
TOWARDS A COMMON DIMENSIONALITY REDUCTION APPROACH;
COMPARING PCA, TSNE, AND UMAP THROUGH A COHESIVE FRAMEWORK

by

Andrew Draganov
A Thesis

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Master of Science
Mathematics

Committee:

Dr. Tyrus Berry, Thesis Director

Dr. Tyrus Berry, Committee Member

Dr. Matthew Holzer, Committee Member

Dr. Timothy Sauer, Committee Member

Dr. David Walnut, Department
Chairperson

Dr. Donna M. Fox, Associate Dean, Office
of Student Affairs & Special Programs
College of Science

Dr. Fernando Miralles-Wilhelm, Dean,
College of Science

Date: Spring Semester 2021
George Mason University
Fairfax, VA



Towards a Common Dimensionality Reduction Approach; Unifying PCA, tSNE, and
UMAP through a Cohesive Framework

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Andrew Draganov
Bachelor of Science

University of Virginia, 2017

Director: Dr. Tyrus Berry, Professor
Department of Mathematics

Spring Semester 2021
George Mason University

Fairfax, VA



Copyright © 2021 by Andrew Draganov
All Rights Reserved

ii



Dedication

I dedicate this thesis to my family, coworkers and mentors.

iii



Acknowledgments

I would like to thank the following people who made this possible:

1. Tyrus Berry, whose patient mentoring and willingness to hear out my thoughts proved
invaluable as I struggled from one derivation to the next.

2. My father, who consistently volunteered to listen to my latest thoughts on the subject.

3. My coworkers, who encouraged me to pursue interesting subjects that ultimately
became the topic of this thesis.

iv



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Dimensionality Reduction Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 t-distributed Stochastic Neighborhood Embedding . . . . . . . . . . . . . . 4

2.3 UMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Commonalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Common Framework Across Approaches . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Identifying a common framework . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Choosing a probabilistic interpretation . . . . . . . . . . . . . . . . . . . . . 8

3.3 Optimizing the low-dimensional embeddings . . . . . . . . . . . . . . . . . . 10

4 PCA Under This Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 PCA as a Graph Embedding Method . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Deriving PCA’s kernels and optimization criteria . . . . . . . . . . . . . . . 15

4.3 Identifying PCA in terms of the framework . . . . . . . . . . . . . . . . . . 23

5 tSNE Under This Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Formulating t-SNE in terms of Bernoulli random variables . . . . . . . . . . 25

5.2 Establishing similarities in optimization criteria . . . . . . . . . . . . . . . . 27

6 UMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.1 Computational Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.2 Incorporating Additional Algorithms . . . . . . . . . . . . . . . . . . . . . . 36

7.3 Ablation Studies and Searching the Space of Algorithms . . . . . . . . . . . 36

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



Abstract

TOWARDS A COMMON DIMENSIONALITY REDUCTION APPROACH; UNIFYING
PCA, TSNE, AND UMAP THROUGH A COHESIVE FRAMEWORK

Andrew Draganov

George Mason University, 2021

Thesis Director: Dr. Tyrus Berry

Dimensionality reduction is a widely studied field that is used to visualize data, cluster

samples, and extract insights from high-dimensional distributions. The classical approaches

such as PCA, Isomap, and Laplacian eigenmaps rely on clear optimization strategies while

more modern approaches such at tSNE and UMAP define gradient descent search spaces

through disparities between the high- and low-dimensional datasets.

In this work, we notice that all of these approaches can be interpreted as minimizing

the difference between two kernel functions – one for the high dimensional space and one

for the low dimensional space. In particular, once we abstract the kernel functions, we can

develop a common framework for any dimensionality reduction problem. Namely, one needs

to identify their high-dimensional distance kernel, the low-dimensional distance kernel, and

the method used for minimization.

With this in mind, we identify the relevant general framework and then proceed to

discuss the ways in which PCA, tSNE, and UMAP all fit into it. For each, we discuss

insights that were obtained during the process. We lastly highlight next steps and directions

for future work.



Chapter 1: Introduction

Many disciplines rely on high-dimensional data representations for the purposes of analysis.

However, these datasets are usually impossible to visualize due to residing in> 3 dimensions.

To circumvent this, the field of dimensionality reduction studies how to faithfully represent

high-dimensional data in a low-dimensional space. ‘Faithfully’ here means two things:

1. Samples that are close in the high-dimensional space should remain close in the low-

dimensional space

2. Samples that are far in the high-dimensional space should remain far in the low-

dimensional space

There are multiple approaches for achieving this. PCA and other linear decomposition

problems simply try to find the optimal linear projection for representing the data in a

low-dimensional space according to some metrics. Manifold learning algorithms such as

Isomap [1], Laplacian eigenmaps [2], Parallel Transport Unfolding [3], and others attempt

to define a graph representation in the high-dimensional space and to make a similar graph

of points in the low-dimensional space. Then others such as t-SNE [4] and UMAP [5]

rely on gradient descent to minimize an objective between the high-dimensional probability

distributions and low-dimensional probability distributions.

Similarly to [6], we posit that all of these approaches can be viewed through a graph-

theoretic framework, which then extends the gradient descent optimization to be applicable

to any of the algorithms. Specifically, each of the above approaches first defines kernels on

similarity metrics in the high- and low-dimensional spaces before proceeding to find points

in the low-dimensional space that minimize some dissimilarity.

In the case of gradient-descent based optimization for t-SNE and UMAP, they minimize

the KL divergence between probability distributions. Thus, the edge weights on the graph

1



are defined by EX
ij = pij(xi, xj) and EY

ij = qij(yi, yj), where p is a Gaussian and q is a student

T distribution. Then minimizing the KL divergence KLi =
∑

j p(xi, xj) · log(
p(xi, xj)

q(yi, yj)
) can

be reframed in terms of the above reparameterization.

Given this intuition, we proceed by

1. Establishing the algorithms that we intend to analyze

2. Defining the analysis framework with sufficient generality

3. Applying the framework to each algorithm and highlighting insights

We finally conclude by summarizing our work and identifying next steps that we believe

are worth further investigation.

2



Chapter 2: Introduction to Various Dimensionality

Reduction Algorithms

We begin by describing PCA, t-SNE, and UMAP while attempting to draw parallels between

them.

2.1 Principal Component Analysis

Principal Component Analysis (PCA) is likely the most famous dimensionality reduction

algorithm. It can be interpreted in many ways, but is most commonly thought of as a linear

optimization that removes the axes of lowest variance. More formally, we remove the axes

w∗ defined by:

w∗ = argmin
wTw=1

wTCw (2.1)

In the above equation, the covariance matrix C for the high-dimensional points X is defined

by:

C =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T →

→ = XXT

. Due to the outer-product definition of the covariance, we note that this definition of

PCA relies on optimizing the low-dimensional representation according to distance functions

between the high- and low-dimensional distributions. Specifically, we are maintaining the

dimensions of highest variance, which means that the sum of squares of our points’ distance

to the origin remains maximized.

