Sample Problems for Final Exam

Instructor: David Carchedi Topos Theory

 $July\ 21,\ 2013$

Problem 1. Topoi are Sheaves over Themselves

Let $\mathscr E$ be a Grothendieck topos in the Grothendieck universe $\mathcal U$. Equip $\mathscr E$ with the following Grothendieck pretopology:

A collection of arrows

$$(E_i \to E)_{i \in I}$$

is declared to be a cover if the induced morphism

$$\coprod_{i\in I} E_i \to E$$

is an epimorphism. Call the associated Grothendieck topology the **epimorphism topology**.

- (a) Show that the above definition of cover indeed defines a Grothendieck pretopology.
- (b) Choose a subcanonical Grothendieck site (\mathscr{C}, J) such that $\mathbf{Sh}_J(\mathscr{C}) \simeq \mathscr{E}$. (Why can we arrange J to be subcanonical?). Let \mathcal{V} be a Grothendieck universe such that $\mathcal{U} \in \mathcal{V}$, so that \mathscr{E} is \mathcal{V} -small. Show that there exists a Grothendieck topology K on \mathscr{E} such that

$$\widehat{\mathbf{Sh}}_{K}\left(\mathscr{E}\right)\simeq\widehat{\mathbf{Sh}}_{J}\left(\mathscr{C}\right),$$

where the "hat" notation means sheaves of V-small sets (as opposed to U-small sets, in which case we omit the "hat").

(c) Show that the above equivalence restricts to equivalences

$$\mathscr{E} \simeq \mathbf{Sh}_{J}(\mathscr{C}) \simeq \mathbf{Sh}_{K}(\mathscr{E}),$$

where $\mathbf{Sh}_{K}(\mathscr{E})$ is the full subcategory of $\widehat{\mathbf{Sh}_{K}}(\mathscr{E})$ spanned by sheaves of \mathcal{U} -small sets.

(d) Show that K is the epimorphism topology. (It is hence also the same as the canonical topology).

Problem 2. An Exercise about Sheaves on the Circle

Consider the unit circle

$$S^1\subset \mathbb{C}$$

and let z denote the global complex coordinate of \mathbb{C} . Let n be a positive integer. Consider the following poset P:

The objects consist of pairs (U,φ) where $U\subseteq S^1$ is an open subset, and

$$\varphi: U \to S^1$$

is a continuous function such that for all $z \in U$,

$$\varphi\left(z\right)^{n}=z.$$

We declare

$$(U,\varphi) \le (V,\psi)$$

if $U \subseteq V$ and $\psi|_U = \varphi$.

Equip P with a Grothendieck pretopology by declaring a family of arrows

$$((U_{\alpha}, \varphi_{\alpha}) \le (U, \varphi))_{\alpha \in A}$$

to be a cover if

$$U = \bigcup_{\alpha \in A} U_{\alpha}.$$

Denote the associated Grothendieck topology by J.

Show that

$$\mathbf{Sh}_{J}\left(P\right)\simeq\mathbf{Sh}\left(S^{1}\right).$$

Problem 3. Characterizing Localic Topoi

Let \mathcal{E} be a Grothendieck topos. Show that the following properties are equivalent:

- i) \mathscr{E} is localic.
- ii) There exists a poset P equipped with a Grothendieck topology J such that $\mathscr{E} \simeq \mathbf{Sh}_J(P)$.
- iii) The inclusion $\mathbf{Sub}_{\mathscr{E}}(1) \hookrightarrow \mathscr{E}$ of the poset of subobjects of the terminal object is strongly generating.

Remark. Recall that a full and faithful functor

$$i:\mathscr{C}\hookrightarrow\mathscr{D}$$

is strongly generating if for ever object D, the canonical map

$$\underline{\operatorname{colim}} \, \pi_D \to D$$

is an isomorphism, where

$$\pi_D: \mathscr{C}/D \to \mathscr{D}$$

is the functor

$$(i(C) \to D) \mapsto i(C).$$