10.2 Differentiable Functions.

A. The derivative.

1. **Motivation.** (a) Recall that a function \(f : \mathbb{E}^1 \to \mathbb{E}^1 \) is differentiable at \(x_0 \) in its domain, with derivative \(f' (x_0) \) if

\[
\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f' (x_0)
\]

Rewriting this in terms of the definition of the limit gives: For every \(\epsilon > 0 \) there is a \(\delta > 0 \) such that if \(|h| < \delta \) then

\[
\left| \frac{f(x_0 + h) - f(x_0)}{h} - f' (x_0) \right| < \epsilon
\]

or, rewriting again

\[
|f(x_0 + h) - f(x_0) - f' (x_0)h| < \epsilon h
\]

(b) If we define the linear transformation \(A \in \mathcal{L}(\mathbb{E}^1, \mathbb{E}^1) \) by \(A(h) = f' (x_0)h \) for all \(h \in \mathbb{E}^1 \), then we can rewrite above as

\[
|f(x_0 + h) - f(x_0) - A(h)| < \epsilon h
\]
(c) Now clearly, for any linear transformation $A \in \mathcal{L}(\mathbb{E}^1, \mathbb{E}^1)$, or equivalently any number m, the quantity $|f(x_0 + h) - f(x_0) - A(h)| \to 0$ as $h \to 0$ (assuming f is continuous at x_0). However, the definition of differentiability says that in fact,

$$\frac{|f(x_0 + h) - f(x_0) - A(h)|}{h} \to 0$$

or in other words that $|f(x_0 + h) - f(x_0) - A(h)|$ goes to zero faster than h. There is only one transformation A that satisfies this criterion.

(d) We conclude that (i) the derivative $f'(x_0)$ can be thought of as a linear transformation, (ii) this linear transformation has the property that the difference between it and $f(x_0 + h) - f(x_0)$ goes to zero faster than h goes to zero, and (iii) it is the only linear transformation that does so.
2. **Definition.** Let \(f: D \to \mathbb{E}^m \) for some \(D \subseteq \mathbb{E}^n \) and let \(x \in D \) be a cluster point of \(D \). Then \(f \) is *differentiable* at \(x \) with derivative \(f'(x) \in \mathcal{L}(\mathbb{E}^n, \mathbb{E}^m) \) if

\[
\lim_{h \to 0} \frac{|f(x + h) - f(x) - f'(x)(h)|}{\|h\|} = 0
\]

3. **Theorem.** (10.2.2) If \(f \) is differentiable at \(x_0 \in D \) then \(f \) is continuous at \(x_0 \).
B. Computing $f'(x)$.

1. **Remark.** (a) If $f'(x) \in \mathcal{L}(\mathbb{E}^n, \mathbb{E}^m)$ then it has a representation as a $m \times n$ matrix with respect to the standard basis. What is that matrix?

(b) Consider first a function $f: \mathbb{E}^n \to \mathbb{E}^1$, that is a real-valued function of n variables. Let us write $f(x) = f(x_1, x_2, ..., x_n)$. In this case, for a given $x_0 = (x_1^0, x_2^0, ..., x_n^0)$, $f'(x_0)$ is a linear transformation from \mathbb{E}^n to \mathbb{E}^1 and hence can be written as

$$f'(x_0)h = a \cdot h$$

for $h \in \mathbb{E}^n$. And we have

$$\lim_{h \to 0} \frac{||f(x_0 + h) - f(x_0) - a \cdot h||}{||h||} = 0$$

(c) Since the limit exists, we can approach zero from any direction. By letting $h = h e_i$, we get $a \cdot h = a_i$, and writing the above limit in components we get

$$\lim_{h \to 0} \frac{f(x_1^0, ..., x_j^0 + h, ..., x_n^0) - f(x_1^0, ..., x_n^0)}{h} = a_i$$

But this is just the usual definition of the partial derivative. So we conclude

$$a = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n} \right) = \nabla f(x_0)$$
2. **Theorem (10.2.3)** Let \(f: D \to \mathbb{E}^m, \) \(D \) an open subset of \(\mathbb{E}^n, \) be differentiable at \(x \in D. \) Then the matrix of \(f'(x) \) with respect to the standard basis is given by

\[
f'(x) = \left[\frac{\partial f_i}{\partial x_j} \right]_{m \times n}
\]

Moreover, for any \(v \in \mathbb{E}^n, \)

\[
f'(x)v = \lim_{t \to 0} \frac{f(x + tv) - f(x)}{t}
\]

which is defined as the *directional derivative of \(f \) in the direction \(v \) at \(x. \)*
3. **Remark.** (a) Differentiability of \(f \) at \(x \) implies that all of the partial derivatives of \(f \) exist at \(x \). However, the existence of all partial derivatives at \(x \) does not guarantee that \(f \) is differentiable at \(x \). This is in contrast to the case of real-valued functions of a single variable.

(b) However, if all of the partials of \(f \) are *continuous* then the story is different.

4. **Theorem** (10.2.3) Let \(f : D \to \mathbb{E}^m \), \(D \) an open subset of \(\mathbb{E}^n \). Then \(f \in C^1(D, \mathbb{E}^n) \), that is, considering \(f' \) is continuous as a function \(f' : D \to \mathcal{L}(\mathbb{E}^m, \mathbb{E}^n) \) between two normed linear spaces, if and only if every partial derivative of \(f \) is continuous on \(D \).