1. Let \(x_k \) be absolutely summable. We must show that \(\sum_{k=1}^{\infty} x_k \) converges. We will show that its partial sums are Cauchy. Let \(S_n = \sum_{k=1}^{n} x_k \), and let \(\varepsilon > 0 \). Since \(\sum_{k=1}^{\infty} |x_k| \) converges, there is an \(N \) such that \(n, m \geq N \) implies that \(\sum_{k=m+1}^{n} |x_k| < \varepsilon \). For this \(N \),

\[
|S_n - S_m| = \left| \sum_{k=m+1}^{n} x_k \right| \leq \sum_{k=m+1}^{n} |x_k| < \varepsilon.
\]

Hence \(S_n \) converges and \(x_k \) is summable.

2. Let \(x_k = (-1)^k \). Then \(S_n = \sum_{k=1}^{n} x_k = \sum_{k=1}^{n} (-1)^k \)

\[
= \begin{cases}
-1 & \text{if } n \text{ odd} \\
0 & \text{if } n \text{ even}
\end{cases}
\]

Hence \(S_n \) is bounded. However, the sequence \(S_n \) does not converge, because always \(|S_{n+1} - S_n| = 1 \), so \(S_n \) is not Cauchy.
3. (⇒) Suppose that x_n is summable. This means that the sequence s_n of partial sums is convergent. But we know that convergent sequences are bounded. Hence s_n is bounded.

(⇐) Suppose that s_n is bounded. We must show it is convergent. Since $x_n \geq 0$ for all n, s_n is a non-decreasing sequence.

Let $s_n = \sup s_n$ for all n. Since s_n is bounded, then $s = \sup s_n$ exists (by the Completeness Axiom). We will show that $s_n \to s$.

Let $\varepsilon > 0$. Since $s = \sup s_n$, there is an N such that $s_n > s - \varepsilon$, or $s - s_n < \varepsilon$.

Since $s_n \leq s$ for all n, $|s - s_n| < \varepsilon$. Since s_n is increasing, $s - s_n$ is decreasing.

So if $n \geq N$, $|s - s_n| < \varepsilon$. Hence $s_n \to s$.

2 of 4
4. In order to show Σ converges uniformly on D we want to show that given $\varepsilon > 0$ there is an N such that

if $n, m \geq N$ then $\|f_{n} - f_{m}\|_{\sup} = \|\sum_{b=n+1}^{m} f_{b}\|_{\sup} < \varepsilon$.

But since $\{f_{n}\}$ is summable, there is an N such that $n, m \geq N$ implies that

$$\sum_{b=n+1}^{m} f_{b} < \varepsilon.$$ Hence if $n, m \geq N$,

$$\|\sum_{b=m+1}^{n} f_{b}\|_{\sup} = \sum_{b=m+1}^{n} M_{b} < \varepsilon.$$ (Here we have used the fact that $\sup_{x} |f(x) + g(x)| = \sup_{x} |f(x)| + \sup_{x} |g(x)|$)

\therefore $\sum_{b=m+1}^{n} f_{b}$ converges uniformly to f on D.

\[\therefore \]
5. (a) Let \(\mathcal{O} \) be a collection of open sets in \(\mathbb{R}^n \) and let \(\mathcal{O}_0 = \bigcup_{\mathcal{O}} \). We must show \(\mathcal{O}_0 \) is open. Let \(x \in \mathcal{O}_0 \) then for some \(\mathcal{O}_x \), \(x \in \mathcal{O}_x \). Since \(\mathcal{O}_x \) is open there is an \(\varepsilon > 0 \) such that \(B(x, \varepsilon) \subseteq \mathcal{O}_x \). But since \(\mathcal{O}_x \subseteq \mathcal{O}_0 \), \(B(x, \varepsilon) \subseteq \mathcal{O}_0 \) and \(\mathcal{O}_0 \) is open.

(b) Let \(\mathcal{O}_n^{\leq} \) be open sets and let \(\mathcal{O} = \bigcap_{n=1}^{\infty} \mathcal{O}_n \). We must show \(\mathcal{O} \) is open. Let \(x \in \mathcal{O} \) then \(x \in \mathcal{O}_n \) for each \(n \) so there is an \(\varepsilon_n > 0 \) such that \(B(x, \varepsilon_n) \subseteq \mathcal{O}_n \) for each \(n \). Let \(\varepsilon = \min \{ \varepsilon_1, \ldots, \varepsilon_n \} \). We will show \(B(x, \varepsilon) \subseteq \mathcal{O} \). If \(y \in B(x, \varepsilon) \) then since \(\varepsilon \leq \varepsilon_n \) for all \(n \), \(y \in B(x, \varepsilon_n) \subseteq \mathcal{O}_n \). Hence \(y \in \bigcap_{n=1}^{\infty} \mathcal{O}_n \subseteq \mathcal{O} \), and so \(B(x, \varepsilon) \subseteq \mathcal{O} \). Hence \(\mathcal{O} \) is open.