3



This preservation of axes of highest variance can also be interpreted in other ways. Eu-

clidean Multi-Dimensional Scaling (MDS), in which one uses linear operations to find the

points that minimize the difference in pairwise dot products, can be shown to be identical

to PCA. Said otherwise, PCA can be thought of as finding the points in a low-dimensional

space such that their dot products are closest to the high-dimensional space’s dot prod-

ucts according to the sum of squared differences. Additionally, in section 4.1, we show a

Laplacian reinterpretation of PCA as a graph-embedding algorithm.

All of these definitions of PCA share the same basic foundation. They attempt to find

a low-dimensional set of points that linearly minimize an metric function with respect to

the original high-dimensional points.

2.2 t-distributed Stochastic Neighborhood Embedding

In contrast to PCA’s distance-based methodology, the t-SNE algorithm attempts to match

probability distributions between the high- and low-dimensional spaces. These probability

distributions define the likelihood that a point xi will choose point xj as its neighbor. In

the high-dimensional space, the authors chose the Gaussian based on Euclidean distance to

define the probability that point xi chooses point xj as its neighbor:

pj|i =
exp(−||xi − xj ||2/2σ2i )∑
k exp(−||xi − xk||2/2σ2i )

(2.2)

The σi in this equation is chosen through binary search to standardize the spread of the

probability distributions with respect to the varying density across the high-dimensional

space. To further standardize the distributions, the authors average the probabilities of

point xi given xj and point xj given xi by setting pij =
pj|i + pi|j

2
.

4



The authors then define their low-dimensional probability distribution using the student-

t distribution:

qij =
(1 + ||yi − yj ||2)−1∑
k 6=l(1 + ||yk − yl||2)−1

. (2.3)

. This choice was made to undo the effects of the crowding problem, in which lower-

dimensional representations have much less ”space” to distribute points than high-dimensional

spaces do. Through using the student-t distribution’s heavy-tailed kernel, the authors find

that far-away points are more likely to maintain nearest-neighbor relationships, despite the

fact that they may have less space on the manifold to choose from.

We note that the t-SNE probability kernels are both defined with respect to Euclidean

distance and create a full matrix of high- and low-dimensional pairwise similarities between

the points. The t-SNE objective, then, can be interpreted as a weighted minimization over

the pairwise similarities that are defined through these kernels.

2.3 UMAP

Uniform Manifold Approximation and Projection (UMAP) is a similar algorithm to t-SNE

in that it minimizes pairwise similarities using gradient descent. However, UMAP was

motivated by a theoretical approach wherein the authors attempt to find a manifold-based

representation of the high- and low-dimensional spaces. Specifically, they define the pseudo-

distance metric D(xi, xj) = d(xi, xj)−ρ(xi), where d is some regular distance metric and ρ is

the minimum of this distance to any of the other points. This pseudo-metric is particularly

useful for alleviating the issues with Euclidean nearest neighbors in high-dimensional spaces

as noted in [7]. Using this pseudo-metric, they claim that they obtain a uniform distribution

across the space and can then utilize topological tools for defining the minimization criterion.

However, the authors of UMAP arrive at a very similar set of functions to t-SNE’s high-

and low-dimensional probability distributions. Namely, they define

vj|i = exp[(−d(xi, xj)− ρi)/σi]; vij = vj|i + vi|j − vj|ivi|j (2.4)

5



wij = (1 + a||yi − yj ||2b2 )−1 (2.5)

where vij is the high-dimensional likelihood of a nearest-neighbor relationship and wij is

the low-dimensional counterpart. Rather than representing probability distributions across

the entire set of points as t-SNE does, UMAP instead represents every nearest-neighbor

relationship between two points as a Bernoulli random variable. This has the inherent

benefit of making the edge values independent of the vantage point. Thus, they avoid

requiring the normalization terms across the entire dataset, instead opting to keep each

edge’s probability independent of the others (in this respect).

2.4 Commonalities

Notice that each of these algorithms, in a general sense, attempts to minimize the discrep-

ancy between functionals in the high- and low-dimensional spaces. Each of these functionals

can be defined in terms of kernels that are acting on the distances between pairs of points.

We can further generalize this to define connected graphs for the high- and low-dimensional

spaces, wherein vertices represent the points and edges represent the functional values

between points. Using this interpretation, we observe that a dimensionality reduction algo-

rithm is ultimately attempting to find a set of points that would minimize some similarity

metric between the two graphs.

6



Chapter 3: Uniting These Algorithms Under a Common

Framework

3.1 Identifying a common framework

As mentioned, all of the above algorithms can be interpreted as consolidating the connected

graphs between high- and low-dimensional spaces. We consider the connected graphs as the

probabilities that each point will choose another point as its nearest neighbor. In this

formulation, the points are represented as vertices and their nearest neighbor probabilities

are the values on the edges.

Given a data set X = {xi}Ni=1 ⊂ Rn an optimal embedding is another data set Y =

{yi}Ni=1 ⊂ Rm that solves an optimization problem,

min
Y

F (X,Y )

for some functional F . Typically F only depends on the distances between points, thus we

define

DX
ij = dX(xi, xj)

2, DY
ij = dY (yi, yj)

2

for pointwise similarity measures dX and dY . Moreover, F typically has the form,

F (X,Y ) = F̃ (DX , DY ),

where F̃ represents some similarity measure between the high- and low-dimensional pair-

wise distance matrices DX and DY . Lastly, we choose to instead interpret F̃ in terms of

symmetrized kernels on the distances DX and DY , which we define as v and w respectively.

7



Therefore, our similarity measure between high- and low-dimensional datasets X and Y can

be written as:

F (X,Y ) = F̃ (DX , DY ) =
N∑
i 6=j

F̂
(
SX
(
v(DX

i ), v(DX
j )
)
, SY

(
w(DY

i ), w(DY
j )
))

where DX
i and DY

i represent rows of the pairwise distance matrices. Notice that each of

the above algorithms from section 2 defines a kernel on distances in the high- and low-

dimensional spaces. Thus, we aim to identify the above algorithms through their kernels

while fixing F̂ . F̂ then becomes a similarity measure on graphs, where the high- and low-

dimensional graphs share their vertices (the points) but we define edge weights through the

separate kernel functions.

3.2 Choosing a probabilistic interpretation

Given the high-dimensional graph

GX =
(
X, {SX

(
v(DX

i ), v(DX
j )
)
| 0 < i, j < N}

)
=
(
X,EX

)
of points and their kernel distances, we can interpret the edges as probability distributions

in two ways. The first is to define a probability distribution for every point xi to all of its

nearest neighbors. This would mean that our kernel must normalize xi’s outgoing edges

across the entire dataset, giving us

EX
ij =

v(D(xi, xj))∑
k=1...n
k 6=i

v(D(xi, xk))

8



We refer to this as the neighborhood probabilistic interpretation, and it is the option that

t-SNE uses for its kernel functions in the high- and low-dimensional spaces. Intuitively, it

defines a probability distribution for each point to its set of neighbors in the space, however

one defines neighbor relationships. At this time we think it’s important to note that t-SNE

actually defines its high-dimensional kernel as a probability distribution across rows of the

distance matrix while the low-dimensional kernel defines a probability distribution over the

entire set of pairwise distances. More on this in section 5.1.

