Reinforcement Learning

Introduction
- Vijay Chakilam
Multi-Armed Bandits

• A learning problem where one is faced repeatedly with a choice among k different options or actions.
• Each choice results in a random numerical reward that depends on the option/action chosen.
• The objective is to maximize the expected total reward over some time period.
• Examples:
 o Digital Advertising
 o Personalization - A/B Testing
Multi-Armed Bandits

- The original form of k-armed bandit problem is named by analogy to a slot machine.

- Rewards are the payoffs for hitting the jackpot.

- Win rate of levers is unknown.

- Discover best bandit by playing and collecting data.

- Balance explore (collecting data) + exploit (playing best-so-far lever)
Action-Value Methods

• Value of an action is the expected or mean reward given that that action is selected.

\[q_*(a) = \mathbb{E}[R_t \mid A_t = a] \]

• Sample average method:
 o A natural way to estimate the true value of an action is the mean reward when that action is selected.

\[Q_t(a) = \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \cdot 1_{A_i = a}}{\sum_{i=1}^{t-1} 1_{A_i = a}} \]
Exploit vs. Explore: Action selection rules

• Exploiting:
 o At any time step, always select the action whose estimated value is greatest.
 o Greedy actions.

\[A_t = \arg \max_a Q_t(a) \]

• Exploring:
 o Instead, select one of the other actions, to improve the estimates of the non-greedy actions.
Exploit vs. Explore: Action selection rules

• Epsilon greedy rule:
 o Choose a small number as a probability of exploration
 o Pseudo code:

    ```java
    p = random()
    if p < epsilon:
      pull random arm
    else:
      pull current-best arm
    ```

• Eventually, we’ll discover which arm is the true best, since this allows us to update every arm’s estimate.
10-armed testbed
Exploit vs. Explore: Action selection rules
Exploit vs. Explore: Action selection rules

• Optimistic Initial Value:
• Suppose we know the true mean of each bandit is < 10.
• Pick a high ceiling as an estimate.
• If a bandit isn’t explored enough, its sample mean will remain high, causing the algorithm to explore it more.
• Even though the initial sample is very high, as the bandit is explored, all collected data will cause the estimate to go down.
• All means will eventually settle into their true values.
Exploit vs. Explore: Action selection rules

Graph showing the percentage of optimal actions over steps for different strategies:
- **Optimistic, Greedy**: $Q_1 = 5, \ \varepsilon = 0$
- **Realistic, ε-Greedy**: $Q_1 = 0, \ \varepsilon = 0.1$
Exploit vs. Explore: Action selection rules

- Upper Confidence Bound: \(A_t \doteq \arg \max_a \left[Q_t(a) + c \sqrt{\frac{\log t}{N_t(a)}} \right] \)

- Similar to the optimistic initial value, be greedy w.r.t the UCB estimate.

- If \(N_t(a) \) is small, the upper bound is high and if it is large, the UCB is low.

- Since \(\log t \) grows more slowly than \(N_t(a) \), enough samples would have been collected by the time the upper bounds eventually shrink.

- Converges to purely greedy.
Exploit vs. Explore: Action selection rules

- **UCB** $c = 2$
- **ϵ-greedy** $\epsilon = 0.1$

Average reward vs. Steps
Action-Value Methods: Incremental Implementation

• Consider the estimate of an action’s value after its i^{th} selection

$$Q_n = \frac{R_1 + R_2 + \cdots + R_{n-1}}{n - 1}.$$

• Manipulate to devise incremental formula:

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_i$$

$$= \frac{1}{n} \left(R_n + \sum_{i=1}^{n-1} R_i \right)$$

$$= \frac{1}{n} \left(R_n + (n - 1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_i \right)$$

$$= \frac{1}{n} \left(R_n + (n - 1)Q_n \right)$$

$$= \frac{1}{n} \left(R_n + nQ_n - Q_n \right)$$

$$= Q_n + \frac{1}{n} \left[R_n - Q_n \right].$$
Action-Value Methods: Nonstationary problem

- Exponential/Recency-weighted average method.

