ERRATA

GRAPH THEORY: Modeling, Applications, and Algorithms, by Geir Agnarsson and Ray Greenlaw

September 19, 2018

• 2nd printed page (Library of Congress, etc.): line 3: “Senior Editor” should be “Senior Editor”.

• Page xii, line 4: “Almost all proofs other than of some exceptionally technical theorems” (the crucial words “other than” are missing!).

• Page xvi, line -12: “ot thak” should be “to thank”.

• Page 9, line -13: “g: Y \rightarrow Z” should be “g: Y \rightarrow Z”.

• Page 9, line -3: “h(x) = 1 − \frac{x}{3}” should be “h(x) = (1 − x)/3”.

• Page 12, line “e_6 is adjacent both to itself and to e_5” should be “e_6 is adjacent to e_5”.

• Page 28, Exercise 1.23: “less than relation (\textless)” should be “less than or equal relation (\leq)”.

• Page 29, Exercise 1.27: “G_{gcd(k,n)}” should be “G_{\sigma(k,n)}”.

• Page 30, line 3: should read $E(...)$ = ..., not $V(...)$ =

• Page 45, line 2: “is satisfied by the graph on the right, but not by the one on the left.”

• Page 51, line 15: “G_{\sigma(n)}” should be “G_{\sigma(k)}”.

• Page 54, Definition 2.37: In the 2nd itemized condition “i \in \{1,\ldots,k-1\}” should be “i \in \{0,\ldots,k-1\}”.

• Page 56, Figure 2.18: “\phi_1” should be “f_1”.

• Page 61, Exercise 2.3: add assumption that G is simple.

• Page 61, Exercise 2.11: add assumption that G and G' are simple.

• Page 63, Exercise 2.22: should read “... every regular simple graph is regular.”.

• Page 63, Exercise 2.23: should read “Show that if a simple graph G on $n > 1$ vertices...” (since 0 is not a natural number, so 1 is not of the given form).
• Page 63, Exercise 2.30: should read “simple contraction” instead of “contraction” in both places.

• Page 64, Exercise 2.26: the second sentence should read “Viewing these paths as subgraphs of G, show that $p_1 \triangle p_2$ constitutes an edge-disjoint union of one or more cycles, possibly along with some isolated vertices.”.

• Page 70, Theorem 3.7, 1st line: the assumptions can be weakened by deleting “simple”.

• Page 85, line -5: “$T \ell$” should be “T_ℓ”.

• Page 92, line 3: “$i \in \{0, 1, \ldots, n-1\}$” should be “$i \in \{0, 1, \ldots, k-1\}$”.

• Page 94, Exercise 3.7: note that the exercise can be improved by asking that the bound from the previous exercise be proved tight for all $n \geq 2$.

• Page 95, Exercise 3.18: should start “For all $k \geq 0$, show ...”.

• Page 100, Theorem 4.4, as it stands, is not entirely correct: $\tau(G)$ is defined in Definition 4.1 as the number of spanning forests of G, so the note right after Theorem 4.4 is wrong, since $\tau(G-e) \neq 0$. However, if we in Definition 4.1 define $\tau(G)$ to be the number of spanning trees of G, so $\tau(G) = 0$ if G is not connected, then Theorem 4.4 is correct.

• Page 102, lines 16, 25, 27, 30: “Tree to Prüfer code” should be “Tree from Prüfer code”.

• Page 122, line 12: “$V(e) \geq 0$” should be “$W(e) \geq 0$”.

• Page 125, line 2 (Proof of Theorem 4.40): “T” should be “T_1”.

• Page 128, Exercise 4.19: restrict to loopless general graphs for the second and third questions. The third question should read “... two adjacent vertices ...” instead of “... two distinct pairs of vertices ...”.

• Page 128, Exercise 4.22: replace “all entries” by “all off-diagonal entries”. Alternatively, limit the assertion to graphs with $n \geq 3$ vertices.

• Page 129, Exercise 4.33: should read “… for any $n \geq 2$, ...”.

• Page 129, Exercise 4.34: add “… , for $n \geq 3$.” at the end of the first sentence.

• Page 130, Exercise 4.38: add assumption that G is loopless.

• Page 130, line -2 (in Exercise 4.39): should read “$W(e)$”, not “$E(e)$”.

