Exercise 8.41.

Solution:

(a) For \(n = 1 \) let \(E_k = [k, \infty) \). Then \(E_{k+1} \subseteq E_k \) for all \(k \) but \(\cap_{k=1}^{\infty} E_k = \emptyset \). For \(n > 1 \), you can just set \(E_k = [k, \infty) \times \cdots \times [k, \infty) \) where there are \(n \) terms in the product. Then the same conclusion holds.

(b) As in the hint, let \(x^{(k)} \in E_k \). Since \(E_k \subseteq E_1 \) for all \(k \), \(x^{(k)} \in E_1 \) for all \(k \). Since \(E_1 \) is compact, the Bolzano-Weierstrass Theorem holds, so there is a subsequence \(x^{(k_j)} \) that converges to some \(x \in E^n \). It remains to show that \(x \in \cap_{k=1}^{\infty} E_k \). Let \(m \in \mathbb{N} \). We will show that \(x \in E_m \). Because \(k_j \geq j \), we have that \(k_j \geq m \) as soon as \(j \geq m \). Therefore, if \(j \geq m \), \(x^{(k_j)} \in E_m \). In other words, the tail of the subsequence \(x^{(k_j)} \) is in \(E_m \). Since \(E_m \) is closed, it contains all of its cluster points, and it follows from this that \(x \in E_m \). (If this is not clear to you, you can reason as follows. If \(x \notin E_m \) then because \(x \) is the limit of a sequence of points in \(E_m \), \(x \) satisfies the definition of cluster point of \(E_m \). But this contradicts the assumption that \(E_m \) is closed. Hence \(x \in E_m \).)