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Problem 1. Topoi are Sheaves over Themselves

Let & be a Grothendieck topos in the Grothendieck universe . Equip & with the following
Grothendieck pretopology:

A collection of arrows

el

is declared to be a cover if the induced morphism
[[E—E

is an epimorphism. Call the associated Grothendieck topology the epimorphism topology.
(a) Show that the above definition of cover indeed defines a Grothendieck pretopology.

(b) Choose a subcanonical Grothendieck site (¢, J) such that Sh, (¢) ~ &. (Why can we
arrange J to be subcanonical?). Let V be a Grothendieck universe such that & € V, so
that & is V-small. Show that there exists a Grothendieck topology K on & such that

Shy (£) ~ Shy (€),

where the “hat” notation means sheaves of V-small sets (as opposed to U-small sets,
in which case we omit the “hat”).

(c) Show that the above equivalence restricts to equivalences
& ~Sh; (¢) ~ Shg (&),
where Shg (&) is the full subcategory of Shy (&) spanned by sheaves of U-small sets.

(d) Show that K is the epimorphism topology. (It is hence also the same as the canonical
topology).
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Problem 2. An Exercise about Sheaves on the Circle

Consider the unit circle
stcc
and let z denote the global complex coordinate of C. Let n be a positive integer. Consider

the following poset P:
The objects consist of pairs (U, ¢) where U C S! is an open subset, and

0:U — 5!

is a continuous function such that for all z € U,

We declare
U.p) < (V.¥)
if U CV and ¥|y = .
Equip P with a Grothendieck pretopology by declaring a family of arrows

((Uou (Pa) < (U7 90))aeA

U=J ..

a€cA

to be a cover if

Denote the associated Grothendieck topology by J.
Show that
Sh, (P) ~ Sh (S').



July 21, 2013

Problem 3. Characterizing Localic Topoi
Let & be a Grothendieck topos. Show that the following properties are equivalent:
i) & is localic.

ii) There exists a poset P equipped with a Grothendieck topology J such that & =~
Sh; (P).

iii) The inclusion Subg (1) < & of the poset of subobjects of the terminal object is
strongly generating.

Remark. Recall that a full and faithful functor
i€ —>9
is strongly generating if for ever object D, the canonical map

coimrmp — D
_—

is an isomorphism, where

T :C/D— 9

is the functor
(1(C) = D) —i(C).



