m

Ωk,`(M,C), m ≥ 0.

Suppose f : C → C is a smooth function. Adapting the discussion of the preceding section, we see that
the R-linear map (df)w : TwC→ C admits a decomposition in terms of the C-basis {dz,dz̄}.

C TwC
V (TCC)w

V 1,0 T 1,0
w C

V 0,1 T 0,1
w C

{z, z̄} {dz,dz̄}

In particular,
(df)w = df(∂z) dz + df(∂z̄) dz̄,

where {∂z, ∂z̄} is the dual basis to {dz,dz̄}. We now determine the basis {∂z, ∂z̄}.

Lemma 120. The dual basis {∂z, ∂z̄} ⊆ HomC
(
HomR(TwC,C),C

)
to {dz,dz̄} ⊆ HomR(TwC,C) is given by

∂z =
1

2
(∂x − i∂y)

and

∂z̄ =
1

2
(∂x + i∂y),

where z = x+ iy.

Proof. While this follows by a direct computation, let us show how to derive it. The defining condition of
the dual-basis element ∂z is that

dz(∂z) = 1

dz̄(∂z) = 0.
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Writing z = x+ iy, we obtain the system of equations

(dx+ idy)(∂z) = 1

(dx− idy)(∂z) = 0.

Thus,

dx(∂z) =
1

2
, dy(∂z) = − i

2
,

so that

d(ax+ by)(∂z) =
1

2
(a− ib) =

1

2
(∂x − i∂y)(ax+ by)

for any R-linear function ax+ by : C→ C (a, b ∈ C). We conclude that ∂z = 1
2 (∂x − i∂y). The derivation of

∂z̄ is similar.

As a consequence of Lemma 120, there is a natural isomorphism

HomC
(
HomR(TwC,C),C

) ∼= TwC⊗R C.

Indeed, we generally consider {∂z, ∂z̄} as a basis of TwC⊗R C, so that

df =
∂f

∂z
dz︸ ︷︷ ︸

Ω1,0

+
∂f

∂z̄
dz̄︸ ︷︷ ︸

Ω0,1

.

All the above transfers very easily to the setting of smooth maps f : Cn → C. The condition of
holomorphicity is just as we would expect.

Definition 121. A smooth map f : Cn → Ck is called holomorphic (resp. antiholomorphic) if the induced
map f∗ : TwCn → Tf(w)Ck is C-linear (resp. C-antilinear) at every point w ∈ C.

We define ∂f ∈ Ω1,0(Cn,C) and ∂̄f ∈ Ω0,1(Cn,C) to be the holomorphic and antiholomorphic parts of
df ∈ Ω1(Cn,C), respectively. This suggests the Dolbeault operators on Cn,

∂ = π1,0 ◦ d : C∞(Cn,C)→ Ω1,0(Cn,C)

and
∂̄ = π0,1 ◦ d : C∞(Cn,C)→ Ω0,1(Cn,C).

The space Cn possesses standard holomorphic coordinates {z1, . . . , zn}, with zi = xi + iyi, and antiholo-
morphic coordinates {z̄1, . . . , z̄n}, with zi = xi − iyi. When k = 1, so that f : Cn → C is a smooth C-valued
function, we have

df =
∂f

∂z1
dz1 + · · ·+ ∂f

∂zn
dzn︸ ︷︷ ︸

∂f ∈Ω1,0

+
∂f

∂z̄1
dz̄1 + · · ·+ ∂f

∂z̄n
dz̄n︸ ︷︷ ︸

∂̄f ∈Ω0,1

.

13.3 From Local to Global

We now turn our attention to global setting of complex manifolds. The construction of a complex manifold
is analogous to that of a smooth manifold. The only difference is that, given a system of coordinate charts
φi : Ui → Cn, we require the transition functions φi ◦ φ−1

j to be biholomorphic on their domains, that is,
both holomorphic and possessing a holomorphic inverse.

