
Research Statement

Casey Blacker

I am interested in (multi)symplectic manifolds, Hamiltonian actions, and the geometry of moment
maps. More recently, I have also become interested in higher quantization, (higher) stacks and
gerbes, and higher geometry more generally. Broadly speaking, I am drawn towards mathematics
that arises from physics.

My current research goals are to:

• investigate interactions between reduction and prequantization schemes in multisymplectic
geometry,

• explore potential applications of this to quantum field theory and representation theory, and

• formulate and settle an extension of the [Q,R] = 0 “quantization commutes with reduction”
theorem to the multisymplectic setting.

I have also been interested in interactions between information-theoretic measures of entanglement
and geometric quantization, and in infinitesimal variations of generalized complex reduced spaces.

In previous work, I have:

• developed a theory of polysymplectic geometry for the study of moduli spaces of flat connec-
tions [12, 14],

• computed the symplectic volume of special classes of these spaces [12],

• introduced an approach to polysymplectic quantization and proved that the Guillemin–Sternberg
[Q,R] = 0 theorem does not extend to the polysymplectic setting [14],

• formulated and proved a multisymplectic reduction theorem, as well as an associated multi-
symplectic Duistermaat–Heckman theorem [15], and

• in collaboration with Antonio Miti and Leonid Ryvkin, proposed a reduction scheme for the
L∞-algebra of observables associated to a premultisymplectic manifold, which also yields a
new symplectic reduction scheme for the Poisson algebra of smooth functions on a symplectic
manifold [16].

In the remainder of this document, I will first describe my active research interests and then
survey my previous work.

1 Current Interests: higher quantization and reduction

By higher quantization I have in mind the higher gerbe quantization of multisymplectic manifolds,
following the framework of Fiorenza–Rogers–Schreiber [29] as well as the earlier quantization scheme
of Rogers [57]. These procedures are naturally approached as analogues of symplectic geometric
quantization in the general n-plectic and 2-plectic settings, respectively.

See Section 2 for relevant background on n-plectic geometry.
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1.1 Background on symplectic quantization

In the setting of symplectic manifolds, quantization refers to an assignment to each symplectic
manifold (M,ω) with certain additional data, of a Hilbert space H. When (M,ω) is equipped with
a compatible G-action, the space H is a linear representation of G.

There are at least two motivating perspectives on symplectic quantization:

1. As a model for physical systems. The Hilbert space of quantum states H represents a physical
quantum system and the symplectic manifold (M,ω) encodes the associated classical space[9].
A distinguished Hamiltonian function h : M ! R induces a quantum evolution of H in line
with the Schrödinger equation, and ω yields a measure ‖σ‖2 1

n!ω
n ∈ Ωtop(M) according to

which a measurement of the quantum state σ ∈ H outputs a classical state p ∈M .

Additional data is needed to determine the space H, the classical space (M,ω) is insufficient.
A polarization, i.e. an local identification of M as a generalized momentum phase space, must
be introduced. This is not only – and certainly not the most popular – approach to modeling
physical quantization.

2. As an approach to representation theory. According to this view, a symplectic manifold (M,ω)
is heuristically the classical counterpart to a Hilbert space of associated quantum states H, and
a Hamiltonian G-action on (M,ω) realizes H as a unitary G-representation. This approach
is developed in the orbit method [37], which investigates certain irreducible representations H
arising as the quantization of the natural action of G on the canonically-symplectic coadjoint
orbits (O, ωcan.) of g∗.

Each perspective is interesting and invites further investigation in the multisymplectic setting.

1.2 Stacks and gerbes

Informally, a stack is a higher fiber bundle and a gerbe with band G is a higher G-principal bun-
dle. There are multiple distinct constructions that realize this idea. We can identify three broad
approaches:

1. Sheaf-like constructions that associate categories to the open neighborhoods of a smooth man-
ifold M in a locally-sensitive manner [19, 45], analogous to the way in which sheaves associate
sets (i.e. 0-categories) to the open neighborhoods of M . This approach is explicitly categorical,
and invokes the theory of 2-categories. This is conceptually similar to constructions in terms
of fibrations over the category of smooth manifolds [10].