However, we can choose to instead treat every edge independently. Indeed, by choosing

to not normalize we obtain the simpler kernel function

EX
ij = SX

(
v(DX

i ), v(DX
j )
)
,

wherein every edge is simply defined as having some probability of existing. This interpre-

tation is the one that UMAP uses, and it allows us to treat the edges as Bernoulli random

variables. Thus, our kernel function in this case defines the likelihood that a nearest-

neighbor relationship exists, implicitly defining the additional state of it not existing.

The reader may notice that we are using both the i-th row and the j-th row to define

the probability of an edge existing. Indeed, these may not be symmetrical. To remedy this,

we can naturally take the mean and define

EX
ij =

EX
j|i + EX

i|j

2
.

However, we have an additional option available when we use the Bernoulli interpretation.

Specifically, if we consider the edges eXj|i and eXi|j as two separate events, then we can define

each edge as the probability that at least one of the two will exist. This is defined as

EX
ij = EX

j|i + EX
i|j − E

X
j|iE

X
i|j .

9



Due to using the neighborhood probabilistic interpretation, t-SNE is confined to using the

mean to obtain symmetry. However, UMAP utilizes the Bernoulli interpretation and thus

chooses to use the or-probability to symmetrize its edges. Both define their low-dimensional

kernels to be inherently symmetric, and therefore don’t utilize any symmetrization function

in the low-dimensional space.

Going forward, we attempt to define our graphs using the Bernoulli interpretation and

generalize the symmetrization function as S.

3.3 Optimizing the low-dimensional embeddings

In the formulation defined in 3.1, F̂ depends on the kernel v of the high-dimensional dataset,

where the points are given, and the kernel w of the low-dimensional dataset, where the

points are learned. As established, we interpret these kernel functions as the likelihood that

a nearest-neighbor relationship exists. Thus our goal in performing dimensionality reduction

is to try to learn a low-dimensional set of points that would have the same nearest-neighbor

likelihoods as their high-dimensional counterparts (subject to the kernel functions).

More formally, for edges EX
ij and EY

ij defining the symmetrized nearest-neighbor likeli-

hoods between points i and j in the high- and low-dimensional spaces respectively, we may

choose to minimize the KL divergence KL(EX
ij || EY

ij ). For example, this is necessary when

we are recreating tSNE and UMAP.

Recall that our edges have probability of existing defined by EX
ij = SX(v(DX

i ), v(DX
j ))

and EY
ij = SY (w(DY

i ), w(DY
j )). Then the application of the KL divergence is appropriate

since we have N ×N Bernoulli distributions – one for each edge. Note that in this context,

minimizing the KL divergence is equivalent to minimizing the cross-entropy. Let us first

define the KL divergence and cross-entropy H from some high-dimensional kernel to a

low-dimensional kernel.

10



KL(v||w) = −
∑
x∈X

v(x)log(w(x))− v(x)log(v(x))

H(v, w) = −
∑
x∈X

v(x)log(w(x))

(3.1)

where X represents the set of discrete states that the probability distribution can occupy. In

our case, this is just the two options of the edge between two points existing or not existing.

Notice that the first term in the KL divergence is exactly the cross-entropy and that the

second term is a constant when we assume that our high-dimensional points are given. Thus,

minimizing one of the above equations inherently minimizes the other. For this reason, we

will be discussing minimizing the cross entropy, which is the simpler calculation, under the

acknowledgement that this simultaneously optimizes the KL divergence between probability

distributions, which is perhaps a more intuitive measure of probabilistic similarity.

Given this context, the cross entropy on a Bernoulli random variable can be disassembled

into its two discrete states to obtain

H(EX
ij , E

Y
ij ) = −EX

ij log(EY
ij )− (1− EX

ij )log(1− EY
ij ) (3.2)

Since we are optimizing over all of the points in the dataset, we must then do this calculation

for each point.

Given this framework and optimization criterion, we proceed by highlighting which

algorithms can fit within it and identifying their strengths or weaknesses.

11



Chapter 4: Applying the Framework to PCA

4.1 PCA as a Graph Embedding Method

Given some background on Laplacian matrices, we can reinterpret PCA in terms of a graph

embedding approach. We will first reintroduce PCA, then show how it naturally relates to

modeling the data as a fully-connected graph.

First note that for a dataset X, the covariance matrix C is equal to

C =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T →

→ = XXT

We intend to show that PCA, in removing the directions with minimal variance, is

actually optimizing the following objective:

w∗ = argmin
wTw=1

wTCw (4.1)

Why might this be the case? Recall that PCA is operating on the squared errors be-

tween xi and its projections on the principal components. So it is finding w∗ such that

12



w∗ = arg min
w

N∑
i=1

||xi − (wTxi)w||2

= arg min
w

N∑
i=1

||xi − wwTxi||2

= arg min
w

N∑
i=1

[xi − wwTxi]
T [xi − wwTxi]

= arg min
w

N∑
i=1

[xTi xi − xTi wwTxi − xTi wwTxi + xTi ww
TwwTxi]

But wTw = 1, so the last two terms cancel, giving us

w∗ = arg min
w

N∑
i=1

[xTi xi − wTxix
T
i w] =

= arg min
w

N∑
i=1

xTi xi − wT (

N∑
i=1

xix
T
i )w

The first term here doesn’t depend on w, giving us

w∗ = argmax
w

wT (XXT )w

where X = [x1, x2, ..., xN ].

This, though, is just an eigendecomposition problem. For further clarification, note that

wT (XXT )w will be maximized when (XXT )w is parallel to w, so it must be that w is the

first eigenvector of XXT and λ = wT (XXT )w is the first eigenvalue. Thus, applying a

constraint that our principal components w are of unit length, we obtain the initially stated

formulation: w∗ = argmin
wTw=1

wTCw

13



With this derivation out of the way, we can show that PCA is really just linearizing a

fully connected graph where all data pairs have equal weights.

w∗ = argmin
wTw=1

wTCw

= argmin
wTw=1

wTXXTw

If we may find a graph-Laplacian matrix L such that XLXT = XXT , then we can apply

the following reformulation:

w∗ = argmin
wTw=1

wTXXTw

= argmin
wTw=1

wTXLXTw

= argmin
wTw=1

(wTX)L(wTX)T ,

which is just a graph eigendecomposition problem akin to the ones done in Laplacian eigen-

maps and spectral clustering.

Such an L can be found by making a fully connected graph on the N data points with

edge weights 1/N :

L = D −A =


N − 1

N
. . . − 1

N
...

. . .
...

− 1

N
. . .

N − 1

N

 (4.2)

This is exactly the centering matrix as defined in [8], which, when multiplied with a vector,

has the effect of subtracting the mean of the components of a vector from every component

of that vector. Centering matrices have convenient properties; namely they are symmetric

positive semi-definite, singular with a single eigenvalue of 0, and all of the rows and columns

sum to 0. We point out that these properties are consistent with those of graph Laplacian

14



matrices.

Due to the fact that the centering matrix’s operation translates a vector to the origin,

it will have the property that LXT = XT → XLXT = XXT for all matrices X that are

already centered. This is because, for N samples with zero mean (
∑

i xi = 0), we get

N − 1

N
x1 −

N∑
i=2

xi
N

= x1 −
x1
N
−

N∑
i=2

xi
N

= x1 −
N∑
i=1

xi
N

= x1

This naturally generalizes to any index, not just the first. So by defining L as a fully

connected adjacency matrix with edge weights
1

N
, we have a graph embedding that fully

represents PCA’s optimization criterion.