In these notes, we will define a complex manifold to be a smooth manifold M with additional structure.
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Definition 122. An n-dimensional complex manifold consists of a smooth manifold M with an atlas of
charts φi : Ui → Cn such that the transition maps

φi ◦ φ−1
j : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj)

are biholomorphisms. An atlas of this form is called a holomorphic structure on M .

A holomorphic structure on M endows the tangent fibers with the structure of a C-vector bundle, in
such a way that each coordinate chart φ : U → Cn is a biholomorphism onto its image. We define the
complex structure J ∈ Γ(EndTM) to be the section of the endomorphism bundle of TM which corresponds
to multiplication by i under any coordinate chart φ : U → Cn.

M

U ′

U

x

X
JX φ

φ′

Cn

φ′(x)

φ′∗X
iφ′∗X φ(x)

φ∗X

iφ∗XU

U ′

Definition 123. A smooth function f : M → C is called holomorphic if the induced map f∗ : TxM → Tf(x)C
(equivalently, the differential dfx : TxM → C) is C-linear for all x ∈M .

(M,J)

x

X
JX

f

holomorphic

C

f(x)

f∗X
f∗JX = if∗X

More generally, a smooth function f : (M,J)→ (M ′, J ′) is called holomorphic if dφx : TxM → Tφ(x)M
′

is C-linear at every x ∈M .
All the constructions on M which are obtained by introducing a holomorphic structure are straightforward

generalizations of the model Cn setting. Indeed, Definition 119 extends to an arbitrary manifold M without
any modification at all. Let us single out one important construction in particular.

Definition 124. We define the Dolbeault operators ∂ and ∂̄ to be the projection of d : C∞(M,C) →
Ω1(M,C) onto the holomorphic and antiholomorphic subbundles, respectively. That is,

∂ = π1,0 ◦ d : C∞(M,C)→ Ω1,0(M,C)

and
∂̄ = π0,1 ◦ d : C∞(M,C)→ Ω0,1(M,C).

In addition, we write XC(M) = Γ(TMC) for the space of sections of the complexified tangent bundle
TMC.
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13.4 Holomorphic Vector Bundles

The theory of holomorphic vector bundles is central in the formalism of Kähler quantization, which we
will consider in the next chapter. In particular, we will require our prequantum line bundle L → (M,ω)
to be holomorphic. In this section, we introduce the basic elements of the general theory of holomorphic
vector bundles. Our broad aim is to show that every holomorphic vector bundle possesses a distinguished
connection ∇ known as the Chern connection.

Definition 125. A holomorphic vector bundle on (M,J) is a C-vector bundle E →M such that

i. the total space E is a complex manifold,

ii. the map projection π : E →M is holomorphic,

iii. the local trivializations φ : π−1(U)→ U × Ck are holomorphic.

E
µ−1(U)

Ck

φ

π

U
(M,J)

Definition 126. The holomorphic structure on a holomorphic vector bundle E → (M,J) is defined to be
the map

∂̄E : Γ(E)→ Ω1(M,E)

given by

∂̄E
∑
i

fiσi =
∑
i

(∂̄fi)σi,

where fi ∈ C∞(M) and (σi)i is a local holomorphic basis of E →M .

Lemma 127. The operator ∂̄E is well-defined.

Proof. By the conditions of a holomorphic vector bundle, the map φ′ ◦ φ−1 is holomorphic on its domain.
If, additionally, φ ◦ σ is holomorphic, then

φ′ ◦ σ = (φ′ ◦ φ−1) ◦ (φ ◦ σ)

is holomorphic as well.

E
µ−1(U)

Ck

φ

φ′

π
σ

U
(M,J)

φ′ ◦ φ−1 hol.
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Remark. Note that we cannot simply define ∂̄E to be π0,1 ◦ d, since E-valued exterior differentiation d :
Γ(E)→ Ω1(M,E) is not generally well-defined.