2. Combinatorial constructions, which define a gerbe on M in terms of local “lower” data taking
the form of admissible local principal bundles and suitably compatible gluing maps [20, 32].

3. Bundle-like constructions that associate pointwise data to M , specifically the fibers of a sur-
jective submersion X ! M with a bundle defined on the total space of the fiber product
X [2] ! M , together with additional data and conditions that are themselves pointwise in
terms of M [46, 47].

The the term “higher” may be taken to reference higher category theory: Where a 0-stack (i.e.
a bundle) is characterized in terms of 1-categorical limits of admissible local data on M , a 1-stack
satisfies a condition of 2-categorical limits.

The transition from bundles to stacks forms the first step in a hierarchy of constructions given in
the language of n-categories, as exposited, for example, by Nikolaus–Schreiber–Stevenson [50, 51].
This, in turn, is grounded in the work of Lurie [41, 40] on developing the quasicategory approach
to higher category theory due to Joyal [35], which is itself a development of the restricted Kan
complexes of Boardman–Vogt [18].
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1.3 Research goals

Regarding higher quantization, my guiding objectives are to:

• investigate interactions between reduction and prequantization schemes in multisymplectic
geometry,

• explore potential applications of this to quantum field theory and representation theory, and

• formulate and settle an extension of the [Q,R] = 0 “quantization commutes with reduction”
theorem to the multisymplectic setting.

My intent is to follow the approach of Fiorenza–Rogers–Schreiber [28] and Rogers [57]. The
relevant constructions are:

Definition ([28]). The cochain complex of sheaves

C∞(−;U(1))
dlog
−−−! Ω1(−)

d
−! Ω2(−)

d
−! · · ·Ωn(−)! Ωn+1(−)! · · · ,

with C∞(−;U(1)) in degree 0, will be called the Deligne complex and will be denoted by the
symbol U(1)Del.

Definition ([28]). The n-stack of principal U(1)-n-bundles (or (n−1)-bundle gerbes) with connec-

tion BnU(1)conn is the n-stack presented via the Dold–Kan construction to the presheaf U(1)≤nDel[n]
regarded as a presheaf of chain complexes concentrated in nonnegative degree.

Definition ([28]). Let (M,ω) be a pre-n-plectic manifold. A prequantization of (M,ω) is a lift

M Ωn+1(−)cl

BnU(1)conn

ω

F
∇

The key observation here is that this prequantization construction is locally defined in terms of
geometric data for which my collaborators and I have recently introduced a very general reduction
scheme [16] (see Subsection 2.3).

In the presence of a subset N ⊆ M and compatible action g y M , the definition of a reduced
prequantization suggests itself as:

Definition. The reduced Deligne complex is

C∞(−;U(1))N
d
−! Ω1(−)N

d
−! Ω2(−)N

d
−! · · ·Ωn(−)N ! Ωn+1(−)N ! · · ·

and the reduced n-stack of principal U(1)-n-bundles with connection BnU(1)conn,N is the n-stack

associated to U(1)≤nDel[n]N by the Dold–Kan correspondence.

Definition. We say that ∇ : M ! BnU(1) is a reducible prequantization if the associated Čech–
Deligne cocycle consists of reducible forms.

Definition. The reduced prequantization ∇N : MN ! BnU(1)N is the image of ∇ in BnU(1)N .

Here (MN , ωN ) denotes the multisymplectic reduction of g y (M,ω) along N , as defined in my
collaboration [16], modeled on the procedure proposed in my previous work [15] (see Subsection 2.2).
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Intriguingly, Fiorenza–Rogers–Schreiber also establish that the L∞-algebra of observables Ham∞(M,ω)
is suitably isomorphic to space of infinitesimal quantormorphisms of any quantization of the mul-
tisymplectic manifold (M,ω) [28]. In light of this, it would be interesting to clarify the relation
between our recent L∞-reduction procedure and the quantum reduction procedure proposed above.

2 Multisymplectic geometry

The main construction is the following.

Definition. An n-plectic manifold is a smooth manifold M equipped with a closed nondegenerate
form ω ∈ Ωn+1(M).

