Office HRS today CANCELLED
but see me after class for any brief questions

#18 p.76

\[U = 100 \text{ workers} \]
\[A = \text{college graduates} \]
\[B = \text{union members} \]

- 60 not college grads
- 20 union members
- 30 union, college grads

How many were neither college grade nor union members?

\[|A'| = 60 \quad B' \cap A = \text{? non union college grads} \]
\[|B'| = 30 \quad \text{Want} \quad |A' \cap B'| = 1 \quad (A \cup B)' \]

Technique: introduce a variable or two (or three).

\[x = |A \cap B| \]
\[y = |B \cap A'| \]
\[z = |(A \cup B)'| \]

This is what we want!

\[|U| = |A| + |A'| \]
\[100 = |A| + 60 \quad \Rightarrow \quad |A| = 40 \]
\[|A'| = 20+x \quad \Rightarrow \quad 40 = 20+x \quad \Rightarrow \quad x = 20 \]

\[U = |B| + |B'| \quad \Rightarrow \quad 100 = 30 + |B'| \quad \Rightarrow \quad |B'| = 70 \]

\[|B'| = 20+z \quad \Rightarrow \quad 70 = 20+z \quad \Rightarrow \quad z = 50 \]

To figure out y:

\[|B| = x+y = 20+y \quad \Rightarrow \quad y = 10 \]
\[n(S) = 3 \quad n(S \cup T) = 6 \quad n(T) = 4 \]
\[n(S' \cup U \cap T') = 9 \]

R not relevant

\[x + y = 3 \]
\[x + y + z = 6 \]
\[y + z = 4 \]
\[w + x + z = 9 \]
\[x + 2 + z = 9 \]
\[z = 3 \]

\[S' \cup U \cap T' = (S \cap T)' \]

Always using the principle of inclusion and exclusion.

\[|S \cup T| = |S| + |T| - |S \cap T| \]
\[6 = 3 + 4 - |S \cap T| \quad \Rightarrow \quad |S \cap T| = 1 \]
\[n(U) = 64 \quad n(R \cup S \cup U) = 45 \quad n(R) = 22 \]
\[n(T) = 26 \quad n(R \cap S) = 4 \quad n(S \cap T) = 6 \]
\[n(R \cap T) = 8 \quad n(R \cap S \cap T) = 1 \]

Venn Diagram:

\[R \quad S \quad T \quad U \]

\[11 \quad 3 \quad 5 \]

\[7 \quad 1 \quad 5 \]

\[13 \]

Working from inside out by region:

\[|T| = 26 \quad 7 + 1 + 5 + ? \]
\[|R| = 22 \quad 7 + 3 + 1 + ? \]

\[n(R \cup S \cup U) = 45 \quad 11 + 3 + 7 + 1 + 5 + 13 + ? \]
\[= 40 + ? \]

\[|U| = |R \cup S \cup U| + ? \]
\[64 = 45 + ? \]

Using PIE

\[n(R \cup S \cup U) = n(R) + n(S) + n(T) - n(R \cap S) - n(R \cap T) - n(S \cap T) + n(R \cap S \cap T) \]
\[\Rightarrow 45 = 22 + n(S) + 26 - 4 - 8 - 6 + 1 \]
\[45 = 31 + n(S) \Rightarrow n(S) = 14 \]

Get rest by doing more PIE.
Counting exercise: I flip a coin, then I roll a 6-sided die, how many outcomes are there possible?

Flip a coin, roll a 6-sided die, then pick one of 3 dogs, cat, fish.

How many outcomes:

\[2 \times 6 \times 3 = 36 \]

\[\text{MULTIPLICATION PRINCIPLE} \]

If a task is composed of two operations, and the first operation has \(m \) outcomes, and for each of the \(m \) outcomes, there are \(n \) outcomes for the second operation, then there are \(m \cdot n \) outcomes of the task.
Does this violate the mult. principle?

Task: flip a coin. If heads, pick a card from all the red cards in a deck of 52 cards. If tails, pick a card from all the black cards in a standard deck.

General mult. principle: Suppose a task consists of operations performed consecutively. Suppose operation 1 can be performed in \(m_1 \) ways, and for each of these, operation 2 can be performed in \(m_2 \) ways, and for each of these, operation 3 can be performed in \(m_3 \) ways, etc.

Then the total \(m \) ways to perform the task is \(m_1 \cdot m_2 \cdot m_3 \cdots m_e \).

Example

I want to assign social security numbers to people working in the U.S. These are 9 digits long. How many ways to do this?

The task is a sequence of 9 operations by picking a # from 0 to 9.

Operation 1: 10 ways \(m_1 = 10 \)
2: 10 ways \(m_2 = 10 \)
3: \(m_3 = 10 \)

By mult. principle, there are \(10 \cdot 10 = 10^9 \) different #s.
Special Case of Mult Princ. is PERMUTATIONS

Ex. I have 4 books (Math, Sci Fi, Novel, Self Help)
How many ways can I arrange them on the shelf?

Operation 1: put 1st book on shelf \(m_1 = 4 \)
2: put 2nd book to right of 1st book \(m_2 = 3 \)
3: put 3rd book to right of 2nd book \(m_3 = 2 \)
4: put last book to right of 3rd book \(m_4 = 1 \)

Ans. by mult. prrn. is \(4 \cdot 3 \cdot 2 \cdot 1 = 4! \)

Ex. Design a test with 20 problems in order from a test bank with 100 problems. How many ways can I write the test?

Operation i is pick the i-th problem for the test \((i=1, 2, \ldots, 20) \).

\[
\begin{align*}
m_1 &= 100 \\
m_2 &= 99 \\
m_3 &= 98 \\
m_4 &= 97 \\
m_5 &= 96 \\
&\vdots \\
m_{20} &= 81 \\
\end{align*}
\]

Ans. \(100 \cdot 99 \cdot 98 \cdot \ldots \cdot 81 \)