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ABSTRACT
This paper provides several new criteria for a ring to be a complete
matrix ring. Some applications demonstrate their efficacy; and their rela-
tive strengths are indicated by calculating the structures they impose on
universal algebras.

Introduction
- Stimulated by a question of Chatters [4], several recent papers, such as Chatters
(5], Levy, Robson and Stafford [7] and Robson [8], have investigated techniques
+ enabling identification of complete n X n matrix rings. This paper is a contin-
uation and improvement of {8], in which it was shown, for a ring R, that the
following conditions are equivalent:
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(i) R is an n X n matrix ring;
(ii) R contains elements f,a such that f™ =0 and

af" 4 fafr i+ frla=1
(iii) R contains elements f,a;,az,...,a, such that f* =0 and
arf"H+ faaf* P 4 4 e = 1

The first section of this paper starts by providing two further criteria each
involving three elements and each a substantial simplification of (ii) and (iii);
namely

(iv) R contains elements f,a,b such that f* =0 and af*~ ! + fb=1;
(v) R contains elements f,a,b such that f =0 and af™ + f¥b = 1, for some
M,N with M + N =n.

The section ends with a description of an algebra universal with respect to
criterion (iv). Section 2 then uses these results to consider criteria similar to
(iv) and (v) but, like (ii), involving only two elements. Here the situation is
more complex and the theory is less complete. The final section gives further
applications, this time to rings of differential operators.

Throughout, all rings are associative and, except when stated otherwise, have
a 1. The standard matrix units of an n x n matrix ring M,(S) over some ring
S will be denoted by {e;;}. On the other hand, when displaying a family of
elements satisfying the relations characterizing matrix units, we will write these
as {E;;}.

1. Three element relations

This section concerns relations involving three elements of a ring R. The first
result establishes one of the new criteria mentioned in the introduction.

THEOREM 1.1: The following conditions on a ring R are equivalent:
(i) R is a complete n X n matrix ring;
(i) R contains elements a,b and f such that f* =0 and 1 = af™1+ fb. ]

Proof: (i) = (ii). Let {e;;} be a complete set of n x n matrix units for R. We
let a=en, b=e€rat+e+ - -+en_1,and f =en +e3z+---+enn_1. One can
then verify that f*~! = ey, that f* =0 and that af™"! + fb = 1, as required.
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(ii) = (i). The argument here concentrates on the n right ideals faf" 1R
for r € {0,1,...,n — 1}. It will be shown that these right ideals are mutually
isomorphic, and that their sum is direct and equals R. Granted this, the regular
representation then demonstrates that R ~ M,, (End(af™"'R)).

We start, then, by noting that

af*™t = af"Yaf* Tt + 1) = (af ")

since f* = 0. It follows that, for each r € {0,1,...,n — 1}, the two maps
af* R — fraf" 'R and faf" 1R — af" 'R given by left multiplication,
respectively, by f” and af™~1~" are mutually inverse. This shows that the right
ideals are isomorphic.

Next note that

l=af" '+ fb
=af" '+ flaf™ 1 + fb)b
=af" '+ faf* b+ faf" + fb)b?

(1) =af"—l+,faf""1b+...+fn—lafn—1bn—1

n—1

since f* = 0. Therefore Z flaf" 'R=R.

=0
Finally, to see that this sum is direct, suppose that
0=af"tzo+ fafr o1+ -+ P laf" 1z,

for some x; € R. Left multiplication, in turn, by af™~1, faf*~2,..., f*~la shows
that, for each r, fraf® 1z, = 0. This is the final ingredient required. [ |

Note 1.2: For what follows, it is useful to observe, from the above proof, that
" left multiplication by f gives the isomorphism f"~la "R — fraf*'R for
each r € {1,2,...,n — 1} and it maps f"~'af" 'R to zero. Thus, under the
regular representation, f = ez +eg2 + -+ + enn—1. Likewise af"~! = e;; and
so fraf™ ! =e,; and fb =1 —e;;. In fact, as the next result shows, one can
describe, directly, the complete set of matrix units in terms of a, b and f, thereby
also providing an alternative proof of Theorem 1.1.
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THEOREM 1.3: Let R be a ring containing elements f,a,b such that f* = 0
and af"~* + fb = 1. Then the set {E;;}, given by E;; = fi~laf*" 10/, is a
complete set of n x n matrix units for R.