• Page 133, Definition 5.1: line 1: “if there are X and $Y...” should read “if there are nonempty X and $Y...”.”
• Page 136, Corollary. 5.8: needs to read “A connected non-Eulerian graph \(G \) has ...” (since a trail is allowed to be closed).

• Page 140, Theorem 5.16: the assumptions can be weakened by deleting “simple”.

• Page 154, Figure 5.12: in the first graph the directed edge \((u_1, u_6)\) is missing.

• Page 156, Exercise 5.11: “...contain 2\(k \) vertices...” should read “contain exactly 2\(k \) vertices...”.

• Page 156, Exercise 5.12: the penultimate sentence of the exercise should read “... the last edge ...” instead of “... the least edge ...”.

• Page 157, Exercise 5.20: This problem doesn’t make sense as is. It should be as follows:

 “Let \(G \) be a simple graph on \(n \) vertices and \(k \) components. Show that

 \[
 d_G(u) + d_G(v) \leq 2n - k - 1,
 \]

 for all \(u, v \in V(G) \). Show further that the upper bound of \(2n - k - 1 \) can be reached for all \(n \) and \(k \). Also show that if we assume \(u \) and \(v \) to be in distinct components, then the upper bound is \(n - k \), and that this is also sharp.”

• Page 159, Exercise 5.43: the second line should read “contain a directed cycle.”.

• Page 159, Exercise 5.46: the problem is not correct as stated. It should read “Let \(\vec{G} \) be a digraph on \(n \) vertices, and let \(I_n \) be the \(n \times n \) identity matrix. Show that if \(\vec{G} \) is acyclic, then \(I_n - A(\vec{G}) \) is an invertible matrix. Give an example of a simple non-acyclic digraph \(\vec{G} \) where \(I_n - A(\vec{G}) \) is invertible. [Hint: A simple digraph on \(n = 3 \) vertices and 4 directed edges will work].”

• Page 167, Theorem 6.20: should read “For a simple graph \(G \) on two or more vertices, we have...”.

• Page 167, Note 6.21: should read “… for all \(n \geq 2 \).”.

• Page 167, Example 6.22: should read “… integers with \(n - 1 \leq m \leq n(n - 1)/2 \). ...”. (This is so that the Harary graph will be simple.)

• Page 169, Corollary. 6.28: add assumption that \(G \) has no isolated vertices.

• Page 171, Theorem 6.33: condition 3 should read “… there are two paths in \(G \) connecting them which are vertex-disjoint except at the endvertices.”
• Page 187, Corollary 6.54: add assumption that \(u \neq v \).

• Page 187, Theorem 6.55: add assumption that \(u \neq v \).

• Page 188, Theorem 6.56: add assumption that \(u \neq v \) and there is no edge in \(G \) from \(u \) to \(v \).

• Page 189, Theorem 6.57: add assumptions that \(u \neq v \) and \(u \) not adjacent to \(v \).

• Page 190, Exercise 6.5: add at the end “and there is some \(u,v \)-path in \(G \)”.

• Page 190, Exercise 6.6: add the hypothesis that \(G \) has \(n \geq 2 \) vertices.

• Page 190, Exercise 6.7: add the hypothesis that \(G \) has \(n \geq 2 \) vertices.

• Page 191, Exercise 6.13: should read: “any connected simple graph...”. Also, correct the hypothesis to \(n \geq 2 \).

• Page 191, Exercise 6.15: add the hypotheses that \(\Delta \geq 2 \) and \(n \geq \Delta + 1 \).

• Page 192, Exercise 6.26: the hint should read that \(0 \leq f(e) \leq c(e) \) for every edge \(e \) of the network.

• Page 192, Exercise 6.30: the last sentence should read “In general, is it possible to have an arbitrary number of maximum flows ...”.

• Page 194, Exercise 6.40: the 2nd line should read “Show that for any distinct vertices \(u \) and \(v \), the minimum number ...”.

• Page 194, Exercise 6.41: the 10th line should read “...path in \(\tilde{G} - M_d \),...”, and not “... path in \(G, ... \)”.

• Page 200, Note 7.8: “can made” should be “can be made”.

• Page 201, line 10: “We conclude this chapter” should be “We conclude this section”.

• Page 202, Cor. 7.15: add assumption that \(n \geq 3 \).

• Page 208, Note 7.29, 1st line: should read “...homeomorphic to a given graph \(H \) with no vertices of degree 2, then ...”.