An element α ∈ Ω1(M,E) defines a R-linear map αx : TxM → Ex at every point x ∈M . As previously,
the C-vector space HomR(TxM,Ex) splits as the direct sum of the space of C-linear maps HomR(TxM,Ex)1,0

and the C-antilinear maps HomR(TxM,Ex)0,1. This decomposition, in turn, induces a splitting of the space
of E-valued 1-forms,

Ω1(M,E) = Ω1,0(M,E)⊕ Ω0,1(M,E).

Definition 128. A connection on E →M is an assignment

∇ : XC(M)× Γ(E) −→ Γ(E)

(Z, σ) 7−→ ∇Zσ,

which is

i. C∞(M,C)-linear in Z ∈ XC(M),

ii. C-linear in σ ∈ Γ(E),

iii. Leibniz, in the sense that
∇Z(fσ) = (Zf)σ + f∇Zσ

for all Z ∈ XC(M), f ∈ C∞(M,C), and σ ∈ Γ(E).

We write ∇1,0 and ∇0,1 for the projection of ∇ : Γ(E)→ Ω1(M,E) onto the holomorphic and antiholo-
morphic subbundles, respectively. Thus,

∇1,0 = π1,0 ◦ ∇ : Γ(E)→ Ω1,0(M,E)

and
∇1,0 = π1,0 ◦ ∇ : Γ(E)→ Ω0,1(M,E).

Just as the Levi-Civita connection is the canonical connection on the tangent bundle of a Riemann
manifold, the Chern connection is canonical in the setting of Hermitian holomorphic vector bundles.

Theorem 129. Let E → (M,J) be a Hermitian holomorphic vector bundle. There is a unique connection
∇ on E →M which is compatible with the

i. Hermitian structure, in the sense that 〈 , 〉E is parallel, so that

d〈σ, τ〉 = 〈∇σ, τ〉+ 〈σ,∇τ〉

for all sections σ, τ ∈ Γ(E),

ii. holomorphic structure, in the sense that ∇0,1 = ∂̄E.

The connection ∇ is called the Chern connection on E → (M,J).

Proof. We present the proof of [12, Theorem 4.3]. Suppose ∇ is a connection satisfying conditions i. and ii.
We will give an explicit construction of ∇. This will prove both existence and uniqueness.

Let h : Γ(E) → Γ(E∗) be the C-antilinear map induced by the Hermitian structure 〈 , 〉E . Thus, if
σ ∈ Γ(E), then hσ ∈ Γ(E∗) is defined by

hσ : τ 7→ 〈σ, τ〉.

Since h is ∇-parallel, we have
∇X(hσ) = (∇Xh)σ + h∇Xσ = h∇Xσ
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for all X ∈ X(M). We deduce that

∇iX(hσ) = i∇X(hσ), by the C-linearity of ∇,

= ih∇Xσ, using the previous identity,

= h∇−iXσ, by the C-antilinearity of h.

It follows that
∇Z(hσ) = h∇Z̄σ,

for all Z ∈ XC(M), so that
∇Z̄σ = h−1∇Z(hσ).

Invoking the fact that Z ∈ X1,0(M) implies that Z̄ ∈ X0,1(M), we obtain

∇1,0 = h−1(∇E
∗
)0,1h = h−1∂̄E∗h.

Therefore,
∇ = ∇0,1 +∇1,0 = ∂̄E + h−1∂̄E∗h.

100



Chapter 14

Kähler Quantization

Kähler quantization is the natural unification of prequantization and complex geometry.

Prequantization Complex Geometry

Kähler Quantization

A Kähler manifold (M,ω, J) is both a symplectic manifold (M,ω) and a complex manifold (M,J) in a
compatible manner, which we make precise later on. The Kähler quantization of (M,ω, J) invokes both of
these structures in an essential way. Briefly, it consists of a

• quantum state space comprising the space of holomorphic sections H = Γhol(L) of a prequantum
line bundle (L,∇) → (M,ω, J), where we introduce the condition that ∇ is the Chern connection on
L→M ,

• family of quantum operators Qf = ∇Xf +2πi, subject to the constraint that Xf ∈ X(M) preserves
the complex structure J , and representing infinitesimal transformations of the Hilbert space H lifting
the classical infinitesimal symmetries Xf of (M,ω, J).