4.2 Deriving PCA’s kernels and optimization criteria

Given a data set {xi}Ni=1 ⊂ Rn represented as a matrix X ∈ Rn×N , we can interpret

multidimensional scaling (MDS) [9] as finding a data set Y ∈ Rm×N that minimizes the

functional,

FMDS(X,Y ) = ||X>X − Y >Y ||2F =
N∑

i,j=1

((X>X)ij − (Y >Y )ij)
2 =

N∑
i,j=1

(x>i xj − y>i yj)2

Notice that FMDS compares the inner products in the original data set, X, to those in

the lower-dimensional data set Y . These inner products are invariant to orthogonal trans-

formations but they are not invariant to translations. The following theorem shows that

optimally preserving the inner products requires applying PCA without centering. Later

15



we will see that PCA with centering optimally preserves the pairwise distances, which are

invariant to both orthogonal transformations and translations.

Theorem 1 (Multi-Dimensional Scaling (MDS)). Let {xi}Ni=1 ⊂ Rn have Gram matrix

Gij = x>i xj with orthogonal eigendecomposition G = QDQ>. The point set {yi}Ni=1 ⊂ Rm,

that minimizes FMDS(X,Y ) is given by Y = SV > where Sii =
√
Dii for i = 1, ...,m and V

is given by the first m columns of Q.

Proof. First, expand the cost functional as,

FMDS(X,Y ) =
N∑

i,j=1

x>i xjx
>
i xj − 2x>i xjy

>
i yj + y>i yjy

>
i yj

Computing the gradient with respect to yk ∈ Rm we find,

∇ykFMDS(X,Y ) =
N∑

i,j=1

−δik2x>i xjyj − δjk2x>i xjyi + 2δiky
>
i yjyj + 2δjky

>
i yjyi

=
N∑
i=1

−2x>k xiyi − 2x>i xkyi + 2y>k yiyi + 2y>i ykyi

= 4
N∑
i=1

yiy
>
i yk − yix>i xk

= 4Y Y >yk − 4Y X>xk.

Setting these gradients equal to zero we find Y Y >yk = Y X>xk for k = 1, ..., N and com-

bining all these equations we have

Y Y >Y = Y X>X (4.3)

as a necessary condition for an optimum.

Notice that FMDS(X,Y ) is invariant to orthogonal transformations of X since when

16



U>U = I then,

FMDS(UX, Y ) = ||(UX)>UX − Y >Y ||2F = ||X>X − Y >Y ||2F = FMDS(X,Y )

and similarly for orthogonal transformations of Y . This means that if Y = USV > is the

singular value decomposition of Y we can redefine Y → U>Y = SV >. Thus, without loss

of generality, we can assume that Y has SVD Y = SV >. Thus, we can rewrite (4.3) as,

SV >V S2V > = SV >QDQ>

so that,

S2V > = V >QDQ>

and,

S2 = V >QDQ>V (4.4)

which implies that V selects m of the N eigenvalues of X>X. Returning to the cost

functional, we have,

FMDS(UX, Y ) = ||X>X − Y >Y ||2F = ||QDQ> − V S2V >||2F

= ||QDQ> − V V >QDQ>V V >||2F

= ||D −Q>V V >QDQ>V V >Q||2F

where the last step follows from the invariance of the Frobenius norm to orthogonal trans-

formations. Notice thatQ>V V >Q is anN×N matrix with rank-m and minimizing FMDS re-

quires thatQ>V V >Q =

 Im×m 0m×(N−m)

0(N−m)×m 0(N−m)×(N−m)

 so that V >Q = [Im×m 0m×(N−m)]

17



and thus V contains the first m columns of Q and so by (4.4) we have S2
ii = Dii for

i = 1, ...,m.

Next we show that the MDS solution is identical to the PCA projection but without

the centering step.

Corollary 1 (Uncentered Principal Component Analysis (PCA)). Let {xi}Ni=1 ⊂ Rn have

uncentered covariance matrix C = XX> =
∑N

i=1 xix
>
i with orthogonal eigendecomposi-

tion C = WΛW> with Λ11 ≥ · · · ≥ Λnn. The point set {yi}Ni=1 ⊂ Rm, that minimizes

FMDS(X,Y ) is given by the PCA projection, Y = [Im×m 0m×(n−m)]W
>X.

Proof. Let X have SVD given by X = Ũ S̃Ṽ > so that XX> = Ũ S̃2Ũ> = WΛW> and

X>X = Ṽ S̃2Ṽ > = QDQ>. Together with uniqueness of the eigendecomposition, these

facts imply that X = [W W̃ ]
√
DQ> for some orthogonal matrix W̃ ∈ Rn×(N−n) and

Dii = S̃2
ii = Λii for i = 1, ...,m. The PCA projection is given by,

[Im×m 0m×(n−m)]W
>X = [Im×m 0m×(n−m)]W

>[W W̃ ]
√
DQ>

= [Im×m 0m×(n−m)][In×n 0n×(N−n)]
√
DQ>

= [Im×m 0m×(N−m)]
√
DQ>

= S[Im×m 0m×(N−m)]Q
>

= SV >

which is identical to the solution from Theorem 1.

The previous theorem shows that PCA without centering optimally preserves the inner

products (in the sum-of-squares sense). Our goal is to interpret PCA/MDS with centering

as finding the embedding Y that optimally preserves pairwise distances. In other words, we

18



will show that PCA with centering minimizes the functional,

FPCA(X,Y ) = ||L(EX − EY )||2F =
N∑

i,j=1

(||xi − xj ||2 − ||yi − yj ||2)2 − 2(||xi||2 − ||yi||2)2

where EX
ij = ||xi−xj ||2 and EY

ij = ||yi−yj ||2 are the matrices of pairwise squared distances

and L is the Laplacian weight matrix described below.

In order to understand why centered PCA minimizes FPCA, we need to consider the

following Laplacian matrix (also called the centering matrix),

L = D −A =


N − 1

N
. . . − 1

N
...

. . .
...

− 1

N
. . .

N − 1

N

 (4.5)

where A = 1
N
~1~1> so that Aij = 1/N is the adjacency matrix of an all-to-all weighted graph

with equal graph weights and D = I is the associated degree matrix since Dii =
∑N

j=1Aij .

We call L the centering matrix because it ‘centers’ vectors by subtracting their mean,

namely,

L~v = D~v −A~v = ~v −
(

1

N
~1>~v

)
~1 = ~v −

(
1

N

N∑
i=1

~vi

)
~1.

This means that L~1 = ~0 and L will yield zero when applied to any constant vector. Since

L sends non-zero vectors to zero, it cannot be invertible, however, if ~v is orthogonal to the

constant vector then ~1>~v = ~0 so, L~v = ~v. Thus, L acts as the identity on the subspace

orthogonal to the constant vector, and it is invertible on this subspace.

The importance of L is due to the connection between distances and inner products,

namely,

||~v − ~u||2 = 〈~v − ~u,~v − ~u〉 = ||~v||2 + ||~u||2 − 2 〈~v, ~u〉 .

