1. Let \(P \) be a point on the line \(\overrightarrow{AB} \) and \(l \not= \overrightarrow{AB} \) be a line containing the point \(A \).
 a. Prove that if \(P \in \overrightarrow{AB} \), then \(P \) and \(B \) are on the same side of \(l \). (Hint: Use proof by contradiction)
 b. Prove that if \(P \) and \(B \) are on the same side of \(l \), then \(P \in \overrightarrow{AB} \)

Notice that part a and b together gives the following result:
\(P \in \overrightarrow{AB} \) if and only if \(P \) and \(B \) are on the same side of \(l \).

2. Name the Theorem, Proposition or Axiom that justifies each of the following: (It is possible that more than one is needed.)
 a. Let \(P \in \overrightarrow{AB} \), then there is a line \(l \not= \overrightarrow{AB} \) such that \(l \) contains the point \(P \).
 b. Let \(l \) be a line. If \(A \not\in l \), then there is a line \(m \) that contains the point \(A \) and \(m \cap l \not= \emptyset \).
 c. Let \(A, B, \) and \(C \) be three distinct collinear points such that \(A \) is between \(B \) and \(C \). For each point \(D \in \overrightarrow{AB} \) where \(D \not= A \), if \(D \not\in \overrightarrow{AC} \) then \(D \in \overrightarrow{AB} \)
 d. Given and angle \(\angle EFG \), let \(D \) be a point such that \(D \in \overrightarrow{EG} \), \(D \) is distinct from both \(E \) and \(G \), then \(D \) is interior to \(\angle EFG \).
 e. Given and angle \(\angle EFG \), and a point \(D \in \overrightarrow{EG} \), \(D \) is distinct from both \(E \) and \(G \), every point which is between \(F \) and \(D \) is interior to \(\angle EFG \).
 f. Given and angle \(\angle EFG \), and a point \(X \), which is interior to \(\angle EFG \), there is a point \(D \), such that \(D = \overrightarrow{FX} \cap \overrightarrow{EG} \)