For example, a 1-plectic manifold is precisely a symplectic manifold.
Multisymplectic geometry arises naturally in physics. The space of classical fields in a given field

theory, realized as the sections of a particular configuration bundle E ! Σn, yields an associated
multimomentum bundle Λn1E ! E of 1-horizontal n-forms on the total space E. The total space Λn1E
possesses a canonical multisymplectic structure ω generalizing the canonical symplectic structure on
T ∗Q of symplectic geometry. Accordingly, we obtain a correspondence:

infinite-dimensional spaces of fields
transgression
 −−−−−−−−−−−−−−−−−−−−!

de-transgression
finite-dimensional multimomentum bundles.

A “translation dictionary” is given by:

physics mathematics

classical fields multisymplectic manifolds
quantum-field symmetries L∞-algebras of observables

quantum fields higher quantizations

In addition to potential applications to classical field theory and field quantization, multisym-
plectic geometry is interesting in its own right. In comparison with symplectic geometry, the general
multisymplectic stetting is extremely flexible and identifying underlying structure and patterns is
more difficult.

2.1 Background on symplectic reduction

Informally, a reduction scheme is a systematic procedure that takes a geometric structure X equipped
with symmetries, and returns a reduced structure Xred. which is in some sense “smaller” than X. The
prototypical example of reduction is the Marsden–Weinstein–Meyer symplectic reduction theorem,
as follows.

Theorem (Marsden–Weinstein ’74, Meyer ’73). Let G y (M,ω) be a Hamiltonian action and let
µ : M ! g∗ be a moment map. If µ−1(λ) ⊆M is smooth and Gλ y µ−1(λ) is free and proper, then
there is a unique symplectic form ωλ ∈ Ω2(Mλ) such that π∗ωλ = i∗ω.

Devising a reduction procedure requires a good understanding of both the nature of symmetries
and of how these symmetries can be expressed in terms of the underlying geometric structure. In
the symplectic setting, this is realized in terms of a moment map µ : M ! g∗, which expresses
the infinitesimal symmetries G y (M,ω) in terms of the Poisson algebra of classical observables
C∞(M,ω).
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2.2 Multisymplectic reduction

The question of multisymplectic reduction has been open and of interest for at least several decades.

Reduction theory is by no means completed. . . . Only a few instances and examples of
multisymplectic reduction are really well understood. . . so one can expect to see more
activity in this area as well.

— J. Marsden and A. Weinstein, 2001, Comments on the history, theory, and appli-
cations of symplectic reduction

One of the most interesting problems in multisymplectic geometry is how to extend the
well-known Marsden–Weinstein reduction scheme for symplectic manifolds to the case
of multisymplectic structures.

— M. de León, 2018, Review of “Remarks on multisymplectic reduction” by Echev-
erŕıa-Enŕıquez, Muñoz-Lecanda and Román-Roy

I propose such a reduction scheme in [15]. I define a moment map for an n-plectic action
Gy (M,ω) to be a particular form µ ∈ Ωn−1(M, g∗), a reduction parameter to be any closed form
φ ∈ Ωn−1(M, g∗), the φ-level set to be the equalizer

µ−1(φ) = {p ∈M |µp = φp}

and the reduced space to be the quotient Mφ = µ−1(φ)/Gφ by the φ-isotropy subgroup Gφ ⊆ G.
The main result is:

Theorem 1 ([15]). If µ−1(φ) ⊆ M is smooth and Gφ y µ−1(φ) is free and proper, then there is a
unique closed (k + 1)-form ωφ on Mφ such that π∗ωφ = i∗ω.

In addition to this, under restrictive conditions I prove a formula on the variation of the coho-
mology class of the reduced form ωφ, modeled on the classical symplectic formula of Duistermaat–
Heckman [26].

2.3 L∞-reduction

Śniatycki and Weinstein have defined an algebraic reduction in the context of group
actions and moment maps which is guaranteed to produce a reduced Poisson algebra
but not necessarily a reduced space of states.