19



The following lemma connects the Gram matrix to the matrix of squared pairwise distances

using L through a formula/process known as double centering.

Lemma 1. Let {xi}Ni=1 be centered, so
∑N

i=1 xi = 0, with Gram matrix Gij = x>i xj and

squared pairwise distance matrix Eij = ||xi − xj ||2 then,

G = −1

2
LEL

Proof. Note that Eij = ||xi||2 + ||xj ||2 − 2 〈xi, xj〉 = Gii +Gjj − 2Gij so

E = ~g~1> +~1~g> − 2G

where ~g = diag(G) so ~gi = Gii. Thus,

LE = L~g~1> + L~1~g> − 2LG = L~g~1> − 2LG

since L~1 = ~0. Moreover, since the data is centered, each column of G is centered,
∑N

i=1Gij =(∑N
i=1 xi

)>
xj = ~0. Thus, LG = G so we have LE = L~g~1> − 2G. Multiplying on the right

by L we have,

LEL = L~g~1>L− 2GL = −2G

since ~1>L = ~0> and GL = G since the data is centered. Finally, G = −1
2LEL.

Starting from a matrix E, the process of computing LEL is equivalent to subtracting

the row average from each row, then subtracting the column average from each column, and

then adding the total average of E to each entry. This process is called double centering and

as shown above it recovers the Gram matrix from the matrix of pairwise distances when the

underlying data is centered. Moreover, since the matrix of pairwise distances is invariant

to translations, even when the original data set is not centered, the process of constructing

20



E and then double centering will construct the Gram matrix of the centered data. Thus,

constructing the Gram matrix from the matrix of pairwise distances implicitly centers the

data. This immediately yeilds the following characterization of PCA.

Theorem 2 (Principal Component Analysis (PCA)). Let {xi}Ni=1 ⊂ Rn have mean µ =

1
N

∑N
i=1 xi and centered covariance matrix C = XLX> = (X − µ~1>)(X − µ~1>)> =∑N

i=1(xi − µ)(xi − µ)> with orthogonal eigendecomposition C = WΛW> with Λ11 ≥ · · · ≥

Λnn. The centered point set {yi}Ni=1 ⊂ Rm, that minimizes FPCA(X,Y ) is given by the PCA

projection, Y = [Im×m 0m×(n−m)]W
>(X − µ~1>).

Proof. Let X̃ = XL = X − µ~1> be the centered data and let Eij = ||xi − xj ||2 = ||x̃i −

x̃j ||2 and EY
ij = ||yi − yj ||2 be the matrices of pairwise distances. Thus, we can write

FPCA(X,Y ) = ||L(E−EY )L||2F and since X̃ is centered, Corollary 1 says that Y minimizes,

FMDS(X̃, Y ) = ||X̃>X̃ − Y >Y ||2F =
1

4
||LEL− LEY L||2F =

1

4
||L(E − EY )L||2F

=
1

4

N∑
k,l=1

 N∑
i,j=1

Lki(Eij − EY
ij )Ljl

2

=
1

4

N∑
k,l=1

N∑
i,j,r,s=1

LkiLkrLjlLsl(Eij − EY
ij )(Ers − EY

rs)

=
1

4

N∑
i,j,r,s=1

LirLjs(Eij − EY
ij )(Ers − EY

rs)

=
1

4
||L(E − EY )||2F

and thus Y minimizes FPCA.

21



We can further simplify the expression for FPCA as,

FPCA(X,Y ) = ||L(E − EY )||2F

=

N∑
i,j,r,s=1

LirLjs(Eij − EY
ij )(Ers − EY

rs)

=
N∑

i,j,r,s=1

(δir − 1/N)(δjs − 1/N)(Eij − EY
ij )(Ers − EY

rs)

=
N∑

i,j,r,s=1

(δirδjs − δir/N − δjs/N + 1/N2)(Eij − EY
ij )(Ers − EY

rs)

= ||E − EY ||2F −
2

N

N∑
i,j,s=1

(Eij − EY
ij )(Eis − EY

is) +
1

N2

 N∑
i,j=1

Eij − EY
ij

2

.

Now note that since the data is centered we have
∑N

i=1Eij =
∑N

i=1 ||xi||2 + ||xj ||2 −

2 〈xi, xj〉 = N ||xj ||2 +
∑N

i=1 ||xi||2 so setting ei = ||xi||2 − ||yi||2 we have,
∑N

i=1Eij −EY
ij =

Nej +
∑N

i=1 ei. This allows us to write,

FPCA(X,Y ) = ||E − EY ||2F −
2

N

N∑
i=1

Nei +
N∑
j=1

ej

2

+
1

N2

(
2N

N∑
i=1

ei

)2

= ||E − EY ||2F −
2

N

N∑
i=1

N2e2i +Nei

N∑
j=1

ej +
N∑

j,s=1

ejes

+ 4
N∑

i,j=1

eiej

= ||E − EY ||2F − 2N

N∑
i=1

e2i

=

N∑
i,j=1

(||xi − xj ||2 − ||yi − yj ||2)2 − 2(||xi||2 − ||yi||2)2.

22



4.3 Identifying PCA in terms of the framework

We can now proceed by identifying the constituent components of PCA within our frame-

work. Recall that we defined our problem as finding dataset Y that will minimize the

following expression

F (X,Y ) = F̃ (DX , DY ) =
N∑
i,j

F̂
(
SX
(
v(DX

i ), v(DX
j )
)
, SY

(
w(DY

i ), w(DY
j )
))

Thus, we can fully represent PCA through its constituent components:

• F̂ is the Euclidean distance, making F̃ the Frobenius norm

• v(DX
i ) = L(DX

i )T and w(DY
i ) = L(DY

i )T

• SX(a, b) = a and SY (a, b) = a. These are arbitrarily chosen to be the first element

since the kernels are already symmetric.

23



Chapter 5: Applying the Framework to tSNE

We begin by recognizing that tSNE does not cleanly fit into the framework. This can be

clearly seen through the inconsistent normalization between the high- and low-dimensional

spaces. Namely, tSNE normalizes the high-dimensional probabilities across rows of the

matrix, whereas the low-dimensional kernels are normalized across the entire matrix. Thus,

when they are minimizing the KL, the authors are actually comparing N high-dimensional

distributions to a single low-dimensional one.

We, however, defined our framework with

F (X,Y ) = F̃ (DX , DY ) =
N∑
i,j

F̂
(
SX
(
v(DX

i ), v(DX
j )
)
, SY

(
w(DY

i ), w(DY
j )
))
.

This requires that our kernels depend only on rows of the similarity matrices, disallowing

a matrix-wise normalization factor. The reader may ask why the framework was defined

in such a way so as to not generalize for tSNE’s normalization. We note, however, that

tSNE is a strict outlier in its treatment of the probability distributions. We have not found

another algorithm that uses a similar asymmetric normalization pattern. Thus, rather than

generalizing our framework to such an extent that it bears no information, we instead choose

to identify tSNE as the outlier.

We proceed by a significantly more in-depth proof by contradiction. To do this, we will

assume that tSNE does fit into the more specific framework, discuss what this would mean,

and then show why it is not the case.