Proof: Note first that

Enn+Ex+--+ Enp
— afn—l +faf"'1b+~-- +fn—1afn—1bn—1
=1

as in (1).

So it remains only to show that E;; Exe = 0;xEse; i.e. that
(fi-lafn—lbj—1)(fk—1afn—1b£—1) _ 6jk(fi‘_1af"‘1be‘1).
Therefore it will be enough to prove that
@ af " et = e fn

for all j,k € {1,2,...,n}.
The proof of this starts by noting that

fibi = fi—-l(fb)bi—l — fi-l(l _ afn—l)bi—l
— (1 _ fi—lafn—i)fi—lbi—l

for 1 < i < n. Hence, using induction on i,
fibi — (1 _ fi—lafn—i)(l _ fi—2afn—i+1) . (1 _ af"'l).
Using this, we see that

afn—lbj—lfk—lafn—l — afn—j(fj—lbj—-l)fk—lafn—l

®3)
=afn—j(1 _ fj—2afn—j+1)(1 _ fj—Safn—j+2) . (1 _ afn_l)fk_lafn_l.

We will simplify this last expression, starting at its right-hand end, using the fact
that
(1 _ fn—£+laf£)fk—1 — fk-l
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whenever £k — 14 £ > n, since f® = 0. First, suppose that j < k. Then (3)
reduces to the equation

afn—lbj—lfk—lafn—l — afn—jfk—lafn-—l

which, since f* = 0 and (af""!)2 = af"~!, verifies (2) in this case. Next,

suppose that j > k. Then the simplification of (3) produces the equation
aft TR e = af I (1 RN (1 Rl k) et e,
However

(L= afm R tafm = 7 af" - af") = 0.

Hence (2) holds for all j, k. ]

Note 1.4: In fact, the set {E;;} obtained in 1.3 coincides with the set {e;;}
arising from the regular representation in 1.1(ii). To see this, one notes, from
1.2 and 1.3, that E;; = e;; for each i. However, each matrix unit is charac-
terized precisely by its action, via left multiplication, on the set of right ideals
{eaR: i=1,...,n}. Hence the two sets coincide.

Next we aim at the second of the new criteria. It is convenient first to prove

two subsidiary results.

LEMMA 1.5: Suppose that R is a ring, f € R and I, J are subrings of R, not
necessarily with 1, such that J is closed under left and right multiplication by f.
Iflelf+ fJthenlelIf?+4J.

Proof: Suppose that 1 =af + fb wherea € I, b€ J. Then

l=af+ fb
=a(l - fb)f + fo+bf — (1 —af)bf
=a(af)f + (fo+bf — (fb)bf)
elf’+J. n
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COROLLARY 1.6: Suppose that R is a ring, f € R and N is a positive integer.
Then

1eRf+fN1R
— 1e€Rf’+fN2R

<~ 1eRff+fN'R

— 1eRfN14+fR

Proof. For each i € {1,2,...,N — 1}, both Rf*~! and fN~*~1R are subrings
closed under left and right multiplication by f. The result follows using Lemma
1.5, together with its left-right symmetric version. [ |

The next result establishes the second new criterion, which provides greater

symmetry in the roles of a and b.

THEOREM 1.7: For a ring R and positive integers m and n, the following
conditions are equivalent:

(i) R~ Mp,4n(S) for some ring S;

(ii) R contains elements a,b and f such that f™*" =0 and af™ + f*b = 1.

Proof: To prove (i) = (ii) note that the elements

a = €1,m+1 + €2,m+2 +-t+ enmin
b= i+l te2nr2t -+ emmin

f =eg1+es2+ -+ empnmin—-1

in My, 4n(S) satisfy the equations in (ii).