— J. Stasheff, 1997, Homological reduction of constrained Poisson algebras

Background

Given a symplectic Hamiltonian system (M,ω,G, µ) and a dual Lie algebra element λ ∈ g∗, the
classic Marsden–Weinstein symplectic reduction theorem provides a reduced symplectic manifold
(Mλ, ωλ) when µ−1(λ) ⊆ M is smooth and when Gλ y µ−1(λ) is free and proper. This yields a
reduction map

rλ : C∞(M)G ! C∞(Mλ)

from the Poisson subalgebra of G-invariant functions – i.e. classical observables commuting with the
components of the moment map µ : M ! g∗ – on (M,ω) to the Poisson algebra of smooth functions
on the reduced space (Mλ, ωλ). In this case, we could say that C∞(Mλ) is the reduction of the
Poisson algebra of classical observables on (M,ω).
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It is an interesting fact that, even when the conditions on (M,ω,G, µ) and λ ∈ g∗ are not
met and the reduced space (Mλ, ωλ) does not exists, it is sometimes still possible to define a reduced
Poisson algebra of observables C∞(M,ω)λ that generalizes the construction of C∞(Mλ, ωλ). Various
definitions for this reduced space have been propose, including Dirac [25], Śniatycki–Weinstein [61],
Arms–Gotay–Jennings [4], and Arms–Cushman–Gotay [3] reduction.

In contrast with the symplectic setting, an n-plectic manifold (M,ω) does not generally pos-
sess an associated Poisson algebra of observables. Rather, it carries an L∞-algebra of observables
Ham∞(M,ω) ∼= Ω≤n−1(M). An L∞-algebra is the higher instantiation of a Lie algebra. It may be
realized as a graded algebra ⊕i∈NLi equipped with a family of alternating k-ary brackets {lk}k∈N
satisfying a compatibility condition that generalizes the Jacobi property of a Lie bracket [ , ].

As with the Poisson algebra C∞(M,ω) in the symplectic case, the L∞-algebra of observables
Ham∞(M,ω) is equivalent to the space of infinitesimal automorphisms of any prequantization of
(M,ω). Thus, as discussed in Subsection 1.3, a reduction scheme for Ham∞(M,ω) is a natural
precursor to a full reduction scheme for multisymplectic (pre)quantizations.

From Poisson to L∞-reduction

As a symplectic manifold yields an associated Poisson algebra of classical observables C∞(M,ω), so
a multisymplectic manifold carries an associated L∞-algebra of observables Ham∞(M,ω) [58].

In [16] my collaborators and I propose a general reduction procedure for the L∞-algebra of
observables Ham∞(M,ω) associated to a multisymplectic manifold (M,ω), in such a way that reflects
the reduction of the Poisson algebra of observables induced by the Marsden–Weinstein symplectic
reduction.

Our construction is defined to be the quotient of the L∞-subalgebra Ham∞(M,ω)[N ] of reducible
observables by the L∞-ideal IHam∞(N) of observables that vanish along N .

Definition 3.21 ([16]). The reduction of Ham∞(M,ω) with respect to g y (N ⊆ M) is the
L∞-algebra

Ham∞(M,ω)N =
Ham∞(M,ω)[N ]

IHam∞(N)
.

There are two salient features:

1. There are no smooth or topological condition imposed on the subset N ⊆ M . For example,
we may even take N = Q and M = R.

2. The reduced L∞-algebra of observables Ham∞(M,ω)N is not guaranteed to be of the form
L∞(MN , ωN ) for any premultisymplectic manifold (MN , ωN ).

The first main result of our paper is that the quotient Ham∞(M,ω)N does indeed inherit an
L∞-algebra structure from Ham∞(M,ω). The second main result is that this algebraic reduction
naturally embeds in the L∞-algebra of observables Ham∞(MN , ωN ) associated to the geometric
reduced space (MN , ωN ), whenever the smooth premultisymplectic manifold (MN , ωN ) exists.

Theorem 3.38. The geometric reduction map

rN : Ham∞(M,ω)[N ] ! Ham∞(MN , ωN )

(v, α) 7! (vN , αN )

α 7! αN

is a strict L∞-morphism with kernel IHam∞(N). In particular, there is a natural inclusion of
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L∞-algebras

Ham∞(M,ω)N =
Ham∞(M,ω)[N ]

IHam∞(N)

r̄N
↪−−! Ham∞(MN , ωN ).

A further interesting feature regarding our reduction scheme is that, when (M,ω) is symplectic,
the L∞-reduced space C∞(M,ω)N is a Poisson algebra. Thus, we introduce a new symplectic
reduction scheme for the Poisson algebra C∞(M,ω).