\[
Q_{n+1} = Q_n + \alpha \left[R_n - Q_n \right] \\
= \alpha R_n + (1 - \alpha) Q_n \\
= \alpha R_n + (1 - \alpha) \left[\alpha R_{n-1} + (1 - \alpha) Q_{n-1} \right] \\
= \alpha R_n + (1 - \alpha) \alpha R_{n-1} + (1 - \alpha)^2 Q_{n-1} \\
= \alpha R_n + (1 - \alpha) \alpha R_{n-1} + (1 - \alpha)^2 \alpha R_{n-2} + \\
\cdots + (1 - \alpha)^{n-1} \alpha R_1 + (1 - \alpha)^n Q_1 \\
= (1 - \alpha)^n Q_1 + \sum_{i=1}^{n} \alpha (1 - \alpha)^{n-i} R_i.
\]
Action-Value Methods: Convergence Criterion

- Q will converge for \(\sum_{n=1}^{\infty} \alpha_n(a) = \infty \) and \(\sum_{n=1}^{\infty} \alpha_n^2(a) < \infty \).

- The first condition is required to guarantee that the steps are large enough to eventually overcome any initial conditions or random fluctuations.

- The second condition guarantees that eventually the steps become small enough to assure convergence.

- Q doesn’t converge for a constant step-size parameter.
Reinforcement Learning

- Elements of a Reinforcement Learning problem
Elements of a Reinforcement Learning problem

• Agent interacts with Environment.
• State is a specific configuration of the environment the agent is sensing (may not be the entire environment)
• Actions are what agents can do that affect its state.
• Actions result in next states along with possible rewards.
• Rewards tell how good the actions were.
Reinforcement Learning: Examples

- Tic-Tac-Toe
Reinforcement Learning: Examples

• Recycle Robot

• At each time step, the robot decides whether it should
 o actively search for a can,
 o remain stationary and wait for someone to bring it a can, or
 o go back to home base to recharge its battery.

• The agent makes its decisions solely as a function of the energy level of the battery.

• The state space is the energy level of the battery = \{high, low\}

 • \(A(\text{high}) = \{\text{search, wait}\}\)
 • \(A(\text{low}) = \{\text{search, wait, recharge}\}\)
Reinforcement Learning: Examples

Transition Probabilities

| s | s' | a | $p(s'|s,a)$ | $r(s,a,s')$ |
|-----|-----|---------|-------------|-------------|
| high | high | search | α | r_{search} |
| high | low | search | $1 - \alpha$ | r_{search} |
| low | high | search | $1 - \beta$ | -3 |
| low | low | search | β | r_{search} |
| high | high | wait | 1 | r_{wait} |
| high | low | wait | 0 | r_{wait} |
| low | high | wait | 0 | r_{wait} |
| low | low | wait | 1 | r_{wait} |
| low | high | recharge| 1 | 0 |
| low | low | recharge| 0 | 0 |

Transition Graph

![Transition Graph](image)
Reinforcement Learning: Examples

- Cart Pole
- Inverted Pendulum
- Unstable system
- Episode starts with pole vertical, falls soon.
- Agent: move to keep the pole within certain angle.
- Continuous state space.
Markov Property

- A state signal that succeeds in retaining all relevant information is said to be Markov.
- Consider how a general environment might respond at time $t+1$ to the action taken at time t:

$$
\Pr\{S_{t+1} = s', R_{t+1} = r \mid S_0, A_0, R_1, \ldots, S_{t-1}, A_{t-1}, R_t, S_t, A_t\}
$$

- If the state signal has Markov property, the response at $t+1$ depends only on the state and action representations at time t:

$$
p(s', r \mid s, a) = \Pr\{S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a\}
$$
Markov Property

• From the conditional joint distribution of the state and reward at time $t+1$, other dynamics of the system such as the expected rewards for state-action pairs and the state transition probabilities can be calculated as:

$$r(s, a) \doteq \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a] = \sum_{r \in \mathbb{R}} r \sum_{s' \in S} p(s', r \mid s, a)$$

$$p(s' \mid s, a) \doteq \Pr\{S_{t+1} = s' \mid S_t = s, A_t = a\} = \sum_{r \in \mathbb{R}} p(s', r \mid s, a)$$

$$r(s, a, s') \doteq \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a, S_{t+1} = s'] = \frac{\sum_{r \in \mathbb{R}} r p(s', r \mid s, a)}{p(s' \mid s, a)}$$
Markov Decision Process

A Markov Decision Process is defined by:

- Set of all states
- Set of all actions
- Set of all rewards
- State transition probabilities
- Discount factor (gamma)

The idea of a discount factor is to ‘discount’ the value of a reward that is obtained in the future.