The construction of the quantum state space H = Γhol(L) and the quantum operators Qf ∈ EndH
fit into a broader notion of quantization: namely, quantization with respect to a polarization. Informally,
a polarization is a method for distinguishing one degree of freedom ∂x on (M,ω) from every conjugate
pair {∂x, ∂y}. This finds its original motivation in physics, where the momentum directions ∂pi on the
momentum phase space (T ∗Q,

∑
i dqi∧dpi) are traditionally distinguished in each position–momentum pair

{∂qi , ∂pi}i. The quantum state space is taken to consist of those prequantum states which do not vary in
the distinguished, polarized directions.

From this perspective, Kähler quantization distinguishes the antiholomorphic directions ∂
∂z̄i

from each

conjugate pair { ∂
∂zi
, ∂
∂z̄i
}i. With respect to the Chern connection ∇, the sections of L → M which are

covariantly constant in the antiholomorphic directions are precisely the holomorphic sections of L→M .

Key Points:

1. The framework of polarizations is motivated by physics, where it represents a formal distinction made
between position and momentum degrees of freedom in the classical momentum phase space T ∗Q.

2. A section σ of a prequantum line bundle (L,∇) → (M,ω) is said to be polarized with respect to a
polarization P ⊆ TMC if σ is covariantly constant along P , that is, ∇Pσ = 0. The quantization of
(M,ω) with respect to P consists of a state space of P -polarized sections ΓP (L), and a family quantum
operators Qf : ΓP (L)→ ΓP (L), for admissible f ∈ C∞(M).
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3. A Kähler manifold (M,ω, J) possesses mutually compatible symplectic, complex, and Riemannian
structures.

4. The Kähler quantization of (M,ω, J) consists of a quantum state space of holomorphic sections of a
prequantum line bundle (L,∇) → M , and a family of quantum operators Qf = ∇Xf + 2πi such that
Xf preserves the complex structure J .

Remark. All distributions are assumed to be constant-rank. Note that we frequently extend the symplectic
form ω ∈ Ω2(M) and complex structure J ∈ Γ(EndTM) to the complexified tangent bundle TMC by C-
linearity. Also note that our definition of Kähler quantization may be applied to a broader class of complex
symplectic manifolds (M,ω, J): namely, those for which ω(JX, JY ) = ω(X,Y ) for all X,Y ∈ TxM , but for
which it is not necessarily the case that g(X,Y ) = ω(X,JY ) is positive-definite.

14.1 Polarizations

In the physical setting, a meaningful distinction is made between position and momentum. One consequence
of the Heisenberg uncertainty principle is that a quantum state may be treated to be a function of position,
or as a function of momentum, but not both simultaneously. Thus, if the position of a quantum state is
precisely determined, then its momentum is entirely unknown.

If a quantum state is treated as a function of position, then we may model this state as a section of
a Hermitian line bundle over a classical configuration manifold Q. Note that Q is the leaf space of the
Lagrangian foliation F with leaves Fp = T ∗pQ the cotangent fibers T ∗Q→ Q.

T ∗Q

Fp = T ∗qQ

p

Q
q

In fact, we may take quantum states to be defined on the leaf space of any Lagrangian foliation of the
momentum phase space T ∗Q. This motivates the following definition.

Definition 130. A real polarization of (M,ω) is a foliation F of M by Lagrangian submanifolds Fx ⊆ M
(x ∈M).

Fx

M

x

As an intermediate step in the generalization of Definition 130 to the setting of complex manifolds,
observe that the tangent bundle TF ⊆ TM is an integrable Lagrangian distribution on M .

Definition 131. A complex polarization of (M,ω) is an integrable Lagrangian distribution of TMC.