24



5.1 Formulating t-SNE in terms of Bernoulli random vari-

ables

The naive method for reparameterizing t-SNE in terms of Bernoulli random variables is

to remove the scaling terms in t-SNE’s kernel functions. Specifically, the high-dimensional

t-SNE kernel is the Gaussian distribution

pj|i =
exp(−||yi − yj ||2/2σ2i )∑

k=1...n
k 6=i

exp(−||yi − yk||2/2σ2i )
, and

pij = pji =
pj|i + pi|j

2
,

where σi is chosen to provide a user-defined perplexity. To simplify the notation, we denote

the row-sum denominator in the high-dimensional space by ZX
i for row i. The normalization

term in the denominator establishes that all of these pj|i’s make up a probability distribution

across all of point i’s incoming edges. Removing this normalization term gives us Bernoulli

random variables

EX
j|i = exp(−||yi − yj ||2/2σ2i ),

where the likelihood of the edge not existing is simply 1− EX
j|i.

We can do the same in the low-dimensional student-T distribution. Recall that t-SNE’s

low-dimensional kernel is given by

qij =
(1 + ||yi − yj ||2)−1∑

k 6=l

(1 + ||yk − yl||2)−1
=
w(D(yi, yj))

ZY
,

where w(DY (yi, yj)) is the low-dimensional kernel of the distance as defined in 3.1, which

we refer to as wij going forward. However, notice that the normalization term occurring

25



here is dividing by
∑

k 6=l(1 + ||yk − yl||2)−1. This is now with respect to all pairs of non-

identical points rather than just all of point i’s incoming edges. As such, it is not sufficient

to remove the normalization terms in t-SNE’s high- and low-dimensional kernels blindly, as

that would introduce extraneous scaling into the optimization. Going forward, we define

this matrix-sum denominator in the low dimensional space by ZY .

To maintain the appropriate scaling between the high- and low-dimensional distribu-

tions, we will remove the scaling along the rows of both the high- and low-dimensional

adjacency matrices. Due to the symmetry of the low-dimensional representation, however,

we arbitrarily choose to remove the low-dimensional scaling across columns rather than

rows. That way we will still have row-wise summations in the low-dimensional space and

can maintain consistent notation. Therefore, our t-SNE Bernoulli random variables are

defined in the high-dimensional space with the kernel

EX
j|i = exp(−||yi − yj ||2/2σ2i ); with pj|i =

EX
j|i∑

k=1...n
k 6=i

exp(−||yi − yk||2/2σ2i )
=
EX

j|i

ZX
i

. (5.1)

We then refer to the high dimensional symmetrized kernel EX
ij as the symmetrization func-

tion S applied to the two conditional kernels, so

EX
ij = S(EX

j|i, E
X
i|j) (5.2)

Similarly, the low-dimensional ones are defined with the row-normalized kernel

EY
j|i =

wij∑
k=1...n
k 6=i

wik
=
wij

ZY
i

; with qij =
EY

ij · ZY
i∑

k Z
Y
k

(5.3)

where we define the row-sum denominator in the low-dimensional space by ZY
i for row i.

26



Applying the general symmetrization function S, we have

EY
ij = S(EY

j|i, E
Y
i|j) (5.4)

5.2 Establishing similarities in optimization criteria

We now aim to show that t-SNE’s original optimization criterion is similar to optimizing

the above Bernoulli random variable interpretation.

First, let us understand t-SNE’s optimization formulation. They minimize the KL di-

vergence between the high- and low-dimensional distributions. This amounts to minimizing

the sum

KL(P ||Q) =
∑
i 6=j

[
pij log

pij
qij

]
.

Since we are optimizing with respect to the low-dimensional points Q, this amounts to

minimizing −
∑

i 6=j [pij log(qij)].

We now aim to interpret the qij variables in terms of their Bernoulli random variables

EY
ij =

(1 + ||yi − yj ||2)−1

ZY
i

. First, recall that qij =
EY

ij · ZY
i∑

k Z
Y
k

. Plugging this in gives us

KL(P ||Q) = −
∑
i 6=j

[
pij log(

EY
ij · ZY

i∑
l Z

Y
l

)

]
.

We separate the log to obtain

KL(P ||Q) = −
∑
i 6=j

[
pij

(
log(EY

ij ) + log(ZY
i )− log(

∑
l

ZY
l )

)]
.

Looking at the elements, we see

27



1. log(EY
ij ) – the edge weight for the Laplacian as we defined it in the low-dimensional

space

2. log(ZY
i ) – the row-wise normalization term of the low-dimensional kernel

3. log(
∑

l Z
Y
l ) – a sum over the low-dimensional adjacency matrix

Distributing appropriately gives us three minimization criteria of:

List of tSNE Forces 1.

1.

−
∑
i 6=j

[
pij log(EY

ij )
]

This seeks to maximize the likelihood of the edge existing in the low-dimensional space

in accordance with how likely it is to exist in the high-dimensional space.

2.

−
∑
i 6=j

[
pij log(ZY

i )
]

This tries to maximize the normalization term for each low-dimensional edge.

3.

∑
i 6=j

[
pij log(

∑
l

ZY
l )

]

This is a weighted L1 penalty on the entire low-dimensional adjacency matrix.

Each of these is scaled by the high-dimensional probability that the two points are

nearest neighbors.

We now look at the optimization problem from the Bernoulli interpretation and hope

to arrive to a similar set of forces. Recall from equation 3.2 that the cross-entropy over

Bernoulli random variables v and w is H(v, w) = −v(x)log(w(x))− (1−v(x))log(1−w(x)).

28



The sum of cross entropies across all the edges, then, come out to

H(X,Y ) = −
∑
i 6=j

[
−EX

ij log(EY
ij )− (1− EX

ij )log(1− EY
ij )
]

The first term in the sum is exactly the first force that we just derived in (1), up to

different constants. This makes sense, as we are optimizing the edge weights according

to their Bernoulli kernels that don’t have any scaling. To show equivalence it is therefore

sufficient to show that the forces from −(1−EX
ij )log(1−EY

ij ) are equivalent to the last two

forces in (1). Looking at the gradients of this remaining term, we get

∇yi ∼ −(1− EX
ij )∇ilog(1− EY

ij ) = −(1− EX
ij )∇ilog(1− EY

ij ),

where EX
ij is the constant term EX

ij = SY (EX
j|i, E

X
i|j) in the Bernoulli optimization criterion.

Handling the gradient of the log gives us the derivative in terms of EY
ij as

∇yi ∼
1− EX

ij

1− EY
ij

∇iE
Y
ij .

To look at the forces, let us decompose the EY
ij into its constituent wij functions. Recall

that

EY
ij = SY (EY

j|i, E
Y
i|j) = SY (

wij

ZY
i

,
wij

ZY
j

) = SY

 wij∑
k=1...n
k 6=i

wik
,

wij∑
k=1...n
k 6=j

wjk


Plugging this in gives us the gradient for point y as

∇yi ∼
1− EX

ij

1− EY
ij

∇iS
Y

(
wij

ZY
i

,
wij

ZY
j

)

29



Because we are currently using the Bernoulli edge likelihood interpretation, we can plug

in the symmetrization function S(a, b) = a+ b− ab.