3 Polysymplectic geometry

While attempting to understand the moduli space of flat connections over a general manifold, I
arrived at a theory of vector-valued symplectic geometry [13]. This independently-developed theory
turns out to be equivalent in the finite dimensional setting to an earlier polysymplectic formalism of
Günther [31], the k-symplectic formalism of Awane [6], the generalized symplectic geometry of Norris
[52], and the theory of p-almost cotangent structures of de León, Méndez, and Salgado [24]. Most
of these formalisms were designed to provide a new geometric framework for physical field theories.

Polysymplectic geometry can also be viewed as a unifying framework for Hamiltonian and admis-
sible bi-Hamiltonian systems (M, { , }0, { , }1). A bi-Hamiltonian system is a distinguished family of
Poisson structures s{ , }0 + t{ , }1, s, t ∈ R, with applications to the study of integrable systems [27].

A similarity may further be drawn between polysymplectic manifolds and bi-Hermitian manifolds
(M, g, I+, I−) by considering the 2-forms ω± = g( · , I±· ). These form a special case of generalized
complex manifolds[30], which were introduced by Hitchin [33] and arise in the study of mirror
symmetry [11], and interact with twistor theory [38, 55, 59], which was originally developed by
Penrose as an approach to quantum gravity [53].

3.1 V -symplectic manifolds

Fix a manifold M and vector space V .

Definition ([13]). A V -symplectic structure on M is a closed V -valued 2-form ω ∈ Ω2(M,V ) which
is nondegenerate in the sense that ιXω = 0 only if X = 0.

Examples include:

1. The semisimple Lie group G with g-symplectic structure −dθ, and θ ∈ Ω1(G, g) is the Maurer-
Cartan form on G. The model space is g, with linear g-symplectic structure given by the Lie
bracket.

2. The phase space Hom(TQ, V ) with V -symplectic structure −dθ, and θ is given by θφ(X) =
φ(π∗X). The model space is U ⊕Hom(U, V ), with linear V -symplectic structure ω(u+φ, u′+
φ′) = φ′(u)− φ(u′), where U is the model space of Q.

It is interesting to observe that certain longstanding open problems in symplectic geometry are
quickly settled in the polysymplectic case, for example, the following.

Arnold Conjecture (See [44], Chapter 11). A symplectomorphism that is generated by a time-
dependent Hamiltonian vector field should have at least as many fixed points as a Morse function on
the manifold must have critical points.

Theorem 3.21 ([13]). The Arnold conjecture fails in the V -symplectic setting.

A counterexample is provided by left multiplication on the g-symplectic manifold (G,−dθ). In
my thesis [12], I obtained the following reduction theorem.
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V -Symplectic Reduction Theorem. Let (M,ω,G, µ) be a V -Hamiltonian systems and fix α ∈
Hom(g, V ). If the stabilizer subgroup Gα of α under the coadjoint action is connected, and if Mα =
µ−1(α)/Gα is smooth, then there is a unique V -valued 2-form ωα ∈ Ω2(Mα, V ) such that

π∗ωα = i∗ω,

where i : µ−1(α) ↪! M is the inclusion and π : µ−1(α) ! Mα is the projection. The form ωα is
closed and is nondegenerate at πx if and only if gαx = gωω

x
∩ g

x
.

Unlike the symplectic case, the reduced V -valued 2-form may be degenerate. It should be noted
that this result appeared earlier in [42].

3.2 Applications to gauge theory

The aim of [13] is to exhibit the moduli space of flat connections over a manifold of arbitrary dimen-
sion as the polysymplectic reduction of the space of all connections. This extends an observation of
Atiyah and Bott [5] in the case that M is a closed orientable surface.