Recall that a distribution P ⊆ TMC is integrable if [P, P ] ⊆ P , and Lagrangian if Pωx = Px for every
point x ∈ M . We will write XP (M) for the space of sections of P ⊆ TMC. Note that we implicitly extend
the symplectic structure ωx : TxM × TxM → R to a bilinear form ωx : TxM

C × TxMC → C by C-linearity.
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Definition 132. Let (L,∇) → (M,ω) be a prequantum line bundle, and let P ⊆ TMC be a complex
polarization of (M,ω). A section σ ∈ Γ(L) is said to be polarized with respect to P if ∇Zσ = 0 for all
Z ∈ P .

That is, σ is polarized with respect to P if σ is covariantly constant along P . Informally, we might consider
σ as a function of the leaf space M/P . We will denote the space of P -polarized sections by ΓP (L) ⊆ Γ(L).

There are two distinguished classes of complex polarizations:

• P = P̄ , in which case P is called a real polarization,

• P ∩ P̄ = ∅, in which case P is said to be a Kähler polarization.

Remark. If P ⊆ TMC is a real complex polarization, then P = TFC is the complexified tangent bundle of
a real polarization in the sense of Definition 130.

Definition 133. The quantization of a symplectic manifold (M,ω) consists of

i. a prequantum line bundle (L,∇)→M ,

ii. the space of sections H = ΓP (L) of L→M which polarized with respect to P ,

iii. the operators
Qf = ∇Zf + 2πif

on ΓP (L), subject to the condition that Xf preserves P .

Remark. In terms of Definition 115, we are taking c = 2π. Another common convention is to take c = 1.

We now show that the distinguished operators Qf , with LXfP = 0, act infinitesimally on the space of
polarized sections ΓP (L).

Proposition 134. If f ∈ C∞(M) preserves P , then Qf = ∇Xf + 2πi preserves the space of P -polarized
sections ΓP (L).

Proof. Given any Z ∈ XP (M), we have

∇ZQfσ = ∇Z∇Xfσ + 2πi∇Zfσ, as Qf = ∇Xf + 2πif ,

= F∇(Z,Xf )σ +∇Xf∇Zσ +∇[Z,Xf ]σ

+ 2πi (Zf)σ + 2πif ∇Zσ, since F∇(Z,Xf ) = [∇Z ,∇Xf ]−∇[Z,Xf ],

= 2πiω(Z,Xf )σ + 2πiω(Xf , Z)σ, since F∇ = 2πiω,

= 0.

It follows thatQfσ ∈ ΓP (L), and consequently thatQf generates a 1-parameter transformation of ΓP (L).

14.2 Kähler Manifolds

We now consider a class of manifolds which exhibit a compatible complex and symplectic structure.

Definition 135. A Kähler structure on a complex manifold (M,J) is a symplectic form ω such that

i. ω(JX, JY ) = ω(X,Y ),

ii. g(X,Y ) = ω(X, JY ) defines a Riemannian metric on M ,

for all X,Y ∈ TxM , x ∈M . In this case, we say that (M,ω, J) is a Kähler manifold.

Remark. Condition i. asserts that ω is preserved by J .
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Thus, a Kähler manifold (M,ω, J) is simultaneously a

i. symplectic manifold (M,ω),

ii. complex manifold (M,J),

iii. Riemannian manifold (M, g).

In fact, by the pointwise compatibility condition for Kähler manifolds,

g(X,Y ) = ω(X,JY ), X, Y ∈ TxM,

any two of these structures determines the third.

Lemma 136. We have T 0,1M = T 1,0M .

Proof. For each Z ∈ T 1,0M , we obtain

JZ̄ = JZ, since J is C-linear,

= −iZ, as JZ = −iZ,

= iZ̄.

It follows that X̄ ∈ T 1,0M , and consequently that T 0,1M ⊆ T 1,0M . This inclusion is an equality since
·̄ : TMC → TMC is a linear automorphism on fibers and since dimT 0,1M = dimT 1,0M .