∇yi ∼
1− EX

ij

1− EY
ij

∇i

(
wij

ZY
i

+
wij

ZY
j

− wij

ZY
i

· wij

ZY
j

)

As a next step, we take a wij out from the numerators and apply the product rule to

obtain

∇yi ∼
1− EX

ij

1− EY
ij

[
(∇i(wij))

(
1

ZY
i

+
1

ZY
j

− wij

ZY
i · ZY

j

)
+ wij∇i

(
1

ZY
i

+
1

ZY
j

− wij

ZY
i · ZY

j

)]

(5.5)

Looking at the second gradient term wij∇i

(
1

ZY
i

+
1

ZY
j

− wij

ZY
i · ZY

j

)
, we can distribute

the gradient and apply the quotient and product rules to obtain

wij

∇i

(
ZY
i

)
(ZY

i )2
+
∇i

(
ZY
j

)
(ZY

j )2
−
∇i(wij) ·

(
ZY
i · ZY

j

)
+ wij ·

[
∇i

(
ZY
i

)
· ZY

j + ZY
i · ∇i

(
ZY
j

)]
(
ZY
i · ZY

j

)2


We plug this back into 5.5 and rearrange by the like terms ∇i(wij) and wij to get:

∇yi ∼
1− EX

ij

1− EY
ij

(∇i(wij))

 1

ZY
i

+
1

ZY
j

− wij

ZY
i · ZY

j

−
wijZ

Y
i Z

Y
j(

ZY
i Z

Y
j

)2



+
1− EX

ij

1− EY
ij

wij

∇i

(
ZY
i

)
(ZY

i )2
+
∇i

(
ZY
j

)
(ZY

j )2
−
wij ·

[
∇i

(
ZY
i

)
· ZY

j + ZY
i · ∇i

(
ZY
j

)]
(
ZY
i · ZY

j

)2



We now notice that ∇iZ
Y
j is 0 for every element of the sum except for at k = i, so

30



∇iZ
Y
j = ∇iwji = ∇iwij . We plug this in,

∇yi ∼
1− EX

ij

1− EY
ij

(∇i(wij))

 1

ZY
i

+
1

ZY
j

−
2wijZ

Y
i Z

Y
j(

ZY
i · ZY

j

)2



+
1− EX

ij

1− EY
ij

wij

∇i

(
ZY
i

)
(ZY

i )2
+
∇iwij

(ZY
j )2
−
wij · ∇i

(
ZY
i

)
· ZY

j(
ZY
i · ZY

j

)2 − wijZ
Y
i · ∇iwij(

ZY
i · ZY

j

)2



and distribute accordingly:

∇yi ∼
1− EX

ij

1− EY
ij

(∇i(wij))

 1

ZY
i

+
1

ZY
j

+
wij

(ZY
j )2
−

2wijZ
Y
i Z

Y
j − wijZ

Y
i(

ZY
i · ZY

j

)2



+
1− EX

ij

1− EY
ij

wij∇i

(
ZY
i

) 1

(ZY
i )2
−

wijZ
Y
j(

ZY
i · ZY

j

)2

 .

We lastly write out ∇iZ
Y
i in terms of the constituent wik components to obtain:

∇yi ∼
1− EX

ij

1− EY
ij

(∇i(wij))

 1

ZY
i

+
1

ZY
j

+
wij

(ZY
j )2
−

2wijZ
Y
i Z

Y
j − wijZ

Y
i(

ZY
i · ZY

j

)2



+
1− EX

ij

1− EY
ij

wij · ∇i

 ∑
k=1...n
k 6=j

wik


 1

(ZY
i )2
−

wijZ
Y
j(

ZY
i · ZY

j

)2

 ;

31



and pull the gradient terms out to the front so that we may examine their scalings.

∇yi ∼∇i(wij)

1− EX
ij

1− EY
ij

 1

ZY
i

+
1

ZY
j

+
wij

(ZY
j )2
−

2wijZ
Y
i Z

Y
j − wijZ

Y
i(

ZY
i · ZY

j

)2



+∇iZ
Y
i

1− EX
ij

1− EY
ij

wij ·

 1

(ZY
i )2
−

wijZ
Y
j(

ZY
i · ZY

j

)2

 .

Again, recall that we are trying to show that this gradient would be equivalent to the one

obtained from the second two terms of the list of tSNE forces in (1).

There we have

∇yi ∼ pij∇i

[
log(

∑
l=1...n

ZY
l )− log(ZY

i )

]
.

Recall that ZY
i =

∑
k=1...n
k 6=i

wik. This gives us a double summation in the first log, so we

write
∑

k 6=l to mean the sum over all non-diagonal elements for legibility purposes. Plugging

this in and applying the chain rule to the logarithms gives us

∇yi ∼ pij


∇i

[∑
k 6=l wkl

]
∑

k 6=l wkl
−

∇i

 ∑
k=1...n
k 6=i

wik


∑

k=1...n
k 6=i

wik


.

Note, however, that the gradient with respect to yi of
∑

k 6=l wkl is 0 when k 6= i and

l 6= i. Thus we can remove all of those elements from the sums. This gives us 2
∑

k=1...n
k 6=i

wik

on the left, as there is one row with k = i and one column with l = i. We distribute the

32



numerators out to get:

∇yi ∼ pij∇iZ
Y
i

 2∑
k 6=l wkl

− 1∑
k=1...n
k 6=i

wik

 .

We can see that these are clearly not equivalent, as tSNE’s original gradient is with

respect to ZY
i , whereas the Bernoulli interpretation gives us gradients with respect to both

ZY
i and wij .

33



Chapter 6: Incorporating UMAP

The framework took large inspiration from UMAP’s approach to dimensionality reduction.

As such, UMAP fits very nicely into the configuration of kernel functions. Specifically, we

use UMAP’s definitions of the kernel functions

vj|i = exp[(−d(xi, xj)− ρi)/σi]; vij = vj|i + vi|j − vj|ivi|j

wij = (1 + a||yi − yj ||2b2 )−1

, where vij is the high-dimensional likelihood of a nearest-neighbor relationship and wij

is the low-dimensional counterpart. Recall that ρi is the distance from xi to its nearest

neighbor, and that σi is the result of a binary search to obtain a user-defined perplexity

value.

Then SX(a, b) = a + b− ab and SY (a, b) can be any linear interpolation of the two, as

the low-dimensional kernel is already symmetric. We lastly define F̂ as the KL divergence

between the Bernoulli distributions EX
ij and EY

ij .

This concludes the definition of UMAP in terms of the framework.

34



Chapter 7: Conclusion and Future Work

We have attempted to show that there is a cohesive framework that can unite seemingly

separate dimensionality reduction algorithms. By relying on the fact that every such algo-

rithm defines functionals on the distances in high- and low-dimensional space, which can be

abstracted away. Despite our attempts to generalize across all of the identified algorithms,

we recognize that tSNE performs an abnormal set of steps that are too different to be cap-

tured in any useful framework. Nonetheless, we identified UMAP and PCA in terms of our

framework and gave in-depth analysis of what it means for tSNE to not fit into it.

