\[u_t + uu_x = u_{xx} \quad 0 < x < 1, \quad t > 0 \]
\[u(0, t) = u(1, t) = 0 \quad t > 0 \]
\[u(x, 0) = e(x) \quad 0 < x < 1 \]

Let \(v : [0, 1] \rightarrow \mathbb{R} \)
\[x \rightarrow v(x) \]

\[u_t v + \frac{1}{2} (u^2)_x v = u_{xx} v \]
\[u(0, t) = u(1, t) = 0 \]
\[u(x, 0) = e(x) \]

\[\int_0^1 u_t v dx + \frac{1}{2} \int_0^1 (u^2)_x v dx = \int_0^1 u_{xx} v dx \]
\[u(0, t) = u(1, t) = 0 \]
\[u(x, 0) = e(x) \]

Integration by parts 8
\[\int_0^1 u_t v dx + \frac{1}{2} \int_0^1 (u^2)_x v dx = - \int_0^1 u_x v_x dx + u_x v \bigg|_0^1 \]

Let's assume that
\[v = 0 \] at \(x = 0 \) and \(x = 1 \) then
\[
\int_0^1 u_t v \, dx + \frac{1}{2} \int_0^1 (u^2)_x v \, dx = -\int_0^1 u_x v_x \, dx \tag{2}
\]

So, if \(u(x, t) \) satisfies (1) then \(u(x, t) \) satisfies (2) for every \(V(x) \) with \(V(0) = V(1) = 0 \).

Conversely, if \(u(x, t) \) with \(u(0, t) = u(1, t) = 0 \) satisfies (2) for every \(V(x) \) with \(V(0) = V(1) = 0 \) then
\[
u_t + uu_x = u_{xx}, \quad 0 < x < 1, \quad t > 0
\]
\[
u(0, t) = u(1, t) = 0, \quad t > 0
\]

for each fixed \(t \).

Let \(H := \{ V : [0, 1] \to \mathbb{R} \} \)

Continuous and “a little more,” and \(v(0) = v(1) = 0 \) (fix \(t \)) we are searching for \(u(x, t) \in H \) such that (2) is satisfied for every \(V \in H \).

But \(H \) is infinite dimensional, \(\text{span} \{ \sin(n \pi x) \} \) for \(n = 1, 2, 3, \ldots \) linearly independent. (Not good for numerical purposes.) so we wish to restrict our search space to a finite dimensional one \(V \in H \).

For solution

\[
x_1, x_2, x_3, \ldots, x_n, \quad 0 = x_0 < x_1 < \ldots < x_n = 1 = x_{n+1}
\]
$V := \{ v : [a, b] \rightarrow \mathbb{R} : v \text{ is continuous and }$

\begin{align*}
V|_{[x_k, x_{k+1}]} & \text{ is linear for } k = 0, \ldots, n \text{ and } V(0) = V(1) = 0 \}\}
\end{align*}$

V is finite dimensional since B

form a basis for V.

$$V_{x_k}(x) = \begin{cases}
\frac{x-x_k}{x_k-x_{k-1}} & x \in [x_{k-1}, x_k) \\
\frac{x_{k+1}-x}{x_{k+1}-x_k} & x \in (x_k, x_{k+1}] \\
0 & \text{otherwise}
\end{cases}$$

$k = 1, \ldots, n$
Find \(u(x,t) \) such that for each fixed \(t \), \(u(\mathbf{x}, t) \in V \) and \(\mathbf{u} \) such that for each \(\mathbf{v} \in V \), \(u(\mathbf{x}, t) \) satisfies
\[
\int_0^1 u_t \mathbf{v} \, dx + \frac{1}{2} \int_0^1 (u^2)_x \mathbf{v} \, dx = -\int_0^1 u_x \mathbf{v}_x \, dx \quad \forall t > 0
\]
\[
\int_0^1 u(x,0) \mathbf{v}(\mathbf{x}) \, dx = \int_0^1 \mathbf{c}(\mathbf{x}) \mathbf{v}(\mathbf{x}) \, dx
\]