Conversely, assume a, b, f € R are as described in (ii). Since 1 € Rf™ + f"R
then Corollary 1.6 asserts that 1 € Rf™*"~1 + fR. Then Theorem 1.1 shows
that R ~ M,,1,(S) for some ring S. n

We end this section by considering a universal example of R as in Theorem 1.1.
Here and later, it will be useful to consider not only algebras over a commutative
ring k but, more generally, over a noncommutative ring k, with the understanding
that all generators are k-centralizing; i.e. commute with all elements of k.
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THEOREM 1.8: Let R be an algebra which is freely generated over some non-
commutative ring k by three elements a,b and f subject only to the relations
ffr=0and1=af""!+ fb. Then R ~ M,(S) with S being a free k-algebra in
n? indeterminates.

Proof: One knows from Theorem 1.1 that R is a full ring of n X n matrices and
that f, af"~! and fb are as specified in Note 1.2. The conditions that these
requirements lay upon the entries of ¢ and b, when viewed as n x n matrices,

specify that

N . 1 010 0
« 0 0 01 0

a= ), b= .
N « 0 0 00 ... 1

where * denotes arbitrary elements. To see that R ~ M, (S) with S of the form
claimed we argue as follows.

In M,(k(zi,...,Z,2)) one can construct two matrices a’ and b’ of the same
form as a and b above, with the * entries being filled by the n? indeterminates

x;. There is thus a mapping
B: kla',b', f) > R

given by B(a’) = a, B(t') = b, B(f) = f. However, since a’,b’ and f satisfy
the relations imposed on a, b and f, then 3 has an inverse. So R =~ k{a’,V, f}.’
One can verify easily that the elements a’,¥, f € M,(k(zy,...,T,2)) generate
all the matrix units of M, (k{(xy,...,z,2)). Hence k{a',¥, f} contains the com-
plete set of » X n matrix units. Since the indeterminates all appear as entries
of the matrices a’ and ¥, one sees that k(a',V', f) = M,(k(zi1,...,T,2)) as

required. |

~ Comment: (i) The n x n matrix units which Theorem 1.3 provides in the ring
k{a',V, f) coincide with the standard matrix units of the ring M, (k(z1,...,Tn2)).
This follows, as in Note 1.4, since one can readily verify that this is true for the
first column of these sets.

(ii) We have not yet determined the corresponding result for the two relations
™™ =0and af™+ f"b=1.
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2. Two element relations

Comparison of the new criteria, in Theorem 1.1 and Theorem 1.7, with the
criterion (ii) in the theorem of Robson [8] described in the introduction, leads
to some natural conjectures about the existence of similar criteria involving only
two elements. The next result disposes of the simplest guess. We thank the
referee for this shorter proof.

THEOREM 2.1: Let n > 3. Then there is no nontrivial ring R having elements a
and f with f* =0 and af™ ' + fa=1.

Proof: Let R be such a ring. Multiply the equation af™~! + fa = 1 on the left
by f*~2 and on the right by f"~!. This yields the equation

. fn—lafn—l — f2n—3 =0

which by Theorem 1.3 implies that E,; = 0 and so that R is trivial. ]

A similar argument shows the same for the relations f™*" = 0 and af™ +
f™a =1 whenever m # n. A more general result than this, replacing the relation
fm™t™ =0 by f¥ =0 for some v, can be found in Agnarsson [1].

However, there are some interesting two element criteria. If one considers the
explicit choices of f, a and b in the proof that (i) = (ii) in Theorem 1.1, one
observes that 5" ~! = @ and that b™ = 0. Therefore the next result follows directly
from Theorem 1.1.

THEOREM 2.2: The following conditions on a ring R are equivalent:
(i) R is a complete n x n matrix ring;
(ii) R contains elements b and f such that f* =0 and 1 =b""1f""1 4 fb;
(iii) R contains elements b and f such that f* =0,b" =0 and 1 = b*~1f"—1 4
fb. |

In the case of criterion (iii) above, it is particularly easy to describe the ring
over which R is an n x n matrix ring.

COROLLARY 2.3: Let R be a ring containing elements b, f with b™ = f* = 0 and :
b"1f"=1 4+ fb=1. Then R~ M,(b" 'Rf"~1) ~ M,(f* 'Rb""1).