Theorem 4.12 ([13]). Let M be a compact manifold of dimension at least 3, G a compact matrix
Lie group, P a G-principal bundle on M with connected gauge group G, A the space of connections
on P , and k > 1

2 dimM+1 a fixed integer. Denote the the W k,2 Sobolev completion of A by Ak, and

likewise for G, g, and Ω∗, and write Ω̃2(M) and B̃2(M) for the spaces of C1 forms and coboundaries
on M , respectively. Let F : Ak ! Ω2

k−1(M, adP ) be the curvature. The function

µ : Ak ! Hom
(

g
k+1

, Ω̃2(M)/B̃2(M)
)
,

given by
µ(A)(f) = 〈FA ∧ f〉Ω̃2/B̃2 , f ∈ Ω0

k+1(M, adP ) ∼= g
k+1

,

is a moment map for the action of Gk+1 on Ak with respect to the polysymplectic structure ω ∈
Ω2
(
A, Ω̃2(M)/B̃2(M)

)
, defined by

ω(α, β) = 〈α ∧ β〉Ω̃2/B̃2 ,

for α, β ∈ Ω1
k(M, adP ) ∼= TAAk. The reduced space at 0 coincides with the moduli space of flat

connections Mk = F−1(0)/Gk+1 on P . On the smooth points of Mk, the reduced 2-form ω0 takes
values in the second cohomology H2(M).

A similar characterization holds for the space of generalized Ricci flat connections on a holomor-
phic vector bundle E over a complex manifold M .

Definition 4.21 ([13]). We call the connection A ∈ A(E) Ricci flat if trFA = 0.

Corollary 4.22 ([13]). Let M be a compact complex manifold and let E be a holomorphic vector
bundle over M with c1(E) = 0. The moduli space of Ricci flat connections is the polysymplectic
reduction of the space of connections Ak(E).

3.3 V -symplectic quantization

By lifting the Hamiltonian dynamics of a V -symplectic manifold (M,ω) to the space of sections
of a Hermitian vector bundle E ! M , in [14] I arrive at a natural definition of V -symplectic
prequantization. This approach, which identifies quantization as an extension of symmetries, reflects
the early work of Souriau [62] in the symplectic setting.

A comparison with the symplectic case yields,
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symplectic V -symplectic

prequantum line bundle (L,∇) prequantum vector bundle (E,∇, A)
scalar multiplication m effective unitary representation A : V ! EndE
Planck’s constant ~ > 0 weights of A
prequantum operator Qf = ∇Xf

+ i~mf Qf = ∇Xf
+Af

curvature condition F∇ = −i~ ω F∇ = −Aω

The fundamental construction is as follows.

Definition 4.1 ([14]). Let (M,ω) be a V -symplectic manifold, O ⊆ C∞H (M,V ) an algebra of
classical observables, and η an invariant measure on M . A prequantization of (M,ω,O, η) consists
of a Hermitian vector bundle E !M and a faithful first-order Lie algebra representation

Q : O ! End Γ(M,E),

which preserves the inner product on the subspace of smooth L2 sections of Γ(M,E) with respect
to η, and which extends the Hamiltonian vector fields on M in the sense that

Qf (sψ) = (Xfs)ψ + sQfψ,

for all f ∈ O, s ∈ C∞(M), and ψ ∈ Γ(E). By first-order, we mean that if df vanishes at x ∈ M
then (Qfψ)x = 0 for all ψ ∈ H.

Under the assumption that M is transitive, namely that the algebra of classical observables
generates the tangent bundle, every prequantization is realized by a prequantum vector bundle, that
is, a faithful Hermitian V -module bundle E !M with compatible unitary connection ∇ satisfying
F∇ = −ω. Subject to this constraint, the following classification theorem is obtained.

Definition 4.11 ([14]). A full lattice I ⊆ V is called a prequantum lattice for (M,ω) if [ω]H2(M,V )

lies in the image of H2(M, I) ↪! H2(M,V ), that is, if the pairing 〈ω, ·〉 : H2(M,Z)! V takes values
in I.

Theorem 4.13 ([14]). If (M,ω) is transitive and connected, then there is a natural correspondence
between equivalence classes of minimal rank prequantizations of (M,ω) and bases of prequantum
lattices I ⊆ V for (M,ω).

The main result of [14] is that the Guillemin–Sternberg [Q,R] = 0 theorem does not extend to
the polysymplectic setting.

Theorem 5.16 ([14]). Let (E,∇, A) be a positive definite prequantum vector bundle on (M,ω, J,G, µ)
and suppose that (M0, ω0) is nonempty and V -symplectic, and inherits a complex structure J0 and
prequantum vector bundle E0. It is not generally the case that HJ(M)G ∼= HJ0(M0).