Remark. A similar argument shows that T 1,0M = T 0,1M .

Proposition 137. The antiholomorphic tangent bundle T 0,1M ⊆ TMC is a Kähler polarization of (M,ω).

Proof. We will show that

i. T 0,1M is integrable,
ii. T 0,1M is Lagrangian.

iii. T 0,1M ∩ T 0,1M = ∅.

We prove each statement in turn.

i. For Z,W ∈ Γ(T 0,1M), we have

NJ(Z,W ) = [Z,W ] + J [JZ,W ] + J [Z, JW ]− [JZ, JW ]

= [Z,W ] + J [−iZ,W ] + J [Z,−iW ] +−[−iZ,−iW ], as JZ = −iZ,

= 2[Z,W ]− 2iJ [Z,W ]

Since NJ = 0, we rearrange the above equality to obtain

J [Z,W ] = −i[Z,W ].

Consequently, [Z,W ] ∈ X0,1(M), and thus T 0,1M is integrable.

ii. Given Z,W ∈ T 0,1
x M , we have

ω(Z,W ) = ω(JZ, JW ), by Definition 135,

= ω(−iZ,−iW ), since JZ = iW ,

= −ω(Z,W ).

It follows that ω(Z,W ) = 0, so that T 0,1M is isotropic. Since dimT 0,1M = 1
2 dimTMC, we conclude

that T 0,1M is Lagrangian.
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iii. By Lemma 136, we must show that T 0,1M ∩ T 1,0M = ∅. Fix Z ∈ TMC with Z ∈ T 1,0M ∩ T 0,1M .
From

iZ = JZ = −iZ

we obtain Z = 0. Consequently, T 1,0M ∩ T 0,1M = ∅.

Note that proof of Proposition 137 uses only the fact that ω(JX, JY ) = ω(X,Y ) for all X,Y ∈ TxM .

Remark. A nearly identical argument shows that the holomorphic tangent bundle T 1,0M ⊆ TMC is also a
Kähler polarization of (M,ω).

Lemma 138. Let (L,∇) → M be a prequantum line bundle on a Kähler manifold (M,ω, J). If ∇ is the
Chern connection on L→M , then σ ∈ Γ(L) is polarized with respect to T 0,1M ⊆ TMC precisely when σ is
holomorphic.

Proof. We have

∂̄σ = 0 ⇐⇒ π0,1∇σ = 0, as ∇ is the Chern connection,

⇐⇒ ∀Z ∈ T 0,1M : ∇Zσ = 0.

14.3 Quantization

We are now ready to bring everything together. Fix a Kähler manifold (M,ω, J).

Definition 139. The Kähler quantization of (M,ω, J) consists of

i. a prequantum line bundle (L,∇)→M , such that ∇ the Chern connection,

ii. the space of holomorphic sections H = Γhol(L) of L→M ,

iii. the operators
Qf = ∇Zf + 2πif

on Γhol(L), subject to the condition that LXfJ = 0.

By Proposition 137 and Lemma 138, the Kähler quantization of (M,ω, J) is a quantization, in the sense
of Definition 133, of (M,ω) with respect to the polarization T 0,1M . In particular, note that Γhol(L) =
ΓT 0,1M (L).

Our present order of business is to confirm that the quantum operators Qf do indeed act infinitesimally
on the space of quantum states Γhol(L).

Proposition 140. If f ∈ C∞(M) satisfies LXfJ = 0, then Qf = ∇Xf + 2πi preserves the space of
holomorphic sections Γhol(L).

Proof. Let Z ∈ X0,1(M) be arbitrary, and observe that

J [Xf , Z] = [Xf , JZ]− (LXfJ)︸ ︷︷ ︸
0

(Z) = −i [Xf , Z].

It follows that [Xf , Z] ∈ T 0,1M , so that Xf preserves T 0,1M . We conclude by Proposition 134 that Qf
preserves Γhol(L) = ΓT 0,1M (L).
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