There are multiple next steps that we have identified, which we devote several small

sections of this chapter to.

7.1 Computational Analysis

Thus far, the work we have done has been purely theoretical. It remains to show that

defining the framework computationally indeed successfully recreates the investigated algo-

rithms. There are further discrepancies in the optimization schemas between the algorithms

that would need to be addressed. Namely, PCA is optimized through a simple set of linear

operations while tSNE and UMAP perform gradient descent. Furthermore, tSNE’s and

UMAP’s gradient descent approaches differ in how they choose to sparsify the search space.

In [10], the authors mention that they speed up tSNE’s gradient descent through tree-based

distance calculations to identify nearest neighbors to perform the search on. Once these

nearest neighbors have been identified, tSNE sums their respective contributions across the

entire dataset and applies a single step of gradient descent. While UMAP does a similar op-

eration with respect to the nearest neighbors, it additionally performs sampling over those

nearby points to further sparsify the attractive and repulsive forces.

35



If we were to unite these under a single computational framework, we would be inter-

ested in understanding the tradeoffs when applying gradient descent to PCA’s optimization

criterion. The authors in [11] showed that PCA, given some assumptions on the initial-

ization, is guaranteed to converge with stochastic gradient descent. We hope to verify this

computationally in the context of our framework.

7.2 Incorporating Additional Algorithms

We have additionally only discussed three dimensionality reduction algorithms. As hinted at

in the introduction, there are hundreds, if not thousands, of unique approaches. While it is

infeasible to apply the framework to all of them, we do hope to incorporate the most famous

dimensionality reduction methods such as Isomap, Laplacian eigenmaps, and LargeVis [12]

to name a few.

We can leverage the work done in [6] for the graph-based Isomap and Laplacian eigen-

maps. There, the authors defined optimization criteria through graph Laplacians. However,

it would remain to show theoretical guarantees on convergence of gradient descent for the

above approaches.

LargeVis, on the other hand, draws inspiration from tSNE. However, it modifies the

low-dimensional kernel to utilize the Bernoulli interpretation that we have already been

using. Therefore, it is a perfect fit as a substitute for tSNE within our framework, as

its kernel functions should nominally be very similar to those for UMAP. Furthermore,

LargeVis already uses gradient descent for its optimization.

7.3 Ablation Studies and Searching the Space of Algorithms

Once the above algorithms have been incorporated into the framework, it would be inter-

esting to perform ablation studies in which parameters are modified along the spectrum

between algorithms. It is interesting to consider approaches that choose one algorithm’s

high-dimensional kernel and another’s low-dimensional kernel.

36



We also point out that we have, in some sense, defined an invertible mapping between

the spaces of kernels and the spaces of algorithms. As such, it should be possible to iden-

tify a search criterion over the space of kernels themselves, which would correspond to a

search over dimensionality reduction algorithms. Given some metric defining the quality

of a dimensionality reduction, we posit that it would be possible to identify new kernel

functions that are particularly effective for specific datasets. This would have implications

for clustering analysis as well, as dimensionality reduction algorithms are often intimately

linked to clustering approaches.

37



Bibliography

[1] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for
nonlinear dimensionality reduction,” science, vol. 290, no. 5500, pp. 2319–2323, 2000.

[2] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data
representation,” Neural computation, vol. 15, no. 6, pp. 1373–1396, 2003.

[3] M. Budninskiy, G. Yin, L. Feng, Y. Tong, and M. Desbrun, “Parallel transport unfold-
ing: a connection-based manifold learning approach,” arXiv preprint arXiv:1806.09039,
2018.

[4] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of machine
learning research, vol. 9, no. 11, 2008.

[5] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation and
projection for dimension reduction,” arXiv preprint arXiv:1802.03426, 2018.

[6] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, “Graph embedding and
extensions: A general framework for dimensionality reduction,” IEEE transactions on
pattern analysis and machine intelligence, vol. 29, no. 1, pp. 40–51, 2006.

[7] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising behavior of distance
metrics in high dimensional space,” in International conference on database theory.
Springer, 2001, pp. 420–434.

[8] J. I. Marden, Analyzing and modeling rank data. CRC Press, 1996.

[9] J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis,” Psychometrika, vol. 29, no. 1, pp. 1–27, 1964.

[10] L. Van Der Maaten, “Accelerating t-sne using tree-based algorithms,” The Journal of
Machine Learning Research, vol. 15, no. 1, pp. 3221–3245, 2014.

[11] O. Shamir, “Convergence of stochastic gradient descent for pca,” in International Con-
ference on Machine Learning. PMLR, 2016, pp. 257–265.

[12] J. Tang, J. Liu, M. Zhang, and Q. Mei, “Visualizing large-scale and high-dimensional
data,” in Proceedings of the 25th international conference on world wide web, 2016, pp.
287–297.

38



Curriculum Vitae

Experience
MACHINE LEARNING ENGINEER AT EXPEDITION TECHNOLOGY — Dulles,

VA — July 2017 - Present

1. Created digital signal classifier for a several terabyte dataset with an emphasis on
identifying out-of-distribution examples

2. Incorporated complex-valued network layers to extract signal information appropri-
ately

3. Utilized advanced clustering techniques to explore anomaly detection and open-set
recognition techniques

4. Developed state of the art 3D object-detection system on large point clouds with AWS
parallelization

5. Protoyped GAN for placing objects of interest into LIDAR scenes that blend in with
the background environment

Education
MASTER OF SCIENCE — AUGUST 2019 - MAY 2021 — GEORGE MASON UNI-

VERSITY
Department: Mathematics
Related Coursework: Dimensionality Reduction; Linear Analysis; Fourier Analysis; Or-

dinary Differential Equations; Numerical Linear Algebra; Algebra; Numerical Analysis;
Topology (Spring 2021); Two semesters of master’s thesis;

BACHELOR OF ARTS — AUGUST 2013 - MAY 2017 — UNIVERSITY OF VIR-
GINIA

Departments: Double major in mathematics and computer science
Related Coursework: Calculus I, II, III; Advanced Calculus; Real Analysis; Survey of

Algebra; Discrete Mathematics; Linear Algebra; Intro to Statistics; Mathematical Statistics;
Software Development Methods; Human Computer Interaction; Algorithms; Program and
Data Representation; Artificial Intelligence; Machine Learning; Database Systems; Com-
puter Architecture;

Teaching:
Taught a course on neural networks that focused on understanding current literature

and applications Was an undergraduate teaching assistant for the Program and Data Rep-
resentations and Algorithms courses

39



GED — THOMAS JEFFERSON HIGH SCHOOL FOR SCIENCE AND TECHNOL-
OGY — Graduated in 2013

Publications
Open-set Recognition Through Unsupervised and Class-Distance Learning - Andrew

Draganov, Carter Brown, Enrico Mattei, Cass Dalton, and Jaspreet Ranjit. 2020. In Pro-
ceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning (WiseML
’20).

Feature Learning for Enhanced Security in the Internet of Things - Enrico Mattei, Cass
Dalton, Andrew Draganov, Brent Marin, Michael Tinston, Greg Harrison, Bob Smarrelli,
and Marc Harlacher. 2019. In IEEE Global Conference on Signal and Information Process-
ing.

40