Proof: Note, from Theorem 1.3, that E;; = fi~15"! f2~1p5=1 defines a set of
matrix units. In particular

Ey, = bn—lfn—lbn-—l — (1 _ fb)bn—l — bn—l
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and similarly E,; = f™"!. The well known fact that for all i, j there is an
isomorphism R ~ M,(E;; REj;), where E;;RE;; is a ring with unit Ej;, now
gives the result. ]

One can also obtain a result which, like Theorem 1.7, has more symmetry.

THEOREM 2.4: Let 1, j,n be integers with i + j = n. The following conditions
on a ring R are equivalent:

(1) R is a complete n x n matrix ring;

(ii) R contains elements b and f such that f* =0 and 1 = bift + fipJ;

(iif) R contains elements b and f such that f* =0,b" =0 and 1 = b* ft + fip7.

Proof: To see that (i) implies the other two conditions, we simply use the same
elements f and b as in Theorem 2.2 (i.e. those used in the proof that (i) = (ii)
in Theorem 1.1). The reverse implications follow from Theorem 1.7. ]

Our next result, which concerns k-algebras of the type described before
Theorem 1.8, shows that there are other relations on f and b which do not
produce triviality. Hence, the relations described in Theorem 2.4 do not exhaust
the possibilities. '

THEOREM 2.5: Let k be a noncommutative ring and i,j,m,n be positive
integers. Let R be the k-algebra freely generated by elements b and f subject to
the relations f™*" = 0 and b f™ + f™b/ = 1. Suppose that i/m=j/n. Then R
is a non-trivial (m +n) x (m + n) matrix ring.

Proof: That R ~ M,,1.(S) for some ring S is clear from Theorem 1.7. To

establish non-triviality, first let d be any positive integer and define s and ¢ in
Ma(k) by

s=epte+-+ea-1qg and t=ey +texr+--+egq_1+ €14

Of course, these centralize k and one can readily check that s* = 0, that t¢ = 1,
. and that #/s7 + s4~9t4F =1 forall j € {1,2,...,d — 1}.

Next, suppose that i/m = j/n = p/q and choose d = (m + n)p. We set b = ¢7
and f = sP in My(k). Evidently f™*" = s¢ = 0 and

bifm + f'n.b] — t’iqu'm + sP'ntjq
= P gP™ | gd—pmyd—pm

=1



10 G. AGNARSSON, S. A. AMITSUR AND J. C. ROBSON Isr. J. Math.

Since these elements in My(k) satisfy the relations, R is non-trivial. |

We note, in the above proof, that

piti = $3(E+) = gp(mtn) _ 4d _ 1

Hence, for those elements b, f € My(k),

bM(i+j)+ifm + fnbN(i+J')+J' =1

for all positive integers M, N. One can see from this that the condition, in
Theorem 2.5, that i/m = j/n is not necessary. It would be of interest to have
necessary and sufficient conditions upon i, j,m,n for such a non-trivial algebra
to exist. Some results in this direction appear in [1].

Next we return to the two element criteria appearing in Theorem 2.2. In these
cases, as in Theorem 1.8, the universal k-algebras can be precisely identified. Our

notation is varied to avoid confusion.

THEOREM 2.6: Let k be a noncommutative ring and R be a k-algebra generated
by two elements ¢ and f.
(i) Suppose that c and f satisfy precisely the relations f* = 0 and ¢! f"~1 +
fc=1. Then R ~ M, (k[z]) for some indeterminate .
(ii) Suppose, in addition, the relation ¢c* = 0 is imposed. Then R ~ M, (k).

Proof: (i) As in the proof of Theorem 1.8, one can see that R = M,(S) for some
ring § with f = ez1 + €32+ -+ + €énn_1 and with ¢ and ¢*~1 taking the forms,
in that proof, of b and a respectively. The form of b shows that

c=ejpgtew3+- - +enn-1+Ci€nl+C2enz+ -+ Cnnn

for some ¢; € S. It is not difficult to calculate that the (2,n) entry of ¢!
is ¢,. The form of a shows then that ¢, = 0. Consideration, in turn, of the
(3,n), (4,n),...,(n — 1,n) entries of ¢! demonstrates that c,—1 = cp_2 =
... =¢g = 0. Thus only ¢; remains unspecified. The fact that the matrices f, as
above, and
c =ept+em+-+ €n—_1n + Tenl

in M,,(k[z]) satisfy the two relations leads, as in the proof of Theorem 1.8, to the
desired conclusion.

