Unless otherwise stated, Euclidean space is assumed in each question.

1. Prove that in a cyclic quadrilateral, the product of the lengths of the two diagonals is equal to the sum of the products of lengths of the opposite sides.

2. In Fig. 1, ABC is an arbitrary triangle, DAB, EAC, FBC are equilateral triangles. Prove that CD, BE, AF concurrent at a point P, and that all angles at P are 60°.

3. (continued) Prove that the circumcenters of DAB, EAC, FBC form an equilateral triangle.

4. Let H be the orthocenter of a triangle ABC. Prove that for any point P on the circumcircle of ABC, the midpoint of HP is on the nine-point circle of ABC.