9.1 Limits of Functions.

A. Definition of limit.

1. Definition. We will consider *vector-valued functions*, \(f: D \rightarrow \mathbb{E}^m \), with domain \(D = D_f \subseteq \mathbb{E}^n \). We write
\[
\mathbf{f}(\mathbf{x}) = \mathbf{f}(x_1, \ldots, x_n) = (f_1(x_1), f_2(x_2), \ldots, f_m(x_m))
\]
where \(f_i: D \rightarrow \mathbb{R} \) and we usually write
\[
f_i(x) = f_i(x_1, x_2, \ldots, x_n).
\]

2. Definition. Let \(a \) be a limit point (cluster point) of the domain \(D_f \) of a function \(\mathbf{f} \). Then
\[
\lim_{\mathbf{x} \to a} \mathbf{f}(\mathbf{x}) = \mathbf{L}
\]
if for all \(\epsilon > 0 \) there is an \(\delta > 0 \) such that for all \(\mathbf{x} \in D_f \), if \(0 < \|\mathbf{x} - a\| < \delta \), then \(\|\mathbf{f}(\mathbf{x}) - \mathbf{L}\| < \epsilon \).

3. Remark. If \(a \) is an isolated point of \(D_f \) then it does not make sense to talk about
\[
\lim_{\mathbf{x} \to a} \mathbf{f}(\mathbf{x}).
\]
Theorem 1. (9.1.1) Suppose that a is a limit point of the domain D_f of the function f. Then the following are equivalent

a. $\lim_{x \to a} f(x) = L$.

b. For every sequence $\{x^{(j)}\} \in D_f$, with $x^{(j)} \neq a$ for all j, such that $x^{(j)} \to a$,
 $\lim_{j \to \infty} f(x^{(j)}) = L$.

Proof.
4. Example. Find \(\lim_{(x,y) \to (0,0)} \frac{\sin(x) \sin(y)}{x^2 + y^2} \) or prove it does not exist.

5. Example. Find \(\lim_{(x,y) \to (0,0)} \frac{x^2 + y^4}{x^2 + 2y^4} \) or prove it does not exist.
6. Example. Find \(\lim_{(x,y) \to (0,0)} \frac{x^3 - y^3}{x^2 + y^2} \) or prove it does not exist.