(ii) For ¢ as above, one checks readily that ¢® = c¢;1. So in this case ¢; = 0
and, in a similar fashion, R ~ M, (k). |
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Note 2.7: Theorem 2.6(ii), together with Theorem 2.2, shows that one can
present the n X n matrix ring over any ring k by means of a set of just two
generators f,c and the three relations

fr=0 =0, "+ fe=1,

rather than the usual set of n? matrix units and their n* + 1 relations. Further-
more, the elements f and ¢ then have the form

f=en+en+- - +esn

and

c=egt+enm+-+e_1n

One should, perhaps, recall that Albert [2, page 95] demonstrated the existence
of a two element generating set for M, (F') over a sufficiently large field F, and
used this, in [3], to show the same for any finite dimensional separable algebra
over an infinite field.

3. Application to rings of differential operators

In this section we will examine certain homomorphic images of rings of differential
operators to which the previous material is applicable.

Let R be a ring of prime characteristic p > 0, and §: R — R be a derivation.
Let R[t, 8] be the corresponding differential operator ring, in which we have tr =
rt+6(r) forallr € R.

More generally, by induction on m we have
= (m
4 t"r = & (r)t™t.
(@ =3 (7) e

It is well known that a p-th power of a derivation in a ring of characteristic pis
also a derivation, so we have a set {6*": n > 0} of derivations on R. In fact we
note that for m = p™ (4) becomes

(5) P r =P + 67" (r).
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THEOREM 3.1: Let R[t,6] be as above. If n > 0 is an integer such that 1 €
im(67" ") and 6" = 0 then R]t,6]/(t*") is a nonzero p” x p* matrix ring.

Proof: Let T =1t*""" and A = """ Since 1 € im(A) there is an s € R with
A(s) = 1 and so T's = sT + 1. We get by induction on k that A(s*) = ks*~1.
Hence by (4) the following holds in R|[t, 6], where at the second step we collect
terms ending in T and call the sum s'T.

p—~1
TP-1gp-1 _ Z (P - 1) Af(sp=1)TP=1~

2

=0
= T+ AP} (sP71)
=T+ (p-1)
=sT-1

by Wilson’s theorem. We know generally about rings of differential operators
that R[t, 8] is a free left R-module with basis {1,¢,¢2,...}. In view of (5) and the
relation 67" = 0 we have tP"r = rt?" for all r € R. Therefore (t*") is a proper
ideal of R|[t, ] with factor ring R[t,6]/(t"") free as a left R-module on the basis
{1,t,8%,... 7" 71}

Now in the factor ring R[t,8]/(t""), there are elements ¢, s, s’ satisfying

n—1

P e A
tP" = 0.
So, by Theorem 1.7, R[t,6]/(t?") is a p™ x p™ matrix ring. |
Example 3.2: Let n > 0 be an integer. Consider R = k[x1,%2,...,Zpn-1] where

k is a field of characteristic p. Let §: R — R be the k-linear derivation on R
defined by 6(z;) = x4 for all i < p"~! and §(z,n-1) = 1. Here 6" (zy) =1
and 67" = 0, showing that one has instances of Theorem 3.1 with arbitrarily
large n.

Note 3.3: Let k be a field of characteristic p and consider the Weyl algebra
over k defined as A;(k) = k[z][t, &£]. Here £ (z) = 1 and (£)? = 0, so by
Theorem 3.1, A;(k)/(tP) is a p X p matrix algebra. In fact it is known that
k[z][t, £]/(tP) = M,(k[z]) as k-algebras [6, exercise 2ZF, p.42], so here we have
an example of R and § such that R[t,6]/(tP) = M,(R). This isomorphism does
not hold for general R. For example, by applying Theorem 3.1 and counting
dimensions over k we see that as k-algebras k[z]/(zP)[t, &]/(t") & Mp(k).
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