• Page 214, 2nd sentence of 1st paragraph after Note 7.34: should read “A property of graphs which is preserved under taking minors is called hereditary.”

• Page 226, Cor. 7.54: add assumption that \(n \geq 3 \).

• Page 226, Theorem 7.55: should read “... on \(n \geq 3 \) vertices, ...”.

• Page 228, Exercise 7.1: “\(r_2, r_3 \) and \(r_4 \)” should be “\(r_1, r_2 \) and \(r_3 \)”.

4
• Page 229, Exercise 7.5: should read “Let G be a plane graph ...”.

• Page 229, Exercise 7.6: should read “Show that a simple plane graph ...”.

• Page 230, Exercise 7.23: should read “Eulerian” instead of “Euler” in four places.

• Page 230, Exercise 7.26: 2nd line should read “vertex disjoint paths from u to v.”.

• Page 231, Exercise 7.28: Theorem 7.59 is not correct as stated. Condition 2 should read “No subgraph of G can be obtained from K_4 or $K_{2,3}$ by subdividing edges.”.

• Page 231, Exercise 7.34: should read “... in a simple graph with ...”.

• Page 242, line -2: should read “adjacent” instead of “connected” in both places.

• Page 248, Theorem 8.28: should read “For a loopless planar graph ...”.

• Page 249, Theorem 8.29: should read “For a loopless planar graph ...”.

• Page 249, Theorem 8.30: should read “For a loopless graph G ...”.

• Page 250, Theorem 8.31: should read “For a loopless graph G ...”.

• Page 251, line 10 (first displayed formula): “$2e$” should be “$2m$”.

• Page 253, line 1: “$V(E)$” should be “$E(G)$”.

• Page 259, line 18: “...when n is odd...” should be “...when n is even...”.

• Page 259, line 19: “...when n is even.” should be “...when n is odd.”.

• Page 262, Exercise 8.20: “$d_G(u) \geq \chi(G)$” should be “$d_G(u) \geq \chi(G')$” and “$d_{\overline{G}}(u) \geq \chi(\overline{G})$” should be “$d_{\overline{G'}}(u) \geq \chi(\overline{G'})$”.

• Page 262, Exercise 8.21, part (c): $\ell(G) - 1$ should read $\ell(G) + 1$.

• Page 263, Exercise 8.30: “$n(\frac{k}{2})$” should read “$m(\frac{k+1}{2})$”.

• Page 264, Exercise 8.37: 1st line should read “... a simple graph G ... if $\chi(G) \leq 4$”. 2nd line should read “... a simple planar graph ...”.

• Page 282, Theorem 9.24: Strictly speaking, this theorem should be attributed to Koebe [1] and Andreev [2] in addition to Thurston. Koebe’s original proof only covered the case for fully triangulated planar graphs. Thurston rediscovered the theorem and reduced the
proof to a theorem by Andreev. His proof works for all planar graphs. Thurston never formally published his proof, but a sketch of his proof is in his cited lecture notes. For additional citations and history see [3, p. 118].

• Page 298, Exercise 9.26 part (b): “C_7^n” should be “C_2^n”.

• Page 306, line -2: “$D = \{u_1, u_5, u_8\}$” should be “$D = \{u_1, u_5, u_I\}$” (as depicted in Figure 10.5.)

• Page 318, line -6: “$a \in A \setminus \{x\}$” should be “$a \in S \setminus \{x\}$”.

• Page 352, Exercise 11.12, line 4: “$F_1 = 0$, $F_1 = 1$” should be “$F_1 = 1$, $F_2 = 1$”.

• Page 368, lines 5 and 6: “... $+2x^2$” should be “... $−2x^2$” in both places.

• Page 417, Exercise 13.7: should read “Is it true that $\log(O(f(n))) = O(\log(f(n)))$? Justify your answer.”.

• Page 444, Index: “Seymour, Paul” and “Seymour, Paul D.” are the same person and should be listed once as “Seymour, Paul D.”. Similarly, “Slater, Peter J.” should be listed once.

References

I will do my best to maintain this errata sheet for further printings and for possible additional editions of the book. Please drop me a line at geir@math.gmu.edu if you find a typo/mistake. On behalf of the authors, Ray and me, I thank you all collectively for your input and help.

Yours, Geir Agnarsson