The goal is to maximize total future reward and the further in the future the reward is, the harder it is to predict.

\[G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \]
Policy

- Policy is a mapping from each state and action to the probability of taking an action in a state.
- Policy is what defines what actions to do in what states.
- Technically, not part of the MDP itself, but along with the value function, forms the solution to the problem.
- Examples:
 - Epsilon greedy
 - UCB
Value Functions

• Two possible states from A: B or C
• 50% chance of ending up in either.
• Value of state A:
 o $V(A) = 0.5 \times 1 + 0.5 \times 0 = 0.5$
Value Functions

- Only one possible state from A: B
- Value of state A:
 - $V(A) = 1.0 \times 1 = 1.0$
- Values tells us the future goodness of a state.
Value Functions

• The value of a state under a policy is defined as:

\[v_\pi(s) = \mathbb{E}_\pi[G_t \mid S_t = s] = \mathbb{E}_\pi \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right] \]

• This is called the state-value function.

• Similarly, we define action-value function as the value of taking an action in a state under a policy.

\[q_\pi(s, a) = \mathbb{E}_\pi[G_t \mid S_t = s, A_t = a] = \mathbb{E}_\pi \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a \right] \]
Bellman Equation

A fundamental property of value functions is that they satisfy certain recursive relationships.

\[v_\pi(s) = \mathbb{E}_\pi[G_t \mid S_t = s] \]

\[= \mathbb{E}_\pi \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right] \]

\[= \mathbb{E}_\pi \left[R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k R_{t+k+2} \mid S_t = s \right] \]

\[= \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s' \mid s, a) \left[r + \gamma \mathbb{E}_\pi \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+2} \mid S_{t+1} = s' \right] \right] \]

\[= \sum_{a} \pi(a \mid s) \sum_{s', r} p(s' \mid s, a) \left[r + \gamma v_\pi(s') \right], \quad \forall s \in S \]
Optimal policy; Optimal Value

- Value functions define a partial ordering over policies.
- There is always at least one policy that is better than or equal to all other policies.

\[
v_*(s) = \max_{\pi} v_\pi(s)
\]
\[
q_*(s, a) = \max_{\pi} q_\pi(s, a)
\]

- We can also write the optimal action-value function in terms of the optimal state-value function as:

\[
q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]
\]
V(s) vs. Q(s, a)

- Finding values given a fixed policy is called prediction problem.
- Finding the optimal policy is called as a control problem.
- The action-value function is better suited for the control problem, since it tells us what the best action is given a state.
- The state-value function requires to perform all the actions to determine the best action.
Solving the MDPs

• Solving the prediction problem
 o Evaluating the values under a given policy

• Solving the control problem
 while not converged:
 evaluate values under current policy
 improve policy by taking argmax over the action-values

• Some methods:
 o Dynamic Programming
 o Monte Carlo methods
 o Temporal Difference methods
 o Approximation methods
Dynamic Programming

- We need to loop through all the states on every iteration.
- Impractical for large and infinite state space problems.
- Calculating the joint distribution of future state and rewards could become infeasible.
- Doesn’t learn from experience.
Monte Carlo Methods

• Unlike Dynamic Programming, Monte Carlo methods learn from experience.
• Expected values can be approximated by sample means.

\[V(s) = E[G(t) \mid S(t) = s] \approx \frac{1}{N} \sum_{i=1}^{N} G_{i,s} \]

• Requires many episodes of experience.
• MC methods can leave many states unexplored.
Temporal Difference Methods

- Estimate returns based on the current value function.
- Instead of calculating the sample mean, TD uses the current reward and the next state value.
- Enables online learning.
Approximation Methods

- DP, MC and TD methods are studied in the context of tabular methods.
- The value functions are stored as dictionaries.
- Can’t scale to large and infinite state spaces.
- Use function approximation methods to approximate the values functions instead.
Summary

• Three most important distinguishing characteristics of Reinforcement Learning:
 o Being closed-loop (system’s actions influence its later inputs)
 o Not having direct instructions as to what action to take
 o The consequences of actions play out over extended time periods.

• A very important challenge that arise in reinforcement learning and not in other kinds of learning is the trade off between exploration and exploitation.
References

• Richard Sutton and Andrew Barto, Reinforcement Learning: An Introduction

• Andrew Barto, Reinforcement Learning and its relationship with Supervised Learning

• Andrej Karpathy, Deep Reinforcement Learning
 http://karpathy.github.io/2016/05/31/rl/

• Deep Learning Courses
 https://deeplearningcourses.com/