In addition to this, I define a notion of V -symplectic spinc quantization, which could in turn be
interesting to compare with [36].

4 The volume of the moduli space of flat connections

The primary aim of [12] is to compute the symplectic volume of the moduli space of flat connections
over manifolds of arbitrary dimension. While the moduli space MG(M) is smoothly equivalent to
the character variety Hom(π1(M), G)/G, the latter does not generally exhibit a natural symplectic
structure, and thus the volume cannot be obtained by means of this equivalence. When it exists,
the volume of a symplectic manifold (M2n, ω) is conventionally defined to be

volM =

∫
M

ωn

n!
.
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Up to rescaling, ωn represents the unique measure on M which is preserved by all symplectic
transformations. It may be physically motivated in light of its relation to certain canonical measures
arising in statistical mechanics. The factor 1/n! may be motivated by the observation that ωn/n! is
identified with the standard volume form on R2n by any symplectic coordinate chart.

4.1 Symplectic volume and the space of quantum states

Suppose (L,∇) is a positive prequantum line bundle over the Kähler manifold (M2n, ω). By this
we will mean that L is a positive Hermitian line bundle on M with connection ∇ and curvature
2πiω ∈ Ω2(M,C) ∼= Ω2(M,EndL). For each k > 0, the kth tensor power (Lk, k∇) is a prequantum
line bundle for the rescaled symplectic manifold (M,kω). The curvature condition ensures that Lk

is holomorphic and the Riemann-Roch formula provides that

2n∑
i=0

(−1)i dimHi(M,Lk) =

∫
M

chLk ∧ TdM.

On the left-hand side, the Kodaira vanishing theorem yields Hi(M,Lk) = 0 for i > 0 and k � 0.
On the right-hand side, we have chLk = (kω)n/n! + O(kn−1) and TdM = 1 + Ω≥2(M). Thus, in
the large k limit,

dimH0(M,Lk) = kn volM +O(kn−1).

In sum, the symplectic volume describes the growth rate of the quantum state space H0(M,Lk) in
the semiclassical limit ~ = 2π

k ! 0.

4.2 The computation of the volume

The moduli space of flat connections over a closed surface Σ is naturally a symplectic manifold. It
arises, for example, as the space of dynamical solutions in classical Chern-Simons theory. In this
situation, Σ represents a spacelike slice of a 3-dimensional spacetime. By the preceding discussion,
the volume of the moduli space describes the growth rate of the quantum state space as the energy
of the system tends to infinity.

Verlinde [65] obtained the volume using techniques from conformal field theory. Witten [66] later
provided a direct combinatorial proof. Liu [39] employed a heat kernel argument in the context of
a compact oriented surface with prescribed holonomy around punctured disks. Ho and Jeffrey [34]
addressed the nonorientable case.

In my PhD thesis [12] I compute the volume of the moduli space MG(M) over a manifold M
of arbitrary dimension, subject to conditions on M and G. First, for a general manifold M and an
abelian structure group G.

Theorem 10.1 ([12]). Let M be a symplectic (resp. Riemannian) manifold and let T be a compact
abelian Lie group equipped with an invariant metric. Then

volMT (M) = vol(T )b1(M) volH1(M,Z)
∣∣Hom(H1(M,Z)Tor, T )

∣∣,
where volH1(M,Z) denotes the covolume of the lattice H1(M,Z) ⊆ H1(M,R) with respect to the
symplectic (resp. Riemannian) structure on M .

Second, for a manifold M with free abelian fundamental group, and a general structure group
G. This setting is very closely related to spaces of commuting elements in G, a topic of substantial
recent interest [56, 1, 22, 49, 54, 7, 23, 63, 2, 8].

Theorem 10.2 ([12]). Let M be a symplectic (resp. Riemannian) manifold with free abelian funda-
mental group π1(M), G a compact connected semisimple Lie group of dimension k and rank `, 〈 , 〉
an Ad-invariant metric on the Lie algebra g, W the Weyl group of G with respect to some maximal
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torus, {α} ⊆ H∗ the root system, and ρ = 1
2

∑
α>0 α the half sum of a subsystem of positive roots.

Then

volMG(M) =
( volG
√

2π
k−`

∏
α>0

αρ
)b1(M) 1

|W |
volH1(M,Z),

where volH1(M,Z) denotes the covolume of the lattice H1(M,Z) in H1(M,R).