\(u(\mathbf{x}, t) \in V \Rightarrow \)
\[
u(\mathbf{x}, t) = \sum_{i=1}^{N} c_i(t) \mathbf{v}_i(\mathbf{x})
\]
\[
\Rightarrow u_t = \sum_{i=1}^{N} \dot{c}_i(t) \mathbf{v}_i(\mathbf{x})
\]

\[
[u(x_j, t)]^2 = \left[\sum_{i=1}^{N} c_i(t) \mathbf{v}_i(x_j) \right]^2
\]
\[
= \sum_{i=1}^{N} \sum_{j=1}^{N} c_i(t) c_j(t) \mathbf{v}_i(x_j) \mathbf{v}_j(x_j)
\]

Let's assume that
\[
[u(x_j, t)]^2 = \sum_{i=1}^{N} c_i(t) \mathbf{v}_i(\mathbf{x})
\]

\[
\sum_{i=1}^{N} \dot{c}_i(t) \int_0^1 \mathbf{v}_i \mathbf{v}_j \, dx + \frac{1}{2} \sum_{i=1}^{N} c_i(t) \int_0^1 \mathbf{v}_i \mathbf{v}_j \, dx = -\sum_{i=1}^{N} c_i(t) \int_0^1 \mathbf{v}_i \mathbf{v}_j \, dx
\]
\[
\sum_{i=1}^{N} c_i(0) \int_0^1 \mathbf{v}_i \mathbf{v}_j \, dx = \int_0^1 \mathbf{c}(\mathbf{x}) \mathbf{v}_j(\mathbf{x}) \, dx \quad j = 1, \ldots, N
\]
\[w := \left[\int_0^1 v_i v_j \right]_{i,j=1}^N \quad \text{and} \quad k := \left[\int_0^1 v_i^* v_j \right]_{i,j=1}^N \]

\[A := \left[\int_0^1 v_i v_j^* \right]_{i,j=1}^N \]

\[w = \frac{k}{\delta} \begin{bmatrix} 4 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 1 \end{bmatrix} \]

\[h = x_i - x_{i-1} \]

\[A \in \mathbb{R}^{N \times N} \]

\[\begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{bmatrix} \]

\[K = \frac{1}{2} \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \]

\[c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{bmatrix} \]
\[M \dot{c} = -kc - \left(\frac{1}{2} \right) A (c^2) \]
\[MC(0) = U_0 = \left[\sum_{j=1}^{N} e_j(x) v_j(w) \right] \]

\(M \) is invertible (believe)

\[\dot{c} = M^{-1} (-kc - \frac{1}{2} A (c^2)) \]
\[c(0) = M^{-1} U_0 \]

\[\Rightarrow C(t) = \left[\begin{array}{c} C_1(t) \\ \vdots \\ C_N(t) \end{array} \right] \]

\[\Rightarrow w(x,t) = \sum_{i=1}^{N} C_i(t) v_i(x) \]

→ a system of ordinary differential equations

\[\left\{ \begin{array}{l}
M \dot{c} = -kc - \left(\frac{1}{2} \right) A (c^2) \\
MC(0) = U_0 = \left[\sum_{j=1}^{N} e_j(x) v_j(w) \right] \end{array} \right. \]

\(M \) is invertible (believe)

\[\dot{c} = M^{-1} (-kc - \frac{1}{2} A (c^2)) \]
\[c(0) = M^{-1} U_0 \]

\[\Rightarrow C(t) = \left[\begin{array}{c} C_1(t) \\ \vdots \\ C_N(t) \end{array} \right] \]

\[\Rightarrow w(x,t) = \sum_{i=1}^{N} C_i(t) v_i(x) \]

→ a system of ordinary differential equations

\[\left\{ \begin{array}{l}
M \dot{c} = -kc - \left(\frac{1}{2} \right) A (c^2) \\
MC(0) = U_0 = \left[\sum_{j=1}^{N} e_j(x) v_j(w) \right] \end{array} \right. \]