The key observation in each case is that Hom(π1(M), G) is smoothly equivalent to Hom(H1(M), G)
under the given restrictions. This yields a tractable model for the tangent fibers ofMG(M) in terms
of H1(M) and the adjoint representation of G.

Setting G = U(1) yields the following.

Corollary 10.2 ([12]). The moduli space of complex line bundles over a manifold M with flat
connection has volume

volMU(1)(M) = (2π)b1(M) volH1(M,Z)
∣∣Ch(H1(M,Z)Tor)

∣∣,
where Ch(H1(M,Z)Tor) is the set of characters of H1(M,Z)Tor.

4.3 Immersions of the moduli space

The moduli space over a surface MG(Σ) has been extensively studied. In [12], I show that under
suitable conditions the restriction of connections over M to a surface Σ ⊆ M forms a symplectic
immersion of MG(M) in MG(Σ).

Theorem 11.2 ([12]). If n ≥ 2, then there is a compact, connected embedded surface Σ ⊆ M such
that [Σ] ∈ H2(M) is the Poincaré dual of η. The inclusion i : Σ ↪!M yields a symplectic immersion
i∗ :MG(M)!MG(Σ). At a connection A on M , the codimension of the image is equal to

dim ker
(
H2
A(M,Σ; ad g)! H2

A(M, ad g)
)
.

5 Eigenvalues of the p-Laplacian

In [17], S. Seto and I obtained a lower bound for the first eigenvalue of the p-Laplacian on a Kähler
manifold. The p-Laplacian is a nonlinear differential operator given by

∆p(f) = div
(
|∇f |p−2∇f

)
,

and describes a diffusion process ∂tf = ∆pf with diffusivity equal to a power of the speed |∇f |.
When p = 2, it is the ordinary Laplacian. The eigenvalue condition is given by

∆p(f) = −µ|f |p−2f.

When M is closed, the first eigenvalue satisfies the following variational characterization,

µ1,p = inf

{∫
M
|∇f |p∫

M
|f |p

| f ∈W 1,p(M)\{0},
∫
M

|f |p−2f = 0

}
.

When ∂M 6= ∅ and we impose Dirichlet boundary conditions,

λ1,p = inf

{∫
M
|∇f |p∫

M
|f |p

| f ∈W 1,p
c (M)\{0}

}
.

Matei [43], Valtorta [64], and Naber and Valtorta [48] obtained lower estimates on the first
eigenvalue under different assumptions on the Ricci curvature. Seto and Wei [60] computed various
lower bounds in terms of the integral Ricci curvature. Chen and Wei [21] obtained upper estimates
on submanifolds of space forms.

In [17], we specialize to Kähler manifolds.
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Theorem 1.1 ([17]). Let (M,J, g) be an n = 2m (real) dimensional Kähler manifold, possibly with
boundary. Assume that the underlying (real) Ricci curvature satisfies Ric ≥ Kg for some constant
K > 0. If ∂M = ∅, then for p ≥ 2,

µ
2
p

1,p ≥
p+ 2

p(p− 1)
K =

(
1 +

2

p

)
K

p− 1
.

If ∂M 6= ∅, we assume the convexity condition that
p

2
H + II(Jn, Jn) ≥ 0 and the Dirichlet boundary

condition, where n is the unit outward normal vector field on ∂M , H is the mean curvature, and II
is the second fundamental form. Then for p ≥ 2,

λ
2
p

1,p ≥
p+ 2

p(p− 1)
K.

In the course of the proof we also establish the following p-Reilly formula.

Lemma 2.2 ([17]). For f ∈ C2(M) and p ≥ 2,∫
∂M

|∇f |p−2
{
− (∆∂Mf +H∇nf)∇nf − II(∇∂Mf,∇∂Mf) + 〈∇(∇nf),∇f〉∂M

}
= (p− 2)

∫
M

|∇f |p−2
∣∣∇|∇f |∣∣2 − ∫

M

(∆f)(∆pf)

+

∫
M

|∇f |p−2
(
2|H2f |2 + Ric(∇f,∇f) + 〈Hessf, J∗Hessf〉

)
.
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